光动力疗法联合免疫治疗在恶性肿瘤中的研究进展

2024-12-31 00:00:00田丹夏思雨李里
中国医学创新 2024年29期
关键词:免疫调节免疫治疗

【摘要】 光动力疗法(photodynamic therapy,PDT)是一种非侵入性、高选择性的肿瘤治疗方法,该方法利用适当波长的光激活光敏剂,产生瞬时水平的活性氧(reactive oxygen species,ROS)杀伤肿瘤细胞和肿瘤周围血管,以达到治疗效果。近年来,已有研究证实PDT不仅可以诱导肿瘤的局部免疫反应,而且对适应性免疫的建立也起到关键性作用。此外,最新的研究发现PDT联合免疫治疗具有协同增效作用。本文针对PDT诱导免疫应答的机制,以及目前PDT联合免疫治疗的相关基础研究和临床研究现状进行综述。

【关键词】 光动力治疗 免疫调节 免疫治疗

Research Progress of Photodynamic Therapy Combined with Immunotherapy in Malignant Tumors/TIAN Dan, XIA Siyu, LI Li. //Medical Innovation of China, 2024, 21(29): -183

[Abstract] Photodynamic therapy (PDT) is a non-invasive and highly selective tumor treatment that uses light of the appropriate wavelength to activate photosensitizer and produce instantaneous level reactive of oxygen species (ROS) to kill tumor cells and blood vessels around the tumor, thereby achieving therapeutic effects. In recent years, it has been confirmed that PDT can not only induce the local immune response of tumors, but also play a key role in the establishment of adaptive immunity. In addition, recent studies have found that PDT combined with immunotherapy has a synergistic effect. This article reviews the mechanism of immune response induced by PDT, as well as the current related basic research and clinical research status of PDT combined with immunotherapy.

[Key words] Photodynamic therapy Immunomodulation Immunotherapy

First-author's address: Department of Oncology, the 2nd Affiliated Hospital of Harbin Medical University, Harbin 150081, China

doi:10.3969/j.issn.1674-4985.2024.29.040

光动力疗法(photodynamic therapy,PDT),也称光化学疗法,是一种新兴的有高度选择性的肿瘤治疗方法,其机制是利用光敏药物和特定波长的光产生细胞毒性活性氧(reactive oxygen species,ROS)杀伤肿瘤细胞,破坏周围血管,并激发肿瘤微环境中的免疫反应[1]。相比于传统疗法,该方法对正常组织的毒性更小,具有较高的靶向性和生物清除率[2]。近年来,PDT引起了人们的广泛关注,现已被应用于各种恶性肿瘤的治疗,如口腔癌、肺癌、膀胱癌、脑胶质瘤、卵巢癌和食管癌[3]。

肿瘤细胞受益于功能失调的免疫微环境,该环境无法有效触发抗肿瘤的免疫反应,或缺乏能够激活先天免疫细胞的因子,使肿瘤细胞无法被免疫细胞杀伤[4]。目前,PDT诱导抗肿瘤免疫应答的机制尚未完全阐明。多数研究认为,PDT主要通过诱导免疫原性细胞死亡(immunogenic cell death,ICD),进而释放肿瘤抗原和损伤相关分子模式(damage associated molecular patterns,DAMPs)来克服这种功能障碍[5]。针对PDT激活免疫反应这一属性,将PDT与免疫治疗结合,二者对抗肿瘤的协同增效作用已被证实[6]。

