[摘要]目的:研究模拟口腔环境下研磨和抛光对二硅酸锂玻璃陶瓷动态磨损行为的影响,为口腔临床操作提供参考。方法:制备直径3 mm、长8 mm的二硅酸锂玻璃陶瓷上试件和直径20 mm、厚4 mm的二硅酸锂玻璃陶瓷下试件各16个,将上、下试件随机分为两组,一组打磨至600目作为研磨组,另一组打磨至2 000目作为抛光组,每组8个样本,在摩擦磨损试验机将上、下试件组成一对摩擦副,在人工唾液、室温环境、20 N载荷、转速100 r/min、回转半径2.5 mm、匀速圆周运动的条件下进行50万次循环磨损实验。在整个磨损周期中选取10个循环节点,用三维形貌仪测量每个节点圆盘试件的磨损高度损失量并绘制相应磨损曲线,再利用扫描电镜观察相应磨损阶段对应的磨损面微观形貌。结果:整个磨损过程中,各节点测量值显示研磨组二硅酸锂玻璃陶瓷的磨损量均大于抛光组二硅酸锂玻璃陶瓷的磨损量(P<0.05);两组二硅酸锂玻璃陶瓷的磨损曲线均呈现“跑合期”和“稳定磨损期”两个磨损阶段,研磨组的“跑合期”较抛光组的“跑合期”长,进入“稳定磨损期”的时间比抛光组迟。两组试件的微观形貌也呈现出与磨损曲线对应的两阶段规律。结论:在模拟口腔环境下,研磨组二硅酸锂玻璃陶瓷的磨损量显著高于抛光组,提示临床应重视戴牙时修复体的充分抛光以降低磨损、延长修复体使用寿命。
[关键词]表面处理;二硅酸锂玻璃陶瓷;磨损;微观形貌;抛光
[中图分类号]R783.4 [文献标志码]A [文章编号]1008-6455(2024)10-0138-04
Wear Performance of Lithium Disilicate Glass-ceramic after Grinding and Polishing Treatments
WANG Xuesong1,2, ZHANG Shaofeng3,4, JIN Lei1
( 1.Department of Stomatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210016, Jiangsu, China; 2.Department of Stomatology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China; 3.Department of Expert, Xi'an Cunji Stomatological Hospital, University of Chinese Academy of Sciences, Xi'an 710000, Shaanxi, China; 4.State Key Laboratory of Military Stomatology, National Clinical Medical Research Center for Oral Diseases, Key Laboratory of Stomatology of Shaanxi Province, Department of Prosthodontics, School of Stomatology, Air Force Medical University, Xi'an 710032, Shaanxi, China )
Abstract: Objective To study the effects of grinding and polishing on the dynamic wear behavior of lithium disilicate glass ceramics in simulated oral environment, and provide reference for oral clinical operation. Methods Sixteen lithium disilicate glass ceramic cylinders with a diameter of 3 mm and a length of 8 mm and lithium disilicate glass ceramic discs with a diameter of 20 mm and a thickness of 4 mm were prepared, and the upper and lower test pieces were randomly divided into two groups. one group was polished to 600 mesh as the grinding group, and the other group was polished to 2 000 mesh with polishing cloth with synthetic leather polishing pad as polishing group, each group of 8 samples, in friction and wear testing machine The friction pair was composed and 500,000 cycles of wear test were carried out under artificial saliva, room temperature environment, 20 N load, rotation speed 100 r/min, radius of gyration 2.5 mm, and uniform circular motion. 10 loop nodes were selected in the whole wear cycle. The wear height loss of each node disc specimen was measured by three-dimensional shape analyzer and the corresponding wear curve was drawn. Then the scanning surface was used to observe the wear surface corresponding to the wear phase. Results During the whole wear process, the measured values of each node showed that the wear amount of the lithium disilicate glass ceramics in the grinding group was larger than that in the polishing group lithium disilicate glass ceramics (P<0.05). The wear curve shows two wear stages: "running period" and "stable wear period". The "running period" of the grinding group is better than the "running period" of the polishing group, the time to enter the "stable wear period" is later than the polishing group. The microscopic morphology of the two sets of specimens also showed a two-stage law corresponding to the wear curve. Conclusion In the simulated oral environment, the wear of lithium disilicate glass ceramics in the grinding group is significantly higher than that in the polishing group, suggesting that the clinical should pay attention to the adequate polishing after the prosthesis is worn to reduce wear and prolong the life of the prosthesis.
