陈琰 夏晓敏 李雅楠 赵健 崔俊 乔柏瀚 赵东升 高红灿 王义 谭莉 杜宗飞 王远飞
摘 要 【目的】勘探实践表明,柴达木盆地剩余油主要集中于西部地区,但受复杂地表及低渗储层的影响,勘探程度相对较低。为提高柴西咸水泉地区地质认识,可进一步加快油气勘探。【方法】基于岩心沉积构造,结合岩石薄片、X衍射全岩分析化验和地震反射等资料,对咸东1井上新统下油砂山组取心段的沉积相进行综合研究。【结果与结论】(1)深灰—灰黑色灰质泥页岩中夹有灰色薄—中层块状层理细杂砂岩,砂体顶、底部与泥岩突变接触,底界面为明显凸凹不平的侵蚀面,侵蚀面之下的泥页岩中变形层理发育,砂体为沉积物再搬运的砂质碎屑流沉积;(2)深灰—灰黑色灰质泥页岩中夹有含介壳—陆源碎屑的砾屑灰岩和具明显变形层理的粉砂岩及粉砂质团块,其变形纹层清晰且具明显的变形方向,为滑塌碎屑沉积;(3)深灰—灰黑色灰质泥页岩主要夹有薄层灰色含云灰黏土质粉砂岩,泥页岩中发育水平层理及韵律层理等,粉砂岩中发育较多泥质纹层的小型单斜层理、上攀波痕纹理及厚互层层理,为半深—深湖沉积夹由沉积物重力流末期演变的较弱底流沉积。此外,盆地发育的不同时期在阿尔金山前较深水区可能具备发育类似咸东1井滑塌—沉积物重力流沉积储层的条件,尚需进一步研究。
关键词 柴达木盆地;咸水泉地区;上新统;下油砂山组;岩心;沉积相
第一作者简介 陈琰,女,1972年出生,博士,教授级高级工程师,油气地质勘探,E-mail: licqh@petrochina.com.cn
通信作者 高红灿,男,副教授,沉积学与石油地质学,E-mail: gaohongcan@126.com
中图分类号 P618.13 文献标志码 A
0 引言
柴达木盆地是中国西部唯一以新生界为主的大型含油气盆地[1],与中国其他含油气盆地相比,高原持续性隆升和成盆多期性改造使之具有复杂的地理环境和独特的石油地质条件[2]。据柴达木盆地第4次油气资源评价[2],柴达木盆地常规石油地质资源量为29.59×108 t,可采资源量为5.54×108 t;致密油地质资源量为8.58×108 t,可采资源量为0.697×108 t。剩余常规石油资源最丰富和丰度最大的地区为柴达木盆地西南地区,其剩余常规石油地质资源量达17.96×108 t,致密油资源也主要集中于柴达木盆地西部地区。勘探实践及柴达木盆地剩余常规石油和致密油资源潜力表明,包括咸水泉地区在内的柴达木盆地西部地区仍为柴达木盆地石油勘探的重点区域,咸水泉地区(咸东1井)下油砂山组沉积特征的研究可为柴达木盆地西部地区新近系的油气勘探提供基础地质资料。
包括咸水泉地区的柴达木盆地西部地区地表条件复杂,且新生界储集层岩性复杂、孔隙类型多样、储层物性较差,属于典型的非常规低渗储集层[3],勘探程度相对较低。前人主要从构造[4?5]、储层[6?7]、成藏[8?9]等方面对咸水泉地区新生界进行了初步研究,其上新统下油砂山组沉积相的研究相对较薄弱,且前人对咸东1井区下油砂山组沉积相的认识分歧较大,有“较深湖”[10]、“滨湖—浅湖”[11]或“滨浅湖夹半深—深湖”[12]等观点。
在勘探程度较低的地区,特别是由于地质资料的限制,沉积相的平面展布,甚至单井的沉积相分析都比较困难。岩心是最直观的第一手地质资料,通过其沉积特征和测试化验等资料的综合分析可较准确地确定取心段的沉积环境。在此基础上,可进一步拓展至单井沉积相乃至平面上沉积相的研究。因此,以咸水泉地区下油砂山组唯一有取心且测试化验资料较丰富的咸东1井的取心段为研究对象,通过岩心、岩石薄片、X衍射全岩分析、地震反射等资料的综合分析,对其沉积相进行较深入的研究,以期为咸水泉地区乃至柴达木盆地西部地区沉积相的进一步研究提供基础地质资料。