1 PDT杀伤肿瘤细胞的机制

PDT的三种抗肿瘤机制看似独立却又相互关联。首先,PDT在有氧环境下,通过适当波长的光照射,激发光敏剂转变为三重激发态。这种激发态可引发两种反应:既可以进行不依赖氧的Ⅰ型反应,直接与有机分子反应形成自由基,也可以将多余的能量转移到周围的氧分子进行Ⅱ型反应,从而形成1O2杀伤靶细胞。这两种反应产生的ROS通过促进细胞凋亡、坏死和自噬等途径,直接杀灭原发部位的恶性肿瘤细胞[7]。其次,PDT破坏肿瘤相关血管的内皮细胞,血流显著减少,从而导致肿瘤细胞死亡[8]。在这两种机制的作用下,破裂的肿瘤细胞会释放大量肿瘤相关抗原(tumor associated antigens,TAAs),从而引发急性炎症应答,其主要表现为细胞因子的分泌及中性粒细胞和巨噬细胞的聚集[9]。这种早期反应可以激活免疫系统,从而促进治疗剩余部位肿瘤细胞的清除[10]。此外,肿瘤细胞破坏后释放的DAMPs会诱导剩余肿瘤细胞的ICD,如热休克蛋白(heat shock protein,HSP)家族蛋白HSP70、HSP90、高迁移率族蛋白1(high-mobility group box 1,

HMGB1)、三磷酸腺苷(adenosine triphosphate,ATP)和钙网蛋白(calreticulin,CRT)[11]作为病原体相关分子模式的内源性类似物,能够刺激抗原呈递细胞,吞噬TAAs,并将抗原呈递给效应T细胞,协调抗肿瘤的适应性免疫应答(图1),这能够长期预防肿瘤复发和肿瘤转移,提供全身性的肿瘤免疫控制[5]。已有研究表明,ICD依赖于ROS的产生和真核起始因子2α(eukaryotic initiation factor 2α,eIF2α)的磷酸化,而eIF2α是诱导内质网应激反应的重要因子[12]。PDT可诱导肿瘤细胞内大量ROS产生,从而导致氧化应激性细胞死亡[13]。也就是说,PDT可以通过诱导ICD将“冷”肿瘤变成“热”肿瘤,增强肿瘤相关抗原的免疫原性、活化抗肿瘤的T细胞,进一步诱导肿瘤细胞的ICD,并激发全身抗肿瘤的适应性免疫应答。由此可见,免疫刺激似乎依赖于另外两种抗肿瘤机制,即由ROS介导的肿瘤细胞死亡的类型和肿瘤相关血管损伤的程度[14]。

综上,PDT通过光、氧气和光敏剂,在肿瘤细胞和肿瘤血管内产生ROS,直接杀伤肿瘤细胞,导致血管闭塞,触发肿瘤部位的急性炎症,导致嗜中性粒细胞和巨噬细胞聚集。ROS诱导的免疫原性肿瘤细胞死亡与释放DAMPs有关。抗原呈递细胞[主要是树突状细胞(dendritic cell,DC)]受到DAMPs的刺激,吞噬TAAs,并将其呈递给效应T细胞,从而协调抗肿瘤适应性反应,提供肿瘤的长期免疫控制。

2 PDT与固有免疫应答

中性粒细胞迅速大量增加是PDT介导的急性炎症的表现之一[9]。中性粒细胞是人体内数量最多的白细胞,在机体免疫中起着至关重要的作用[15]。在基底细胞癌局部应用5-氨基酮戊酸(5-aminolevulinic acid,ALA)的一项观察性研究中,PDT治疗1 h内,肿瘤部位中性粒细胞浸润增加,4 h达到峰值,48 h后降至基础水平[16]。中性粒细胞向肿瘤部位浸润被认为是由肿瘤血管内皮上表达的细胞间黏附分子-1(intercellular adhesion molecule-1,ICAM-1)及PDT后上调的ICAM-1配体所介导[17]。PDT后血管扩张,血管通透性增加,可能是免疫细胞向肿瘤浸润增加的原因之一。有趣的是,PDT后4 h外周血中性粒细胞的活性上调,表明这种免疫反应可能并不局限于局部病变[18-19]。此外,48~72 h后,巨噬细胞、肥大细胞等髓系细胞在处理部位聚集[16]。PDT后肿瘤周围白细胞介素(interleukin,IL)-23、IL-22、IL-17和γ干扰素(interferon-γ,IFN-γ)的表达增加,同时血清中免疫抑制转化生长因子-β(transforming growth factor-β,TGF-β)水平出现下降[18,20]。这些反应的发生也提示PDT后会有短暂的炎症反应。另一项关于头颈部鳞状细胞癌的PDT研究发现,PDT后患者血清中IL-6水平升高,且在治疗后24 h达到峰值,HMGB1在治疗后1周出现峰值[21],这进一步支持PDT可作为急性炎症的有效诱导因子。

