摘 要 【意义】白云岩是一种常见的碳酸盐岩和重要的油气储集层,四川盆地海相碳酸盐岩层系中96%的探明地质储量来自于白云岩储层。因此,白云岩化作用和白云岩孔隙成因的研究引起了极大的关注,并取得了显著进展,然而有关白云岩化作用对孔隙的影响仍存在较大争议。【方法】通过归纳总结白云岩孔隙成因的主要理论观点,结合多种类型交代反应的实验模拟结果,阐明白云岩化过程中孔隙的形成与演化,并对白云岩孔隙成因的研究提出了展望。【进展】已有理论表明,白云岩的孔隙可以继承于原岩,也可形成于等摩尔交代、白云岩化过程中的方解石溶解或者白云岩形成之后的溶蚀作用;白云岩化作用可以增加、保持或者降低储层孔隙,取决于交代反应的环境、时间和流体性质。【结论与展望】综合实验模拟结果的共性特征发现,交代反应是一个溶解—运移—沉淀的微过程;新孔隙的形成贯穿交代反应的整个过程,并提供了流体、离子交换的通道,以保持交代反应的持续进行;新孔隙的形成并非受矿物摩尔体积控制,而是受控于相对溶解度,即反应物的溶解量大于生成物的沉淀量。交代过程中产生的新孔隙以微孔隙为主,对储层有效孔隙度的贡献仍待进一步评价。
关键词 白云岩化;孔隙演化;实验模拟;交代作用
第一作者简介 王广伟,男,1986年出生,博士,副教授,储层沉积学,E-mail: wanggw@upc.edu.cn
中图分类号 P618.13 文献标志码 A
0 引言
白云岩化作用是白云石矿物逐渐取代方解石或文石矿物的一种交代反应,微观上表现为方解石、文石等反应物溶解、同时伴随着白云石沉淀的耦合过程[1]。白云岩在全球范围内广泛分布[2?6],常发育不同类型的储集空间而成为优质的油气储集层[7?11]。据统计,四川盆地海相碳酸盐岩层系已获探明地质储量2.34×1012 m3天然气[12],其中白云岩储层中的探明储量占总探明储量的96.2%。因此,有关白云岩孔隙成因的研究引起了极大的关注,并取得了显著的进展[13?19]。白云岩的孔隙可以形成于沉积期、大气淡水暴露溶蚀[20?22]、白云岩化作用[23?24]或者埋藏溶蚀作用[25?28]等。其中,白云岩化作用对白云岩孔隙的影响仍存在较大争议。基于孔隙与白云岩形成的相对时间,白云岩的孔隙可划分为同生孔隙和后生孔隙[23];同生孔隙形成时间与白云岩形成时间一致,是继承/转化的原岩孔隙,抑或是白云岩化过程中新形成的孔隙;后生孔隙则是白云岩形成之后形成的所有孔隙。
国内外学者对白云岩化作用本身对孔隙的影响(即同生孔隙的成因)已作出较多理论和实例分析,可总结为三个观点[23,29]:(1)白云岩化作用可以增加储层的孔隙度,方解石、文石转变为白云石的过程中,因摩尔体积的差异,生成物沉淀的总体积小于反应物消耗的总体积,导致交代体系中固相体积收缩和孔隙体积增大;(2)白云岩化作用对储层的孔隙度没有影响,白云岩的孔隙主要继承于灰岩原岩的孔隙;(3)白云岩化作用降低了储层的物性,如过白云岩化作用。因此,白云岩化过程中孔隙的增加、保持或破坏似乎与交代反应的环境、流体性质和反应时间密切相关[29]。地质环境下的交代作用类型丰富,是一类流体参与的溶解—沉淀相耦合的微过程[30]。本文归纳总结了白云岩化过程中孔隙形成与演化的主要理论观点,并列举了四类典型的交代反应实验模拟,通过总结和对比实验的观测结果,识别出交代反应的一些共性特征,为理解白云岩化作用对孔隙的影响提供不同的视角和理论借鉴。
1 白云岩孔隙成因研究现状
碳酸盐岩层系的油气勘探与实践表明,白云岩物性常优于同时期灰岩,尤其在古老地层中更为明显[2,6]。针对这种现象的成因,前人做了大量地质实例分析和实验研究,以下对白云岩孔隙成因的解释和理论模式进行系统的梳理和总结。
1.1 白云岩化过程中的摩尔体积变化
受化学动力学障碍的限制,白云石极难从地表常温、常压环境的水体中直接沉淀[30?32]。规模性发育的白云岩主要为次生交代成因,反应过程可用公式(1)表示[33]:
2CaCO3+Mg2+→CaMg(CO3) 2+Ca2+ (1)
该过程会消耗白云岩化流体中1 mol的Mg2+同时释放1 mol的Ca2+至流体中,因此称为等摩尔交代作用;同时,生成1 mol白云石会消耗2 mol方解石或文石。已知白云石的摩尔体积为64.365 cm3/mol,方解石的摩尔体积为36.934 cm3/mol,文石的摩尔体积为34.150 cm3/mol[34]。由于反应物与生成物摩尔体积的差异,反应前后体系中的固体体积会发生变化,孔隙体积也相应的发生改变。理论计算表明,若白云石交代方解石,则会造成矿物总体积缩小(36.934 cm3/mol×2 mol)-(64.365 cm3/mol×1 mol)=9.503 cm3,相应的 孔 隙 度 增 加 值 为 9.503 cm3(/ 36.934 cm3/mol×2 mol)×100%=12.86%;若白云石交代文石,固相体积会缩小(34.150 cm3/mol×2 mol)-(64.365 cm3/mol×1 mol)=3. 935 cm3,相应的孔隙度增加5.76%。由此,前人认为白云岩化过程中由于摩尔体积的变化会形成新的孔隙[33],这便是经典的白云岩孔隙成因理论,并用于解释碳酸盐岩地层中白云岩孔隙度一般好于同时期灰岩的地质现象。等摩尔交代理论自提出后一直备受质疑,关键在于白云岩化过程中是否有外源CO23 -的混入。Weyl[35]研究认为,相对于Ca2+、Mg2+浓度,大多数地层水中CO23 -含量较低,并利用质量守恒原理证明白云岩化过程遵循等摩尔交代原理。基于对意大利Venetian Alps 地区中侏罗统的研究,Zempolich et al.[36]发现白云岩的面孔率多介于10%~15%,与理论增加值相似,因此认为白云岩化作用是一个等摩尔交代的过程。