1 区域地质概况
柴达木盆地位于青藏高原北部,盆地西部以阿尔金走滑断裂、北部以南祁连山冲断带、南部以东昆仑山走滑冲断带为界,咸水泉地区位于柴达木盆地西缘的阿尔金山脉前缘,构造上属于柴达木盆地西部坳陷的茫崖凹陷(图1)。柴达木盆地西部地区新生代湖盆的演化经历了发生—发展、稳定沉降和收缩—衰亡三个阶段[13?14],形成了一套干燥气候条件下的高钙多盐内陆湖盆沉积。(1)古近纪古新世和始新世(E1+2)—古近纪渐新世早期(E13)为湖盆演化的初始发生—发展阶段。阿尔金山开始隆升,盆地开始逐渐下沉,接受了一套洪积、河流相红色碎屑岩和泥质岩沉积。(2)古近系渐新统下干柴沟组上段(E23)—新近系中新统上干柴沟组(N1)沉积时期为湖盆演化的稳定沉降阶段。阿尔金山持续隆升,昆仑山开始隆升,该时期湖盆整体下沉,湖盆水域扩大,在盆地中心沉积了一套千余米厚的深灰、灰色生油灰质泥页岩,为盆地最好的生油岩系。(3)上新统下油砂山组(N12)沉积期—上新世晚期(N32)为湖盆演化的收缩—衰亡阶段。昆仑山迅速抬升,湖盆面积逐渐缩小,直至湖盆衰亡,在上新世晚期(N32)气候逐渐干旱,湖水浓缩,盐岩和石膏普遍发育,局部出现光卤石等钾盐矿物沉积。
2 岩石类型及沉积机制
咸东1井共有6次取心,均在下油砂山组(图2)。第1~3 次为连续取心,取心深度分别为2 018.00~2 022.05 m(心长2.87 m,收获率70.86%)、2 022.05~2 031.25 m(心长9.58 m,收获率104.13%)和2 031.25~2 048.75 m(心长17.50 m,收获率100%);第4次取心深度为2 367.00~2 370.76 m(心长3.20 m,收获率85.11%);第5~6 次为连续取心,取心深度分别为2 528.35~2 531.46 m(心长2.80 m,收获率90.03%)和2 531.46~2 535.20 m(心长3.74 m,收获率100%)。
咸东1井下油砂山组取心段主要为深灰—灰黑色灰质泥页岩夹灰色含云灰黏土质粉砂岩(表1、图2、图3a~d)—暗褐色含粉砂黏土白云岩(表1、图2、图3e~h),局部夹细杂砂岩(表1、图2),其灰质含量较高是由于柴达木盆地新生代为盐湖盆地[15?16],而白云岩主要是准同生期通过回流渗透交代方解石发生白云石化[17],对沉积环境的分析影响不大。
通过对咸东1井下油砂山组取心段沉积相的综合研究,认为其为半深湖相夹砂质碎屑流及少量滑塌沉积。
2.1 泥页岩及沉积机制
灰质泥页岩颜色为深灰—灰黑色(图4),发育水平层理、透镜状层理以及由灰黑色泥岩与暗褐色含粉砂黏土白云岩纹层(图4a,b),或灰色粉砂岩纹层(图4c,d)相间发育的韵律层理(图4a~d),指示其为沉积水动力较弱且无底栖生物扰动的还原—强还原沉积环境。结合区域地质背景分析,下油砂山组(N12)沉积期为湖盆收缩的早期阶段[13?14],西部坳陷仍是柴达木盆地的沉积中心之一,咸东1井区为水体较深的半深湖沉积环境。
另外,由于半深湖泥岩含水率高且透水性差,致使其中包裹的饱水粉—细砂沉积物在地震等振动影响下易于形成局部高液压区,并产生泄水沉积构造、液化砂岩脉(图4e)以及球—枕构造(图4f)等沉积构造,也可间接反映其半深湖沉积环境。
2.2 细砂岩及沉积机制
咸东1井第5次取心的2.80 m岩心中有6层共计1.40 m厚的块状细砂岩,每层砂岩厚0.08~0.40 m,与黑色泥页岩相间分布(图2),与咸东1井下油砂山组以深灰—灰黑色灰质泥页岩夹灰色含云灰黏土质粉砂岩—暗褐色含粉砂黏土白云岩的细粒沉积相比极不协调(图2),指示其为事件沉积[18]。