3 PDT与适应性免疫应答

DC的成熟是PDT诱导适应性免疫应答的重要步骤。DC是抗原呈递细胞的主要亚群,它吞噬受损的肿瘤细胞,处理其抗原,并迁移到局部淋巴结,在最佳的环境下将抗原呈递给T细胞,诱导T细胞增殖和活化,在适应性免疫应答中起着关键性的作用[22]。研究显示,PDT后的肿瘤裂解物在体外促进DC的成熟,从CD86、CD80和Ⅱ类主要组织相容性复合体(major histocompatibility complex class Ⅱ,MHCⅡ)的表达及IL-12的释放来看,这很可能是由DAMPs在肿瘤部位的积累引起的[23-24],但需要进一步的研究来阐明确切的机制。

有证据表明T淋巴细胞在PDT介导的抗肿瘤免疫中起主要作用[25]。在PDT后DC会将脾脏中未分化的CD8+T细胞诱导为效应CD8+T细胞,随后分化为效应记忆细胞。此外,CD4+T细胞能够维持CD8+T细胞的效应记忆。由于颗粒酶A、颗粒酶B、穿孔素和干扰素上调,促进CD8+效应记忆T细胞迁移到肿瘤,从而引起细胞毒性作用并抑制肿瘤的生长[26]。Prignano等[16]的研究中,ALA-PDT后24 h,肿瘤部位淋巴细胞增多,且至少持续升高72 h, CD4+淋巴细胞多于CD8+淋巴细胞。值得注意的是,PDT增强了淋巴细胞对基底细胞癌中表达的TAAs和亨廷顿相互作用蛋白1(Huntingtin interacting protein 1,Hip1)的识别。该研究中描述的抗原特异性免疫反应很可能是由CD8+T细胞介导的,这可能是因为Hip1与Ⅰ类主要组织相容性复合体(major histocompatibility complex class Ⅰ,MHCⅠ)分子形成复合物更易被CD8+T细胞识别有关[27]。为了证明这一观点,一项针对外阴上皮内瘤变(vulvar intraepithelial neoplasia,VIN)患者(n=32)的观察性研究显示,主要MHCⅠ缺失的VIN患者(n=9)对PDT治疗无效,而对治疗有应答者的CD8+T细胞浸润明显高于无应答者[28]。总之,PDT的全身性和长期免疫效应很大程度上依赖于适应性免疫应答。

4 PDT联合免疫治疗在肿瘤中的应用

对一线治疗(手术、放疗和化疗)产生耐药性的肿瘤,或处于晚期的肿瘤,往往会形成严重的免疫抑制微环境,其特征主要是抑制免疫激活的分子上调,促进肿瘤生长或免疫抑制细胞积聚[29]。因此,减少免疫抑制因子和恢复免疫应答的治疗策略,如免疫检查点阻断(immune checkpoint blockade,ICB)治疗和DC疫苗成了抗癌的重要治疗手段。但ICB治疗仍存在免疫应答较低的情况,因此提高免疫原性和肿瘤T细胞浸润成为ICB治疗的关键之一。最近,有临床前研究和临床研究将PDT与ICB等免疫原性传统治疗相结合,发现可显著提高肿瘤对检查点治疗的应答率,有效治疗肿瘤。