然而,Lucia et al.[37]研究指出,全新世白云岩孔隙度与灰岩相似,甚至在波内尔岛上新世—更新世碳酸盐岩地层的白云岩孔隙度显著低于同期灰岩;此外,鲕粒、生屑等颗粒的原始微结构在白云岩化之后被完美地保存下来[38],这些均表明白云岩化作用能够保持固相的原始格架,外源CO23 -的流入应该是一种普遍现象,白云岩化作用并非是等摩尔交代而是等体积交代的过程,可以用公式(2)和公式(3)表达:
1.743CaCO3(方解石)+Mg2++0.257CO23 -→CaMg(CO3)2 +0.743Ca2+ (2)
或
1.885CaCO3( 文 石 )+Mg2++0.115CO23 -→CaMg(CO3)2 +0.115Ca2+ (3)
交代反应体系中,生成1 mol 白云石仅消耗1.743 mol的方解石或1.855 mol的文石,固相体积的损失量与白云石的沉淀量相同,反应前后孔隙体积保持不变。等体积交代理论认为,白云岩化过程中没有新孔隙的生成,白云岩的孔隙只是白云岩化过程中灰岩原岩孔隙的转变,为继承性孔隙;因此,白云岩的孔隙度取决于原岩。古代白云岩孔隙度大于相邻灰岩的主要原因是白云岩具有更强的抗压实—压溶能力,在埋藏环境中能够保存更多的孔隙[39]。四川盆地三叠系潮坪相白云岩形成于准同生—早成岩期,在近于等体积交代过程中,灰泥微孔隙转变为白云岩晶间孔并在埋藏环境中保存下来,而未发生白云岩化的灰泥则被压实成致密的泥晶灰岩[38]。Lucia[39]通过对比不同时代(全新世、更新世、新近纪和侏罗纪)灰岩与白云岩的孔隙特征指出,白云岩孔隙的形成与白云岩化作用本身无关,白云岩孔隙度即可以大于、等于或小于同时代的灰岩,因此认为白云岩孔隙为继承性孔隙。
综上所述,白云岩化流体在提供Mg2+离子的同时也提供了CO23 -离子,导致白云岩化反应路径的差异,从而引起孔隙体积的变化,主要取决于白云岩化流体的CO23 -浓度。因此,根据流体提供CO23 -的含量,白云岩化过程可以用综合反应模式(公式4)表示为[40]:
(2-x)CaCO3+Mg2++xCO23 -→CaMg(CO3)2+(1-x)Ca2+ (4)
x为白云岩化过程实际消耗流体中CO23 -的浓度,对于方解石和文石,当x 分别取值为0.257 和0.115时,反应前后矿物体积保持不变。以白云石交代方解石为例,当x等于0,即白云岩化发生在封闭的成岩体系,无外源CO23 -的混入,则白云岩化遵循等摩尔交代作用(公式1),孔隙度理论增加值为12.86%;当00.257时,则白云岩化后固相体积增加,存在过白云岩作用,孔隙度降低。白云岩化流体的性质最终决定了白云岩化作用是增加、降低还是保持孔隙。因此,在近地表环境下,白云岩化流体常富含外源CO23 -,交代反应倾向于等体积交代为主,在靠近卤水源的位置当方解石被完全交代后可能发生过白云岩化;相比,在相对封闭的埋藏环境,云化流体的外源CO23 -浓度较低,白云岩化可能更倾向于等摩尔交代。
1.2 白云岩化过程中的溶解作用
白云岩化作用是碳酸钙溶解—白云石再沉淀的微观耦合过程。白云岩化流体主要为不同程度的蒸发海水[41?42],并且随着蒸发作用的增强,海水盐度逐渐增加、pH值逐渐降低[43]。因此,蒸发性的海源流体作为白云岩化流体,对灰岩具有一定的溶解能力,且与灰岩地层的原始孔隙水混合,会进一步促进原岩的溶解[44?45]。
另一种孔隙成因理论为白云岩化晚期残余方解石的溶蚀。在白云岩化过程中的晚期,地层流体受白云岩化反应的改造,可能对残留的灰质成分有较强的溶解能力,导致残余方解石的溶解速率大于白云石的沉淀速率[46],从而形成孔隙。时间上,孔隙形成于白云岩化过程的晚期,属于白云岩化的一部分。这一理论首先由Landes[47]提出,并用于解释密歇根盆地局部高孔隙性白云岩储层成因。Wendte[48]系统研究了不同白云岩化程度的储层特征,发现白云岩的晶间孔实际为原岩的粒内孔和铸模孔,且在厚层白云岩中部最发育,认为白云石首先交代原始灰岩颗粒的外部,内部残存的方解石或文石在白云岩化晚期被溶蚀形成粒内孔。
2 交代反应的实验模拟和结果
2.1 白云石[CaMg(CO3)2]和菱镁矿(MgCO3)交代单晶方解石(CaCO3)
将边长约为2 mm的立方体方解石单晶和1 mL浓度为1 mol/L的MgCl2溶液放置于高压反应釜中,在200 ℃、饱和蒸气压(约16 bar)条件下反应。共计5组平行试验,反应时间分别为1 d、3 d、7 d、14 d 和28 d,分别对每组试验的产物进行观察[49],观测结果如图1所示。