Key words: surface treatment; lithium disilicate ceramics; wear; microscopic morphology; polish
齿科陶瓷材料因其出色的美学特性、理想的生物相容性和优异的耐磨性能等优点已被广泛应用于制作贴面、嵌体和冠桥等各种类型的修复体[1]。瓷修复体戴入口内后,长期的磨损是造成其崩瓷、折断和天然牙过度磨损的主要原因[2]。研磨和抛光是临床椅旁试戴时常用的两种表面处理方式,以往关于表面处理方式对齿科陶瓷材料磨损性能影响的体外研究大多集中在固定循环节点下的磨损量对比[3-5],不能准确评价瓷修复体戴入口内后长期动态的磨损行为。因此,本实验通过多节点监测,探究研磨和抛光对临床常用的二硅酸锂玻璃陶瓷动态磨损行为的影响,以期为椅旁戴牙时选择合适的表面处理方式,改进二硅酸锂玻璃陶瓷的磨损性能提供参考。
1 材料和方法
1.1 设备和材料:摩擦磨损实验机(CH-2034Peseux,CSM,瑞士),场发射扫描电镜(S-4800,日立,日本),三维形貌扫描仪(PS-50,Nanovea,美国),二硅酸锂铸瓷(IPS e.max Press HT,Ivoclar Vivadent,列支敦士登),自凝造牙粉(上海医疗器械),自动抛光机(UNIPOL-830,沈阳科晶自动化设备),义齿基托树脂Ⅱ型(上海二医张江生物材料),人工唾液(第四军医大学口腔医院药剂科)。
1.2 试件制备:按照热压铸工艺要求,制备直径20 mm、厚4 mm的有机玻璃下试件和直径3 mm、长8 mm的有机玻璃上试件各16个。将上、下试件随机分为两组,一组陶瓷试件在自动抛光机下用SiC砂纸逐级打磨至600目作为研磨组,另一组逐级打磨至2 000目作为抛光组,每组8个样本。
1.3 磨损测试:分别将研磨组和抛光组的二硅酸锂玻璃陶瓷上、下试件组成一对“摩擦副”(n=6)。将“摩擦副”安装在摩擦磨损实验机的不锈钢夹具中调平,使上、下待磨试件完全贴合接触。在室温条件下,向磨损容器中加入40 ml人工唾液,测试参数为加载力20 N、转速100 r/min、回转半径2.5 mm,运动模式为匀速圆周运动。在整个50万次循环中,选取10个节点,磨损至相应循环次数时暂停磨损试验机,吸走人工唾液,在不拆卸“摩擦副”的情况下冲洗、吹干下试件并用二次印模法制取硅橡胶印模,使用三维形貌仪扫描硅橡胶印模(扫描范围9 mm×9 mm,扫描步径20 μm/s),并用分析软件(Professional 3D,Nanovea)计算出磨损区的高度损失量,再根据磨损速率计算公式(V= )算出两组试件相应的磨损速率,公式中V为磨损速率,△H为相邻两个测量节点的高度损失量,△N为两个相邻测量节点的循环次数差值。最后将每个测量节点的6个试件高度损失量、磨损速率的平均值与标准差用Origin软件绘制出随循环次数变化的动态磨损曲线。
1.4 微观形貌观察:选取研磨组和抛光组二硅酸锂铸瓷圆盘试件各2个,分别与二硅酸锂圆柱试件配副,依据磨损曲线,分别在磨损“跑合期”“稳定磨损期”拆卸圆盘试件,置于去离子水中超声清洗30 min,干燥、喷金后,扫描电镜下观察不同磨损阶段下试件的表面微观形貌。
1.5 统计学分析:运用SPSS 19.0软件,利用重复测量资料的方差分析与LSD多重比较检验,比较各组及各个节点间磨损量的差异,采用独立样本的t检验比较两组试样在同一时间节点磨损量的差异,检验水准α均设为0.05(双侧)。
2 结果
2.1 两组二硅酸锂玻璃陶瓷磨损行为的宏观衍化规律:研磨组、抛光组二硅酸锂玻璃陶瓷下试件的磨损量见表1~2,动态磨损曲线如图1~2。在50万次磨损循环后,研磨组二硅酸锂玻璃陶瓷的磨损量(37.63±1.38)μm显著大于抛光组的(22.77±0.81)μm(P<0.05)。两组试件的磨损量随循环次数增加而增加,但其磨损行为在不同时期表现出不同的阶段性特征:对研磨组试件各节点的磨损速率进行LSD检验结果显示,10万次循环节点前后的磨损速率差异有统计学意义(P<0.05),而从10万次循环节点之后的各节点磨损速率差异无统计学意义(P>0.05),结合磨损曲线,可将研磨组二硅酸锂玻璃陶瓷磨损曲线分为“跑合期”(0~10万次)、“稳定磨损期”(10~50万次)两个特征性磨损阶段。对抛光组试件各节点的磨损速率进行LSD检验结果显示,5万次循环节点前后的磨损速率差异有统计学意义(P<0.05),而5万次循环节点之后的各节点磨损速率比较差异无统计学意义(P>0.05),结合磨损曲线,可将抛光组二硅酸锂玻璃陶瓷磨损曲线分为:“跑合期”(0~5万次),“稳定磨损期”(5~50万次)两个特征性磨损阶段。