咸东1井第5次取心中的细砂岩均发育块状层理(图5a~d)。通过X衍射全岩矿物含量及岩石薄片分析为细粒长石杂砂岩(表1、图5e),成分成熟度和结构成熟度均较低,其泥质含量高但分布较均一而未显示出纹层状层理构造。同时,与砂岩上下相邻发育的灰黑色泥页岩指示其沉积环境为强还原环境,不利于底栖生物生长,即该细粒长石杂砂岩的块状构造不是由生物扰动造成的。同时,砂体顶、底部与泥岩呈突变接触,特别是砂体底界面为明显凸凹不平的侵蚀面,侵蚀面之下灰黑色泥页岩中发育变形层理(图5a,b,d)。分析该砂体沉积时水动力较强而使下伏沉积遭受侵蚀与拖拽而成。综合分析认为,第5次取心中的块状层理砂岩是砂质碎屑流沉积[19?20],为阿尔金山前缘扇三角洲沉积[21]经再搬运杂乱堆积而成。
2.3 粉砂岩及沉积机制
粉砂岩主要呈薄层—纹层状夹于深灰—灰黑色灰质泥页岩中,粉砂岩中发育的层理均不具有浪成层理典型的前积纹层呈束状排列和纹层具人字形构造的特征,以及因波浪波痕不规则迁移习性造成的相当不规则或链曲拱形的层系下界面特征[22],而与单向流水形成的层理特征相似,呈现出小水流波痕层理具有的规则,直或弯曲的层系界面(图6a~e)。咸东1井下油砂山组粉砂岩中主要发育三种层理。
第一种层理为由单向倾斜纹层组成的小型单斜层理(图6a,b)。单个层系厚度较小,大部分小于1 cm。在该小型单斜层理中,其泥质纹层由下向上逐渐尖灭,至层系顶部基本没有泥质纹层(图6a,b),所以,该小型单斜层理的识别主要依据各层系中下部的泥质纹层,但各层系界面较清晰,特别是部分层系之间发育平行于层系界面呈波状的泥质纹层使得层系分界明显(图6a,b),反映该类型小型斜层理的发育与较弱的单向水流和较充分的细粒沉积物供应有关。分析在以深灰—灰黑色灰质泥页岩沉积为主的较深水沉积环境中,该小型单斜层理的发育是在碎屑流或浊流等高密度流体发展至末期逐渐转变为较弱的深水底流的条件下,由该较弱的单向底流(牵引流)搬运黏土质粉砂(高密度流体含有较充足的细粒沉积物),并在较安静的半深湖深灰—灰黑色灰质泥页岩中沉积而成(图6a,b)。
第二种层理为上攀波痕纹理(climbing-ripplelamination)[22],通常称为爬升沙纹层理[23]。不同于具单向倾斜纹层的斜层理,上攀波痕纹理的纹层是连续且相互平行的,并呈波状与层面大致平行而不是斜交(图6d,e)。当有大量沉积物,特别是以悬浮态沉积物供应时,砂质沉积会被快速埋藏并全部或部分地保存了原始波痕,在波痕迁移的同时可进一步向上生长,其向流面纹层(后积层)与背流面纹层(前积层)同时得以保存,上叠的波痕系列最终产生了上攀波痕纹理。当各波痕纹层相位相同时,形成同相位波痕纹层(ripple laminae in-phase)[22](图6d),也常称为波状层理[23];当各波痕纹层相位不同时,形成迁移波痕纹层(ripple laminae in-drift)[22](图6d,e),但当砂质沉积持续时间短时,其可表现为透镜状外形,但以内部纹层结构(图6e)区别于透镜状层理(其纹层呈单向倾斜)。该类型上攀波痕纹理与上述第一种类型的由单向倾斜纹层组成的小型单斜层理的沉积环境相似,区别在于前者的沉积环境中悬浮细粒沉积物更丰富且水动力较弱,同为水体较深的半深湖事件沉积流体进一步演变为末期较弱的底流沉积。