交代反应显示出方解石单晶被白云石和菱镁矿自外向内逐渐交代(图1a)。反应初期(1 d 和3d),方解石晶体外层首先被菱镁矿交代,形成一个反应边(reaction rim);随着反应的进行(14 d),白云石出现在方解石和菱镁矿层之间(图1b,c);至反应的最后阶段(28 d),生成的白云石又被菱镁矿交代,反应边几乎全由菱镁矿组成。整体而言,交代反应过程中,原始晶体的外形和大小未发生明显变化(图1a)。原始方解石单晶几乎不发育孔隙,被白云石和菱镁矿交代后,形成一个孔隙性的反应边,发育大量的晶间微孔(图1d);反应边与未反应的方解石之间存在明显的间隙(图1c),并随交代时间的增加,反应边和间隙的宽度均增大。反应后溶液中Ca离子浓度增加,Mg 离子浓度降低,Ca/Mg 值增大(表1)。
2.2 白云石(CaMg(CO3)2)交代文石鲕粒(CaCO3)
将50 mg 文石质鲕粒放入10 mL 含0.5 M 的MgCl2和0.4 M的CaCl2的溶液中,反应温度为200 ℃、平衡蒸气压[50]。共计9组平行实验,反应时长分别为6 h、24 h、36 h、48 h、60 h、72 h、96 h、168 h和180 h,产物过滤并用去离子水冲洗,干燥后用于观测。
模拟结果显示(图2),白云岩化作用自鲕粒外层向内部逐渐延伸。反应6 h后,鲕粒表层可见零星分布的半自形白云石晶体(图2a)。反应至24 h,白云石晶体趋于自形,且逐渐连片形成白云石包壳(图2b)。随着反应时间的增加(24~96 h),鲕粒内部圈层开始发育半自形—自形白云石(图2c,d),白云石首先交代藻钻孔和孔隙性纹层,然后再交代致密的部分;生成的微晶白云石显示出与原始文石质鲕粒相似的纹层结构(图2e,f),纹层厚度一般为数十微米。总体而言,交代反应形成的白云石主要沉淀在原始鲕粒轮廓范围内,反应前后总体积不变,孔隙主要包括鲕粒纹层中的晶间微孔隙和少量的铸模孔。白云石包壳和纹层的产生表明,大部分白云石沉淀发生在文石溶解位置附近的几十微米范围内,而少量铸模孔的发育则表明,一些沉淀则发生在溶解位置数百微米范围内[50],反应物溶解的位置与生成物沉淀的位置存在一定距离的偏移。
2.3 方沸石(NaAlSi2O6·H2O) 交代白榴石(KAl?Si2O6)
在150 ℃温度条件下,将白榴石晶体置于含3.5%的NaCl溶液的高压釜中进行方沸石交代白榴石的实验[51?52]。交代反应式如公式(5)所示:
KAlSi2O6+Na++H2O→NaAlSi2O6·H2O+K+ (5)
该过程消耗流体中1 mol的Na+同时释放1 mol的K+至流体中,类似于白云岩化中的等摩尔交代作用。同时,生成1 mol 方沸石会消耗1 mol 白榴石。反应物白榴石的摩尔体积为89.302 cm3/mol,生成物方沸石的摩尔体积为97.574 cm3/mol[34],生成物的摩尔体积大于反应物。与白云岩化作用的摩尔体积减少的情况相反,理论计算表明,1 mol 方沸石交代1 mol白榴石后,体系的固相体积应该增加9.26%,孔隙度相应的降低9.26%。
然而,实验结果显示,反应物白榴石为双晶结构,孔隙不发育(图3a~c),交代产物方沸石沿着白榴石晶体边界向内部交代(图3d)。扫描电镜观察显示,方沸石由有序的微晶组成(图3e),层间发育大量的微孔隙(图3f)。这与传统理论认为摩尔体积的增加降低孔隙的观点相矛盾。由此表明,生成物的摩尔体积增加不会影响交代过程中新孔隙的形成,反应物中存在微孔隙似乎是一种普遍现象。新孔隙的形成表明交代过程中方沸石的沉淀量小于白榴石的溶解量,并超过摩尔体积增加的影响。
2.4 氯化钾(KCl)交代溴化钾(KBr)
室温条件下,将大小为2 mm×2 mm×1 mm 的溴化钾晶体放入0.25 mL的KCl饱和溶液中,KBr在溶液中发生溶解,增加了溶液中K+离子的含量,从而导致KCl过饱和而发生沉淀,即宏观上表现的KCl交代KBr晶体,反应时长从1 min至12 d[53]。交代反应过程如公式(6)所示:
KBr+Cl-→KCl+Br- (6)
该过程消耗流体中1 mol的Cl-同时释放1 mol的Br-至流体中,同样类似于白云岩化的等摩尔交代作用。同时,生成1 mol 氯化钾会消耗1 mol 溴化钾。反应物溴化钾的摩尔体积为43.273 cm3/mol,生成物氯化钾的摩尔体积为37.519 cm3/mol[34],生成物的摩尔体积小于反应物。理论计算表明,1 mol氯化钾交代1 mol 溴化钾后,体系的固相体积应该减少13.30%。
实验结果显示,反应物溴化钾晶体干净透明,孔隙不发育(图4a),随着交代反应由外向内进行,乳白色的氯化钾生成物逐渐增大(图4b,c),反应时间至120 min后完全形成氯化钾晶体(图4d)。扫描电镜观察显示,原始溴化钾的孔隙度几乎为零(图4e),而由氯化钾组成的反应边发育大量的微孔隙(图4e~g)。然而,由于微晶和微孔隙具有较大的表面能,形成的氯化钾晶体的微结构仍会进一步演化和再平衡,导致晶体外边缘微孔隙消失,形成一个显著的亮边结构(图4h)。随着平衡时间的增加,亮边结构更趋明显(图4i),内部微孔隙完全被亮边所包裹。这种结构与实际的白云石[54]地质样品中的雾心—亮边特征具有很好的相似性(图4j)。