2.2 两组二硅酸锂玻璃陶瓷磨损行为的微观形貌分析:研磨组二硅酸锂玻璃陶瓷在跑合期时磨损面表现为密集的深犁沟状弧形磨痕,犁沟间的间隔窄而起伏大,高倍镜下可见二硅酸锂玻璃陶瓷表面散在的剥脱及磨屑粘着现象;稳定磨损期时磨损面的犁沟状磨痕较跑合期稀疏,犁沟间的间隔宽而起伏小。高倍镜下可见磨损面较跑合期光滑,犁沟状磨痕深度较浅。抛光组二硅酸锂玻璃陶瓷高低倍镜下跑合期的磨损面同样较稳定磨损期的磨痕更为密集、深大。对比两组的电镜照片,研磨组因为试件的初始粗糙度大,所以无论是跑合期还是稳定磨损期,其磨损面的磨痕均较抛光组更为密集、深大。
3 讨论
3.1 实验条件的设定:瓷修复体进入口腔服役后,磨损性能是评价其优劣的一项重要指标。口内评价瓷修复体的磨损性能存在耗时长、影响因素多、失访率高等缺点,相比之下,在体外利用摩擦磨损实验机控制磨损实验条件能够准确、高效地研究单一因素对于齿科陶瓷磨损行为的影响[3,6],口腔临床椅旁戴牙时,常需要对瓷修复体进行调牙合,常用的表面处理方式即为研磨和抛光处理。有学者在CSM摩擦磨损实验机上用20 N加载力来评价金属复合材料的磨损性能[7],同Preis V等[4-5]对齿科陶瓷磨损性能的研究类似,这些体外磨损实验都是在固定循环节点下进行磨损量对比,缺乏系统性和全面性。因此,本实验共选取10个循环节点,研究研磨和抛光对二硅酸锂玻璃陶瓷动态磨损行为的影响。
3.2 动态磨损行为分析:“机械摩擦副”理论认为,材料的磨损具有时间依赖性,即随着磨损周期的延长,摩擦副的动态磨损行为呈现出“跑合期”、“稳定磨损期”、“剧烈磨损期”三个阶段[8]。相关文献报道证实齿科长石质饰瓷在与天然牙(“瓷-牙”配副)以及长石质饰瓷与不锈钢小球(“瓷-球”配副)磨损过程中均呈现出上述的“三阶段”规律,然而在口腔临床实践中,“瓷-瓷”配副的磨损情况也较为常见,因此,本实验将二硅酸锂玻璃陶瓷上、下试件组成一对“摩擦副”,模拟口腔中上、下颌均为全瓷牙冠的磨损情况[9]。本实验中,研磨组二硅酸锂玻璃陶瓷呈现出跑合期(0~10万次)、稳定磨损期(10~50万次)的二阶段磨损规律,抛光组二硅酸锂玻璃陶瓷呈现出跑合期(0~5万次)、稳定磨损期(5~50万次)的二阶段磨损规律。两组试件的磨损面微观形貌在“跑合期”时表现为均匀密集的深犁沟状弧形磨痕,进入“稳定磨损期”,犁沟状磨痕逐渐变浅,磨损面趋于光滑。两组试件的宏观磨损量和微观磨损形貌随循环次数增加均表现出与“机械摩擦副”相符的时间依赖性,但并未出现“剧烈磨损期”,这可能与循环次数有关。随着循环次数的增加,二硅酸锂玻璃陶瓷磨损面亚表层的微裂纹累积和扩展,“剧烈磨损期”有可能会随之出现。
3.3 研磨和抛光对动态磨损行为的影响:国内外在特定磨损节点下关于研磨和抛光对齿科陶瓷磨损行为影响的研究并不鲜见[10-11]。本实验通过对临床常用的二硅酸锂玻璃陶瓷进行研磨和抛光处理,在体外摩擦磨损实验机上进行50万次循环,并选取10个循环节点以动态观测二硅酸锂玻璃陶瓷的磨损行为。结果显示,研磨组二硅酸锂玻璃陶瓷(0~10万次)的“跑合期”较抛光组(0~5万次)长,进入“稳定磨损期”后,研磨组和抛光组的磨损速率均维持在较低水平。本实验中,研磨组试件在前10万次循环的“跑合期”内产生的磨损量占总磨损量的77.54%,抛光组在“跑合期”(0~5万次)的磨损量占总磨损量的54.77%。这也与课题组前期针对4 247件二硅酸锂玻璃陶瓷临床修复后5年的回顾性队列研究中瓷修复体的失效主要集中在戴牙后的前3个月的结果相吻合[12]。Monasky GE等[13]认为随着磨损循环的进行,瓷修复体表面会被适应性的抛光,进而造成磨损速率逐渐降低,即陶瓷表面粗糙度有自限性,在陶瓷表面的上釉、抛光只会影响磨损过程的初期阶段。本实验中“跑合期”阶段的高磨损速率和高磨损量在很大程度上决定了两组二硅酸锂玻璃陶瓷试件的最终磨损量差异。
综上,口内咀嚼磨损环境极为复杂,受到神经系统、颞下颌关节、咀嚼肌群及咬合关系等诸多因素的影响。本实验中体外磨损实验所能模拟的实验条件有限,仅为临床充分细致的抛光以降低齿科陶瓷的磨损、延长修复体的使用年限提供参考。
[参考文献]
[1]Liu C, Eser A, Albrecht T, et al. Strength characterization and lifetime prediction of dental ceramic materials[J]. Dent Mater, 2021,37(1):94-105.