4.1 PDT联合DC疫苗

随着抗原鉴定技术的高速发展,针对肿瘤的治疗性疫苗正在受到越来越多的关注。人们广泛研究了以DC为基础的肿瘤疫苗的使用,迄今已进行了200多项临床试验。与传统疫苗不同,DC疫苗是采用肿瘤患者自身的单核细胞,在体外培养,并负载相应的肿瘤抗原,形成疫苗,再回输入肿瘤患者体内[30]。其原理主要是利用DC呈递抗原、激活免疫的功能,进而激活体内T淋巴细胞的抗肿瘤免疫反应[31]。临床前证据表明,PDT能够促进DC的聚集、成熟和细胞因子的分泌,且利用PDT制备的DC疫苗(PDT-DC疫苗)已被证明能够激发更强的抗肿瘤免疫反应[32-33]。在腹膜间皮瘤的小鼠实验中,与用抗细胞毒性T淋巴细胞相关抗原4(cytotoxic T lymphocyte-associated antigen-4,CTLA-4)抗体和脂多糖(lipopolysaccharide,LPS)治疗的两组相比,使用PDT-DC疫苗治疗的小鼠有着更高的总生存率,且CD8+和CD4+T细胞均显著增多,DC向淋巴结和淋巴管迁移的能力更强[34]。然而,人体的免疫应答远比实验室模型复杂和多样,因此尚需更多的临床试验进一步验证。

4.2 PDT联合PD-1/PD-L1

程序性死亡蛋白-1(programmed death-1,PD-1)是一种在肿瘤特异性T细胞上高度表达的免疫抑制信号分子,PD-1与肿瘤细胞上存在的程序性死亡受体1(programmed death-ligand 1,PD-L1)结合后,T细胞增殖和活化受抑制,凋亡水平升高,因此PD-1/PD-L1信号传导促进肿瘤免疫逃逸并严重影响肿瘤免疫治疗的效果[35]。据报道,PDT可通过缺氧诱导因子-1α(hypoxia-inducible factor-1α,HIF-1α)信号上调肿瘤PD-L1的表达水平,而大多数招募的CD8+T细胞表达PD-1,强调了联合抗PD-1/PD-L1抗体治疗策略的重要性[36]。基于此观点,有研究者建立小鼠原位4T1乳腺癌模型进行PDT联合免疫检查点抑制剂的抗癌活性研究,在尾静脉注射了纳米负载的光敏剂Pheophorbide A,1 h后肿瘤部位蓄积量最大,体内抗肿瘤结果表明,PDT使4T1肿瘤细胞的PD-L1表达增加了1.45倍,且Pheophorbide A介导的PDT联合免疫检查点抑制剂PD-L1组诱导凋亡或坏死的肿瘤细胞数量最多[37]。Gurung等[38]的类似研究中,显示PDT治疗使肿瘤对PD-L1抗体敏感。此外,由于PDT可以诱导缺氧的增强,有研究利用光敏剂水溶性酞菁衍生物PcN4来递送缺氧激活的前药AQ4N,并产生更缺氧的肿瘤微环境来激活AQ4N,当与ICB治疗相结合时,它可以有效抑制乳腺癌的远处转移。由此可见,通过PDT联合免疫检查点抑制剂,可增强“远位效应”进一步激发机体免疫反应,抑制肿瘤生长及转移,并减轻治疗过程中对机体的损伤。

到目前为止,只有少数探索性临床研究评估了PDT与ICB联合的治疗效果。Santos等[39]曾报道1例头颈部鳞状细胞癌患者接受PDT联合纳武利尤单抗治疗获得成功,这也说明PDT联合免疫检查点抑制剂具有可行性。一项关于PDT治疗晚期结肠癌的临床回顾性研究中,10例结肠癌患者接受PDT联合其他治疗,如化疗、免疫治疗或靶向治疗,与仅接受其他治疗的患者相比,PDT联合免疫治疗的生存率明显更高(P=0.047)[40]。此外,在一项血卟啉介导的PDT联合PD-1抑制剂治疗食管癌的临床研究中,15例患者在PDT前行PD-1抑制剂治疗,之后每3周重复给药1次,患者吞咽指数明显改善,未出现预期外的不良反应。其中出现进食梗阻的患者在PDT联合5次PD-1抑制剂治疗后,经内镜复查发现病灶完全消退,可见PDT联合免疫治疗对恶性肿瘤的有效性[41]。虽然当前关于PDT与ICB联合治疗的临床研究尚处于初步阶段,但已有的数据显示了这种联合疗法在提高恶性肿瘤患者的生存率和改善临床症状方面的显著潜力。