3 交代作用与孔隙的演化
交代反应存在反应物的溶解与生成物的沉淀,溶解量与沉淀量的相对变化必然引起固体格架的变化以及孔隙形态和大小的改变。基于不同类型实验模拟的观测结果,识别出交代反应的一些共性特征,为理解白云岩化过程中孔隙的演化提供借鉴。
综合四组实验模拟结果表明,交代反应基本保持了被交代矿物或颗粒的外部轮廓,生成物普遍发育微孔隙;微孔隙提供了流体和离子交换的通道,从而保持交代反应自外向内地持续进行。在三组交代实验中,反应物方解石、溴化钾和白榴石三种单晶矿物均不发育孔隙,即晶体的原始孔隙度几乎为0,但是在生成物中均可观察到大量的晶间微孔隙,表明交代反应确实可以形成新的孔隙。氯化钾交代溴化钾、白云石和菱镁矿交代方解石、白云石交代文石鲕粒这三组反应,生成物的摩尔体积均小于反应物,似乎验证了等摩尔交代控制了孔隙的形成。然而,方沸石交代白榴石后,生成物的摩尔体积大于反应物白榴石,但是在方沸石反应边中仍可见到大量的微孔隙(图3e,f),与理论计算的固相体积增加相矛盾。由此表明,交代过程中微孔隙的形成并非受矿物摩尔体积的控制,而是由于反应物的溶解量大于生成物的沉淀量造成固相体积的亏损。总体而言,交代过程中反应物首先发生溶解(如KBr溶解),向流体中释放各种离子(如Br-和K+),造成流体对另一种矿物(如KCl)过饱和;流体通过孔隙性反应边向反应前缘提供交代所需的离子(如Cl-),同时带出反应后释放的离子(如Br+);交代反应过程中反应物的溶解量总是大于生成物的沉淀量,造成孔隙体积的增加。
此外,在白云石和菱镁矿交代单晶方解石的实验中,除了生成物中大量发育的微孔隙,反应物和生成物之间也发育明显的间隙(gap),表明反应物溶解位置和生成物沉淀位置存在一定距离的偏离,溶解的物质进入流体并发生一定距离的运移后才发生沉淀。因此,白云岩化作用在微观上可以看作一种反应物的溶解、物质运移至成核点、生成物沉淀三个耦合的微过程,即溶解—运移—沉淀的微过程(图4c)。白云岩化作用中反应物在流体—矿物界面处发生微观溶解(如卤水与原始地层水混合造成对方解石、文石等被交代物的不饱和[44]),向边界流体中释放Ca2+和CO23 -离子,造成边界流体对白云石矿物的过饱和;运移则涉及流体通过孔隙性反应边向反应前缘提供交代所需的Mg2+离子,同时带出反应后释放的Ca2+离子。交代反应过程总体显示出溶解量大于沉淀量、溶解位置与沉淀位置存在一定偏离的特征。从溶解—运移—沉淀三个微过程的角度分析交代过程及其产物特征,可以对白云岩化的一些现象作出较为合理的解释。运移距离的大小影响了原始微结构的保存程度。只有运移距离小,溶解—沉淀相耦合的交代反应才能完美保存原始颗粒结构特征,如鲕粒内部的圈层结构。当运移距离较大,即物质溶解的部位和沉淀的部位距离较远时,则溶解的部位可能演变为较大的孔隙,如实验中观察到的间隙和铸模孔,同时原始结构保存得较差。运移距离可能受成岩流体成分、流速和pH值控制[51]。地质历史中海水的Mg/Ca值、盐度和白云岩化流体性质可能是影响白云岩化过程中原始颗粒保存程度和孔隙形成的重要因素[55?56]。
然而,新形成的交代产物由大量的微晶和微孔隙组成,具有较大的表面能。在表面能的驱动下,生成物会发生结构平衡和重结晶,导致晶体周缘微孔隙的消失(图4h),形成亮边结构(图4i)。同时晶体内部的微孔隙被亮边所封闭而形成孤立的孔隙和流体包裹体(图4h)。由此形成的雾心—亮边结构与地质样品中的白云石结构非常相似(图4j)。交代作用过程中形成的一部分微孔隙可能为无效孔隙,对储集层有效孔隙度的贡献有限。
综上所述,不管交代产物摩尔体积是减小还是增大,交代过程中均存在新孔隙的形成,以保障交代反应的持续进行,矿物摩尔体积的减少不是交代过程中孔隙形成的主要控制因素。因此,可以推断,白云岩化作用中孔隙的形成贯穿整个交代过程,溶解量大于沉淀量是孔隙形成的主要原因,新形成的孔隙可能由于结构平衡和重结晶而成为无效孔隙;运移距离则决定了白云岩化后原始结构的保存程度。
4 存在的问题与发展趋势
现今普遍认为,白云岩的成因类型多样[57],然而规模性白云岩主要为近地表环境下的次生交代成因[42]。虽然地质环境中的交代作用类型众多[58],存在共性特征和各自的特殊性,但是均表现出从颗粒边缘向内部逐渐反应的过程,形成一个孔隙性反应边。如何有效定量表征反应边的孔隙含量,从而定量比较交代反应前后孔隙的变化,有助于深入理解交代反应过程中的孔隙演化。本文列举的四组交代反应的实验模拟,除了氯化钾交代溴化钾的实验为常温、常压条件,其他三组均是高温、短时间的模拟,与地质历史时期白云岩化的环境存在显著差异。此外,海水作为白云岩化流体的主要来源,海水成分在地质历史中持续演变[56]。如何有效改进白云岩化实验模拟的温压条件,使之更加符合白云岩形成的自然地质条件,成为深入理解白云岩孔隙成因和演化的关键。随着实验技术的提高,在考虑白云岩化流体性质的条件下,可以开展相对低温—长时间的白云岩化实验模拟,如Usdowski[59]开展了反应温度介于60 ℃~90 ℃、反应时间长达7年的白云岩化实验模拟。近二十年来,数值模拟技术逐渐应用于白云岩化过程中矿物和孔隙演化的动态定量分析[60?63],有效弥补实验模拟在时间尺度上的不足。相对低温—长时间的实验模拟结果可以为白云岩化数值模拟提供约束条件,形成实验模拟和数值模拟相结合的方法,用于综合分析白云岩化作用过程及其孔隙的形成与演化。