[2]Aboushelib M N, Feilzer A J, Kleverlaan C J. Bridging the gap between clinical failure and laboratory fracture strength tests using a fractographic approach[J]. Dent Mater, 2009,25(3):383-391.
[3]Mitov G, Heintze S D, Walz S, et al. Wear behavior of dental Y-TZP ceramic against natural enamel after different finishing procedures[J]. Dent Mater, 2012,28(8):909-918.
[4]Preis V, Behr M, Handel G, et al. Wear performance of dental ceramics after grinding and polishing treatments[J]. J Mech Behav Biomed Mater, 2012,10:13-22.
[5]Preis V, Weiser F, Handel G, et al. Wear performance of monolithic dental ceramics with different surface treatments[J]. Quintessence Int, 2013,44(5):393-405.
[6]Preis V, Grumser K, Schneider-Feyrer S, et al. Cycle-dependent in vitro wear performance of dental ceramics after clinical surface treatments[J]. J Mech Behav Biomed Mater, 2016,53:49-58.
[7]Liu F, Jia J, Yi G, et al. Mechanical and tribological properties of NiCr-Al2O3 composites at elevated temperatures[J]. Tribol Int, 2015,84(1):1-8.
[8]Kaidonis J A, Richards L C, Townsend G C, et al. Wear of human enamel: a quantitative in vitro assessment[J]. J Dent Res, 1998,77(12):1983-1990.
[9]田蓓敏,张少锋,贺林,等.牙科长石质玻璃陶瓷与二硅酸锂玻璃陶瓷磨损性能的实验研究[J].中华口腔医学杂志,2013,48(11):683-688.
[10]Hara M, Takuma Y, Sato T, et al. Wear performance of bovine tooth enamel against translucent tetragonal zirconia polycrystals after different surface treatments[J]. Dent Mater J, 2014,33(6):811-817.
[11]马军萍,姚月玲,宋应亮,等.牙釉质与5种牙用烤瓷材料间磨耗性能测试研究[J].实用口腔医学杂志,2001,17(3):206-208.
[12]Yu J, Yang Y, Gao J, et al. Clinical outcomes of different types of tooth-supported bilayer lithium disilicate all-ceramic restorations after functioning up to 5 years: a retrospective study[J]. J Dent,2016,51:56-61.
[13]Monasky G E, Taylor D F. Studies on the wear of porcelain, enamel, and gold[J]. J Prosthetic Dent, 1971,25(3):299-306.
[收稿日期]2022-08-11
本文引用格式:王雪松,张少锋,金磊.研磨和抛光对二硅酸锂玻璃陶瓷动态磨损行为影响的研究[J].中国美容医学,2024,33(10):138-141.