5 结语

综上所述,PDT可以破坏肿瘤的免疫耐受、干扰免疫抑制的肿瘤微环境,激发固有免疫应答和适应性免疫应答,提高肿瘤组织免疫细胞浸润,变“冷肿瘤”为“热肿瘤”。PDT与免疫佐剂、免疫检查点抑制剂联合应用,既能提高肿瘤原位杀伤作用,又能抑制肿瘤远距离转移的能力。目前,在荷瘤鼠肿瘤模型中已经证实了PDT联合免疫治疗应用于恶性肿瘤具有协同增效作用,这预示着这种联合治疗模式的广阔前景。当然,仍然需要更多的循证医学证据支持。关于恶性肿瘤的PDT联合免疫治疗可以是多种多样的,如PDT联合PD-1抑制剂、PD-L1抑制剂和DC疫苗等。PDT与免疫治疗的联合根据肿瘤的不同分期、不同个体情况采用不同的模式,但这些模式的建立和组合必须通过严格的临床筛选和实施,以寻求更安全、更有效的治疗策略。

参考文献

[1] CORREIA J H,RODRIGUES J A,PIMENTA S, et al.

Photodynamic therapy review: principles, photosensitizers, applications, and future directions[J].Pharmaceutics,2021,13(9):1332.

[2] HOU Y J,YANG X X,LIU R Q,et al.Pathological mechanism of photodynamic therapy and photothermal therapy based on nanoparticles[J].Int J Nanomedicine,2020,15:6827-6838.

[3] LI X,LOVELL J F,YOON J,et al.Clinical development and potential of photothermal and photodynamic therapies for cancer[J].Nat Rev Clin Oncol,2020,17(11):657-674.

[4] LEI X,LEI Y,LI J K,et al.Immune cells within the tumor microenvironment: biological functions and roles in cancer immunotherapy[J].Cancer Lett,2020,470:126-133.

[5] LI Z,LAI X,FU S,et al.Immunogenic cell death activates the tumor immune microenvironment to boost the immunotherapy efficiency[J/OL].Adv Sci (Weinh),2022,9(22):e2201734.https://pubmed.ncbi.nlm.nih.gov/35652198/.

[6] YAN H X,ZHANG Y N,ZHANG Y,et al.A ROS-responsive biomimetic nano-platform for enhanced chemo-photodynamic-immunotherapy efficacy[J].Biomater Sci,2022,10(22):6583-6600.

[7] OVERCHUK M,WEERSINK R A,WILSON B C,et al.

Photodynamic and photothermal therapies: synergy opportunities for nanomedicine[J].ACS Nano,2023,17(9):7979-8003.

[8] AILIOAIE L M,AILIOAIE C,LITSCHER G.Synergistic nanomedicine: photodynamic, photothermal and photoimmune therapy in hepatocellular carcinoma: fulfilling the myth of Prometheus?[J].Int J Mol Sci,2023,24(9):8308.

[9] DAVIS R W T,SNYDER E,MILLER J,et al.Luminol chemiluminescence reports photodynamic therapy-generated neutrophil activity in vivo and serves as a biomarker of therapeutic efficacy[J].Photochem Photobiol,2019,95(1):430-438.

[10] HAMBLIN M R,ABRAHAMSE H.Factors affecting photodynamic therapy and anti-tumor immune response[J].Anticancer Agents Med Chem,2021,21(2):123-136.

[11] FUCIKOVA J,KEPP O,KASIKOVA L,et al.Detection of immunogenic cell death and its relevance for cancer therapy[J].Cell Death Dis,2020,11(11):1013.

[12] FENG X L,LIN T,CHEN D,et al.Mitochondria-associated ER stress evokes immunogenic cell death through the ROS-PERK-eIF2α pathway under PTT/CDT combined therapy[J].Acta Biomater,2023,160:211-224.

[13] WANG N,ZHAO Z,XIAO X,et al.ROS-responsive self-activatable photosensitizing agent for photodynamic-immunotherapy of cancer[J].Acta Biomater,2023,164:511-521.