5 结论
(1) 综合四种类型的交代反应模拟实验表明,无论生成物矿物摩尔体积的减少或增加,交代反应过程中均存在微孔隙的形成,微孔隙提供了流体和离子的交换通道,保持了交代反应的持续进行。
(2) 白云岩化作用是溶解—运移—沉淀三个耦合的微过程。白云岩孔隙的形成并非等摩尔交代相关的矿物体积收缩,而是取决于反应物与生产物的相对溶解度,即溶解量大于沉淀量。交代过程中形成的孔隙主要为晶间微孔,随着晶体结构的平衡和重结晶,部分微孔隙转变为无效孔隙。
(3) 实际地质条件下,由于白云岩化流体性质、被交代矿物类型和反应时间的不同,形成的白云岩孔隙和结构存在差异。随着实验模拟和分析测试技术的提高,有待开展更多不同条件下白云岩化的实验模拟,结合数值模拟方法,深化白云岩化过程和孔隙形成演化的认识。
致谢 感谢评审专家对本文提出的建设性修改意见,使得稿件质量得以提升。中国石油大学(华东) 郝芳教授对本文的撰写提供了诸多指导和帮助。
参考文献(References)
[1] Warren J. Dolomite: Occurrence, evolution and economically important
associations[J]. Earth-Science Reviews, 2000, 52(1/2/3):
1-81.
[2] 陈代钊,钱一雄. 深层—超深层白云岩储集层:机遇与挑战[J].
古地理学报,2017,19(2):187-196. [Chen Daizhao, Qian
Yixiong. Deep or super-deep dolostone reservoirs: Opportunities
and challenges[J]. Journal of Palaeogeography, 2017, 19(2):
187-196.]
[3] 文华国,霍飞,郭佩,等. 白云岩—蒸发岩共生体系研究进展及
展望[J]. 沉积学报,2021,39(6):1319-1343.[Wen Huaguo, Huo
Fei, Guo Pei, et al. Advances and prospects of dolostoneevaporite
paragenesis system[J]. Acta Sedimentologica Sinica,
2021, 39(6): 1319-1343.]
[4] 何治亮,马永生,张军涛,等. 中国的白云岩与白云岩储层:分
布、成因与控制因素[J]. 石油与天然气地质,2020,41(1):1-14.
[He Zhiliang, Ma Yongsheng, Zhang Juntao, et al. Distribution,
genetic mechanism and control factors of dolomite and dolomite
reservoirs in China[J]. Oil & Gas Geology, 2020, 41(1): 1-14.]
[5] 马锋,杨柳明,顾家裕,等. 世界白云岩油气田勘探综述[J]. 沉积学
报,2011,29(5):1010-1021.[Ma Feng, Yang Liuming, Gu Jiayu, et
al. The summary on exploration of the dolomite oilfields in the
world[J]. Acta Sedimentologica Sinica, 2011, 29(5): 1010-1021.]
[6] Allan J R, Wiggins W D. Dolomite reservoirs: Geochemical techniques
for evaluating origin and distribution[J]. American
Association of Petroleum Geologists, 1993, 36: 1-129.
[7] Ma Y S, Zhang S C, Guo T L, et al. Petroleum geology of the Puguang
sour gas field in the Sichuan Basin, SW China[J]. Marine
and Petroleum Geology, 2008, 25(4/5): 357-370.
[8] 马永生,蔡勋育,赵培荣,等. 四川盆地大中型天然气田分布特
征与勘探方向[J]. 石油学报,2010,31(3):347-354.[Ma Yongsheng,
Cai Xunyu, Zhao Peirong, et al. Distribution and further
exploration of the large-medium sized gas fields in Sichuan Basin
[J]. Acta Petrolei Sinica, 2010, 31(3): 347-354.]