[14] WANG M,WU M,LIU X,et al.Pyroptosis remodeling tumor microenvironment to enhance pancreatic cancer immunotherapy driven by membrane anchoring photosensitizer[J/OL].Adv Sci (Weinh),2022,9(29):e2202914.https://pubmed.ncbi.nlm.nih.gov/35981886/.

[15] MARGRAF A,LOWELL C A,ZARBOCK A.Neutrophils in acute inflammation: current concepts and translational implications[J].Blood,2022,139(14):2130-2144.

[16] PRIGNANO F,LOTTI T,SPALLANZANI A,et al.Sequential effects of photodynamic treatment of basal cell carcinoma[J].

J Cutan Pathol,2009,36(4):409-416.

[17] KAWCZYK-KRUPKA A,CZUBA Z P,KWIATEK B,et al.

The effect of ALA-PDT under normoxia and cobalt chloride (CoCl2)-induced hypoxia on adhesion molecules (ICAM-1, VCAM-1) secretion by colorectal cancer cells[J].Photodiagnosis Photodyn Ther,2017,19:103-115.

[18] ADAMEK M,KAWCZYK-KRUPKA A,MOSTOWY A,et al.

Topical ALA-PDT modifies neutrophils' chemiluminescence, lymphocytes' interleukin-1beta secretion and serum level of transforming growth factor beta1 in patients with nonmelanoma skin malignancies a clinical study[J].Photodiagnosis Photodyn Ther,2005,2(1):65-72.

[19] KIM S,KIM S A,NAM G H,et al.In situ immunogenic clearance induced by a combination of photodynamic therapy and rho-kinase inhibition sensitizes immune checkpoint blockade response to elicit systemic antitumor immunity against intraocular melanoma and its metastasis[J/OL].J Immunother Cancer,2021,9(1):e001481.https://pubmed.ncbi.nlm.nih.gov/33479026/.

[20] PELLEGRINI C,ORLANDI A,COSTANZA G,et al.

Expression of IL-23/Th17-related cytokines in basal cell carcinoma and in the response to medical treatments[J/OL].PLoS One,2017,12(8):e0183415.https://pubmed.ncbi.nlm.nih.gov/28829805/.

[21] THEODORAKI M N,LORENZ K,LOTFI R,et al.Influence of photodynamic therapy on peripheral immune cell populations and cytokine concentrations in head and neck cancer[J].Photodiagnosis Photodyn Ther,2017,19:194-201.

[22] YIN X,CHEN S,EISENBARTH S C.Dendritic cell regulation of T helper cells[J].Annu Rev Immunol,2021,39:759-790.

[23] LI W,YANG J,LUO L,et al.Targeting photodynamic and photothermal therapy to the endoplasmic reticulum enhances immunogenic cancer cell death[J].Nat Commun,2019,10(1):3349.

[24] NI K,LUO T,LAN G,et al.A nanoscale metal-organic framework to mediate photodynamic therapy and deliver CpG oligodeoxynucleotides to enhance antigen presentation and cancer immunotherapy[J].Angew Chem Int Ed Engl,2020,59(3):1108-1112.

[25] KLEINOVINK J W,OSSENDORP F.Measuring the antitumor T-cell response in the context of photodynamic therapy[J].Methods Mol Biol,2022,2451:579-588.

[26] LOU J,ARAGAKI M,BERNARDS N,et al.Repeated porphyrin lipoprotein-based photodynamic therapy controls distant disease in mouse mesothelioma via the abscopal effect[J].Nanophotonics,2021,10(12):3279-3294.

[27] KABINGU E,OSEROFF A R,WILDING G E,et al.Enhanced systemic immune reactivity to a basal cell carcinoma associated antigen following photodynamic therapy[J].Clin Cancer Res,2009,15(13):4460-4466.

[28] ABDEL-HADY E S,MARTIN-HIRSCH P,DUGGAN-KEEN M,et al.Immunological and viral factors associated with the response of vulval intraepithelial neoplasia to photodynamic therapy[J].Cancer Res,2001,61(1):192-196.