[9] 芦飞凡,谭秀成,王利超,等. 川中地区中二叠统栖霞组滩控岩溶
型白云岩储层特征及主控因素[J]. 沉积学报,2021,39(2):456-
469.[Lu Feifan, Tan Xiucheng, Wang Lichao, et al. Characteristics
and controlling factors of dolomite reservoirs within shoalcontrolled
karst in the Middle Permian Qixia Formation, central
Sichuan Basin[J]. Acta Sedimentologica Sinica, 2021, 39(2):
456-469.]
[10] 田兴旺,杨岱林,钟佳倚,等. 基于CT成像技术的白云岩储层
微观表征:以川中磨溪—龙女寺台内地区震旦系灯影组四段
为例[J]. 沉积学报,2021,39(5):1264-1274.[Tian Xingwang,
Yang Dailin, Zhong Jiayi, et al. Microscopic characterization of
dolomite reservoirs by CT imaging: A case study of the Dengsi
Formation in Moxi-Longnvsi area, central Sichuan[J]. Acta Sedimentologica
Sinica, 2021, 39(5): 1264-1274.]
[11] 王勇,施泽进,孟兴平,等. 川东南龙王庙组埋藏及混合水白
云岩化作用[J]. 沉积学报,2021,39(6):1517-1531.[Wang
Yong, Shi Zejin, Meng Xingping, et al. Burial dolomitization
and mixed water dolomitization in Longwangmiao Formation,
southeastern Sichuan Basin[J]. Acta Sedimentologica Sinica,
2021, 39(6): 1517-1531.]
[12] 马新华,杨雨,文龙,等. 四川盆地海相碳酸盐岩大中型气田
分布规律及勘探方向[J]. 石油勘探与开发,2019,46(1):1-13.
[Ma Xinhua, Yang Yu, Wen Long, et al. Distribution and exploration
direction of medium-and large-sized marine carbonate gas
fields in Sichuan Basin, SW China[J]. Petroleum Exploration
and Development, 2019, 46(1): 1-13.]
[13] 马永生,蔡勋育,赵培荣,等. 深层超深层碳酸盐岩优质储层
发育机理和“三元控储”模式:以四川普光气田为例[J]. 地质学
报,2010,84(8):1087-1094.[Ma Yongsheng, Cai Xunyu, Zhao
Peirong, et al. Formation mechanism of deep-buried carbonate
reservoir and its model of three-element controlling reservoir: A
case study from the Puguang oilfield in Sichuan[J]. Acta Geologica
Sinica, 2010, 84(8): 1087-1094.]
[14] 赵文智,沈安江,郑剑锋,等. 塔里木、四川及鄂尔多斯盆地白
云岩储层孔隙成因探讨及对储层预测的指导意义[J]. 中国科
学(D 辑):地球科学,2014,44(9):1925-1939.[Zhao Wenzhi,
Shen Anjiang, Zheng Jianfeng, et al. The porosity origin of
dolostone reservoirs in the Tarim, Sichuan and Ordos Basins and its
implication to reservoir prediction[J]. Science China (Seri. D):
Earth Sciences, 2014, 44(9): 1925-1939.]
[15] 沈安江,赵文智,胡安平,等. 海相碳酸盐岩储集层发育主控
因素[J]. 石油勘探与开发,2015,42(5):545-554.[Shen Anjiang,
Zhao Wenzhi, Hu Anping, et al. Major factors controlling
the development of marine carbonate reservoirs[J]. Petroleum
Exploration and Development, 2015, 42(5): 545-554.]
[16] Purser B H, Brown A, Aissaoui D M. Nature, origins and evolution
of porosity in dolomites [M]//Purser B, Tucker M, Zenger
D. Dolomites: A volume in honour of dolomieu. Oxford: Blackwell,
1994: 283-308.
[17] Hao F, Zhang X F, Wang C W, et al. The fate of CO2 derived
from thermochemical sulfate reduction (TSR) and effect of TSR
on carbonate porosity and permeability, Sichuan Basin, China
[J]. Earth-Science Reviews, 2015, 141: 154-177.
[18] 马永生,蔡勋育,赵培荣. 深层、超深层碳酸盐岩油气储层形
成机理研究综述[J]. 地学前缘,2011,18(4):181-192.[Ma
Yongsheng, Cai Xunyu, Zhao Peirong. The research status and
advances in porosity evolution and diagenesis of deep carbonate
reservoir[J]. Earth Science Frontiers, 2011, 18(4): 181-192.]
[19] 乔占峰,张哨楠,沈安江,等. 塔里木和四川盆地白云岩规模
优质储层形成与发育控制因素[J]. 石油与天然气地质,2022,
43(1):92-104.[Qiao Zhanfeng, Zhang Shaonan, Shen Anjiang,
et al. Controls on formation and development of large-sized
high-quality dolomite reservoirs in the Tarim and Sichuan Basins
[J]. Oil & Gas Geology, 2022, 43(1): 92-104.]
[20] 潘立银,刘占国,李昌,等. 四川盆地东部下三叠统飞仙关组白云
岩化作用及其与储集层发育的关系[J]. 古地理学报,2012,14
(2):176-186. [Pan Liyin, Liu Zhanguo, Li Chang, et al.
Dolomitization and its relationship with reservoir development of
the Lower Triassic Feixianguan Formation in eastern Sichuan
Basin[J]. Journal of Palaeogeography, 2012, 14(2): 176-186.]
[21] 潘立银,郝毅,梁峰,等. 白云岩储层成因的激光原位U-Pb 定
年和同位素地球化学新证据:以四川盆地西北部中二叠统栖
霞组白云岩储层为例[J]. 石油学报,2022,43(2):223-233.