[29] KHALAF K,HANA D,CHOU J T,et al.Aspects of the tumor microenvironment involved in immune resistance and drug resistance[J].Front Immunol,2021,12:656364.

[30] ZHANG M,WANG Y,CHEN X,et al.DC vaccine enhances CAR-T cell antitumor activity by overcoming T cell exhaustion and promoting T cell infiltration in solid tumors[J].Clin Transl Oncol,2023,25(10):2972-2982.

[31] QIAN D,LI J,HUANG M,et al.Dendritic cell vaccines in breast cancer: immune modulation and immunotherapy[J].Biomed Pharmacother,2023,162:114685.

[32] VEDUNOVA M,TURUBANOVA V,VERSHININA O,et al.

DC vaccines loaded with glioma cells killed by photodynamic therapy induce Th17 anti-tumor immunity and provide a four-gene signature for glioma prognosis[J].Cell Death Dis,2022,13(12):1062.

[33] LI S,WANG D,CHENG J,et al.A photodynamically sensitized dendritic cell vaccine that promotes the anti-tumor effects of anti-PD-L1 monoclonal antibody in a murine model of head and neck squamous cell carcinoma[J].J Transl Med,2022,20(1):505.

[34] TREMPOLEC N,DOIX B,DEGAVRE C,et al.Photodynamic therapy-based dendritic cell vaccination suited to treat peritoneal mesothelioma[J].Cancers (Basel),2020,12(3):545.

[35] TANG Q,CHEN Y,LI X,et al.The role of PD-1/PD-L1 and application of immune-checkpoint inhibitors in human cancers[J].Front Immunol,2022,13:964442.

[36] ZHANG L,LI M,ZHOU Q,et al.Computed tomography and photoacoustic imaging guided photodynamic therapy against breast cancer based on mesoporous platinum with insitu oxygen generation ability[J].Acta Pharm Sin B,2020,10(9):1719-1729.

[37] TONG Q,XU J,WU A,et al. Pheophorbide A-mediated photodynamic therapy potentiates checkpoint blockade therapy of tumor with low PD-L1 expression[J].Pharmaceutics,2022,14(11):2513.

[38] GURUNG P,LIM J,SHRESTHA R,et al.Author correction: chlorin e6-associated photodynamic therapy enhances abscopal antitumor effects via inhibition of PD-1/PD-L1 immune checkpoint[J].Sci Rep,2023,13(1):8906.

[39] SANTOS L L,OLIVEIRA J,MONTEIRO E,et al.Treatment of head and neck cancer with photodynamic therapy with redaporfin: a clinical case report[J].Case Rep Oncol,2018,11(3):769-776.

[40] GU B,WANG B,LI X,et al.Photodynamic therapy improves the clinical efficacy of advanced colorectal cancer and recruits immune cells into the tumor immune microenvironment[J].Front Immunol,2022,13:1050421.

[41]张凤鸣,刘慧龙,苏红利,等.血卟啉介导光动力疗法联合PD-1抑制剂治疗食管癌的临床研究[J].中国激光医学杂志,2022,31(4):188-193.

(收稿日期:2024-02-19) (本文编辑:陈韵)

猜你喜欢
免疫调节免疫治疗
肿瘤免疫治疗发现新潜在靶点
尿路上皮癌的免疫治疗研究新进展
密蒙花多糖对免疫低下小鼠的免疫调节作用
中成药(2017年5期)2017-06-13 13:01:12
灵芝中真菌免疫调节蛋白LZ-8和LZ-9的比较分析
肾癌生物免疫治疗进展
海南医学(2016年8期)2016-06-08 05:43:00
石见穿多糖对H22荷瘤小鼠的抗肿瘤免疫调节作用
人参水提液通过免疫调节TAMs影响A549增殖
中成药(2016年8期)2016-05-17 06:08:15
暴发型流行性脑脊髓膜炎早期诊断及免疫治疗探讨
中外医疗(2015年18期)2016-01-04 06:51:56
Toll样受体:免疫治疗的新进展
西南军医(2014年1期)2014-02-03 03:06:31
PD-1/PD-L1通路在免疫调节作用中的研究进展