[Pan Liyin, Hao Yi, Liang Feng, et al. New evidence of laser insitu
U-Pb dating and isotopic geochemistry for the genesis of dolomite
reservoir: A case study of dolomite reservoir from Middle
Permian Qixia Formation in northwestern Sichuan Basin[J]. Acta
Petrolei Sinica, 2022, 43(2): 223-233.]
[22] 李明隆,谭秀成,罗冰,等. 四川盆地西北部中二叠统栖霞组
相控早期高频暴露岩溶特征及启示[J]. 中国石油勘探,2020,
25(3):66-82.[Li Minglong, Tan Xiucheng, Luo Bing, et al.
Characteristics of facies-controlled and early high-frequency
exposed karstificationin the Qixia Formation of Middle Permian
in the northwest of Sichuan Basin and its significance[J]. China
Petroleum Exploration, 2020, 25(3): 66-82.]
[23] Wang G W, Li P P, Hao F, et al. Dolomitization process and its
implications for porosity development in dolostones: A case
study from the Lower Triassic Feixianguan Formation, Jiannan
area, eastern Sichuan Basin, China[J]. Journal of Petroleum
Science and Engineering, 2015, 131: 184-199.
[24] Maliva R G, Budd D A, Clayton E A, et al. Insights into the
dolomitization process and porosity modification in sucrosic
dolostones, Avon Park Formation (Middle Eocene), east-central
Florida, U. S. A. [J]. Journal of Sedimentary Research, 2011, 81
(3): 218-232.
[25] 朱光有,张水昌,梁英波,等. TSR对深部碳酸盐岩储层的溶蚀
改造:四川盆地深部碳酸盐岩优质储层形成的重要方式[J]. 岩
石学报,2006,22(8):2182-2194. [Zhu Guangyou, Zhang
Shuichang, Liang Yingbo, et al. Dissolution and alteration of the
deep carbonate reservoirs by TSR: An important type of deepburied
high-quality carbonate reservoirs in Sichuan Basin[J]. Acta
Petrologica Sinica, 2006, 22(8): 2182-2194.]
[26] 朱光有,张水昌,梁英波. 四川盆地深部海相优质储集层的形
成机理及其分布预测[J]. 石油勘探与开发,2006,33(2):161-
166.[Zhu Guangyou, Zhang Shuichang, Liang Yingbo. Formation
mechanism and distribution prediction of high-quality marine
reservoir in deeper Sichuan Basin[J]. Petroleum Exploration
and Development, 2006, 33(2): 161-166.]
[27] Zhu D Y, Meng Q Q, Jin Z J, et al. Formation mechanism of
deep Cambrian dolomite reservoirs in the Tarim Basin, northwestern
China[J]. Marine and Petroleum Geology, 2015, 59:
232-244.
[28] 王兴志,张帆,蒋志斌,等. 四川盆地东北部飞仙关组储层研
究[J]. 地学前缘,2008,15(1):117-122.[Wang Xingzhi, Zhang
Fan, Jiang Zhibin, et al. A study of Feixianguan reservoir in
northeast Sichuan Basin[J]. Earth Science Frontiers, 2008, 15
(1): 117-122.]
[29] 张学丰,刘波,蔡忠贤,等. 白云岩化作用与碳酸盐岩储层物
性[J]. 地质科技情报,2010,29(3):79-85.[Zhang Xuefeng,
Liu Bo, Cai Zhongxian, et al. Dolomitization and carbonate
reservoir formation[J]. Geological Science and Technology
Information, 2010, 29(3): 79-85.]
[30] Lippmann F. Sedimentary carbonate minerals[M]. New York:
Springer, 1973: 1-228.
[31] Land L S. Failure to precipitate dolomite at 25℃ from dilute solution
despite 1000-fold oversaturation after 32 years[J]. Aquatic
Geochemistry, 1998, 4(3/4): 361-368.
[32] Moore C H. Carbonate reservoirs: Porosity evolution and diagenesis
in a sequence stratigraphic framework[M]. New York:
Elsevier, 2001: 1-340.
[33] Murray R C. Origin of porosity in carbonate rocks[J]. Journal
of Sedimentary Research, 1960, 30(1): 59-84.
[34] Blanc P, Lassin A, Piantone P, et al. Thermoddem: A geochemical
database focused on low temperature water/rock interactions
and waste materials[J]. Applied Geochemistry, 2012, 27(10):
2107-2116.
[35] Weyl P K. Porosity through dolomitization: Conservation-ofmass
requirements[J]. Journal of Sedimentary Research, 1960,
30(1): 85-90.
[36] Zempolich W G, Hardie L A. Geometry of dolomite bodies within
deep-water resedimented oolite of the Middle Jurassic Vajont limestone,
Venetian Alps, Italy: Analogs for hydrocarbon reservoirs
created through fault-related burial dolomitization[M]//Kupecz J
A, Gluyas J G, Bloch S. Reservoir quality prediction in sandstones
and carbonates. Tulsa, Okla: AAPG Memoirs, 1997: 127-162.
[37] Lucia F J, Major R P. Porosity evolution through hypersaline reflux
dolomitization//Purser B, Tucker M, Zenger D. Dolomites:
A volume in honour of dolomieu. Oxford: Blackwell, 1994:
325-341.
[38] 陈彦华,刘莺,孙妥. 白云化过程中岩石孔隙体积的变化[J].
石油实验地质,1985,7(1):29-37.[Chen Yanhua, Liu Ying,
Sun Tuo. Change of pore volume in dolomitization[J]. Petroleum
Geology & Expeximent, 1985, 7(1): 29-37.]
[39] Lucia F J. Origin and petrophysics of dolostone pore space[M]//
Braithwaite C J R, Rizzi G, Darke G. The geometry and petrogenesis
of dolomite hydrocarbon reservoirs. London: Geological
Society, London, Special Publication, 2004, 235(1): 141-155.
[40] Morrow D W. Diagenesis 1. dolomite-Part 1: The chemistry of
dolomitization and dolomite precipitation[J]. Geoscience Canada,
1982, 9(1): 5-13.
[41] Hardie L A. Dolomitization: A critical view of some current
views[J]. Journal of Sedimentary Research, 1987, 57(1):
166-183.
[42] Land L S. The origin of massive dolomite[J]. Journal of Geological
Education, 1985, 33(2): 112-125.
[43] Lazar B, Starinsky A, Katz A, et al. The carbonate system in
hypersaline solutions: Alkalinity and CaCO3 solubility of
evaporated seawater[J]. Limnology and Oceanography, 1983, 28
(5): 978-986.
[44] Sun S Q. Skeletal aragonite dissolution from hypersaline seawater:
A hypothesis[J]. Sedimentary Geology, 1992, 77(3/4):
249-257.
[45] Sun S Q. Dolomite reservoirs: Porosity evolution and reservoir
characteristics[J]. AAPG Bulletin, 1995, 79(2): 186-204.
[46] Machel H G. Concepts and models of dolomitization: A critical
reappraisal[M]//Braithwaite C J R, Rizzi G, Darke G. The
geometry and petrogenesis of dolomite hydrocarbon reservoirs.
London: Geological Society, London, Special Publication, 2004,
235(1): 7-63.
[47] Landes K K. Porosity through dolomitization[J]. AAPG Bulletin,
1946, 30(3): 305-318.
[48] Wendte J. Origin of molds in dolostones formed by the dissolution
of calcitic grains: Evidence from the Swan Hills Formation
in west-central Alberta and other Devonian formations in Alberta
and northeastern British Columbia[J]. Bulletin of Canadian
Petroleum Geology, 2006, 54(2): 91-109.
[49] Jonas L, Müller T, Dohmen R, et al. Transport-controlled hydrothermal
replacement of calcite by Mg-carbonates[J]. Geology,
2015, 43(9): 779-782.
[50] Zempolich W G, Baker P A. Experimental and natural mimetic
dolomitization of aragonite ooids[J]. Journal of Sedimentary Research,
1993, 63(4): 596-606.
[51] Xia F, Brugger J, Ngothai Y, et al. Three-dimensional ordered arrays
of zeolite nanocrystals with uniform size and orientation by a
pseudomorphic coupled dissolution-reprecipitation replacement
route[J]. Crystal Growth & Design, 2009, 9(11): 4902-4906.
[52] Xia F, Brugger J, Chen G R, et al. Mechanism and kinetics of
pseudomorphic mineral replacement reactions: A case study of
the replacement of pentlandite by violarite[J]. Geochimica et
Cosmochimica Acta, 2009, 73(7): 1945-1969.
[53] Putnis C V, Tsukamoto K, Nishimura Y. Direct observations of
pseudomorphism: Compositional and textural evolution at a
fluid-solid interface[J]. American Mineralogist, 2005, 90(11/
12): 1909-1912.
[54] Budd D A, Mathias W D. Formation of lateral patterns in rock
properties by dolomitization: Evidence from a Miocene reaction
front (Bonaire, Netherlands Antilles)[J]. Journal of Sedimentary
Research, 2015, 85(9): 1082-1101.
[55] Sibley D F. Secular changes in the amount and texture of dolomite[
J]. Geology, 1991, 19(2): 151-154.
[56] Gabellone T, Whitaker F. Secular variations in seawater chemistry
controlling dolomitization in shallow reflux systems: Insights
from reactive transport modelling[J]. Sedimentology, 2016, 63
(5): 1233-1259.
[57] 黄擎宇,刘伟,张艳秋,等. 白云石化作用及白云岩储层研究
进展[J]. 地球科学进展,2015,30(5):539-551. [Huang
Qingyu, Liu Wei, Zhang Yanqiu, et al. Progress of research on
dolomitization and dolomite reservoir[J]. Advances in Earth
Science, 2015, 30(5): 539-551.]
[58] Putnis A. Mineral replacement reactions[J]. Reviews in Mineralogy
and Geochemistry, 2009, 70(1): 87-124.
[59] Usdowski E. Synthesis of dolomite and geochemical implications[
M]//Purser B, Tucker M, Zenger D. Dolomites: A volume
in honour of dolomieu. Oxford: Blackwell Scientific, 1994:
345-360.
[60] Jones G D, Xiao Y T. Dolomitization, anhydrite cementation,
and porosity evolution in a reflux system: Insights from reactive
transport models[J]. AAPG Bulletin, 2005, 89(5): 577-601.
[61] Al-Helal A B, Whitaker F F, Xiao Y T. Reactive transport modeling
of brine reflux: Dolomitization, anhydrite precipitation, and
porosity evolution[J]. Journal of Sedimentary Research, 2012, 82
(2): 196-215.
[62] Garcia-Fresca B, Lucia F J, Sharp J M, et al. Outcropconstrained
hydrogeological simulations of brine reflux and
early dolomitization of the Permian San Andres Formation[J].
AAPG Bulletin, 2012, 96(9): 1757-1781.
[63] Whitaker F F, Xiao Y T. Reactive transport modeling of early
burial dolomitization of carbonate platforms by geothermal convection[
J]. AAPG Bulletin, 2010, 94(6): 889-917.