第三种层理为厚互层层理(coarsely interlayeredbedding)[22]。由交互的粗粒层和细粒层组成,层的厚度为几毫米至几厘米,粗粒层可以是细砂或粉砂,细粒层可以是粉砂或泥或黏土。区别于单个纹层厚度一般小于3~4 mm的薄互层组成的韵律层理(薄互层层理)。一般情况下,厚互层层理粗粒层的纹层呈水平纹层状,但有时在砂层中能看到波痕的前积纹层。根据砂层与泥层的相对厚度可分出三种类型的厚互层层理类型:砂层与泥层差不多等厚的、较厚的砂层被较薄的黏土层或细粒层分开的、较厚的泥层与相对较薄的砂层交互的[22]。咸东1井第2次取心中发育厚互层层理,表现为较厚的粗粒层(粉—细砂层)被较薄的细粒层(黏土层)分开(图6c),砂层中的细层呈水平状,分隔砂层的泥质纹层很薄且部分不清晰,即以砂质纹层中频繁夹有泥质纹层而区别于全部由平行砂质纹层组成且剥离面发育的平行层理。该厚互层层理是在有较充足砂质碎屑供应和高流态条件下以水平纹层状的形式形成的,流速的波动和脉动导致极薄泥质层的沉积[22]。分析其与上述两类层理沉积同为半深湖中的事件沉积演变为末期较弱的底流沉积或与正常半深湖的交替沉积。
另外,岩心中发育具明显变形层理的粉砂岩(表1、图7)或灰黑色泥岩中发育具明显变形层理的粉砂质团块(图7c,e),其变形纹层较清晰且具明显的变形方向(图7a,7c~e),指示其为具一定强度的塑性流体滑动而成[24],为滑塌沉积最显著的内部特征[20,25?26]。
2.4 砾屑灰岩及沉积机制
咸东1井第1~3次取心中,在深灰色泥页岩中夹有含介壳—陆源碎屑的砾屑灰岩(表1、图8a~d),局部为介壳富集的介壳灰岩(图8e)或为含介壳黏土质粉砂岩(图8f)。其中砾屑灰岩中的砾屑主要为深褐色—深灰色含陆源碎屑灰岩的砾屑或含陆源碎屑泥岩的砾屑,砾屑以长条形为主,其长轴可达9 mm,平均约3 mm(图8a~d),部分砾屑边缘呈塑性变形的弯曲枝状凸出(图8d)或呈港湾状凹进(图8b,d),砾屑磨圆较好但分选差,局部具定向性(图8a,b)但整体为与介壳碎屑及粉砂呈混杂堆积(图8a~d);同样,在介壳灰岩(图8e)及含介壳黏土质粉砂岩(图8f)中,介壳亦不具定向性。介壳碎屑主要为半个未破碎的介壳或一个完整的介壳,介壳长轴长0.10~0.40 mm,以0.15 mm为主(图8d~f)。介壳未破碎或指示其生活在水动力相对较弱的较深水环境,且被突发事件(如滑塌事件)以高密度的碎屑流体(如碎屑流)形式裹挟至水体较深的半深湖中沉积下来,因在以基质强度支撑的高密度流体中搬运使得介壳受到保护而未被破碎[18]。
3 讨论
3.1 咸水泉主体构造与油泉子构造的沉积体系
咸东1井位于咸水泉主体构造与油泉子构造的结合部位,其沉积环境分析可判断两构造单元是否为同一沉积体系。咸东1井区地震反射资料表明,其下油砂山组顶(T2)底(T2)界地震反射层明显,由7~8个同相轴组成,具有强振幅、高连续和高频率的反射特征,波形为平行状(图9),表明咸东1井区下油砂山组为相对稳定的沉积环境;而下伏的上干柴沟组底(其顶、底界面地震反射层分别为T2和T3)地震反射层则发生明显变化,其上部主要为强振幅、高连续和高频率的反射特征,下部逐渐过渡为弱—中反射振幅、低—中连续和低—中频率,波形为亚平行及杂乱状(图9),为湖底扇沉积环境[14],与上述通过对咸东1井取心段各岩石类型沉积特征及沉积机制分析得出的咸东1井下油砂山组取心段主要为半深—深湖沉积环境明显不同。
与咸东1井区下油砂山组较稳定的反射特征相比,咸水泉主体构造区(咸10井—咸9井区)与油泉子构造(油8井区)下油砂山组地震反射波形杂乱、同相轴连续性差、振幅变化大,表明咸东1井区与咸水泉主体构造和油泉子构造区下油砂山组分属不同的沉积体系。地层对比与岩屑录井剖面(图10)也表明,咸水泉主体构造与油泉子构造下油砂山组厚度比咸东1井区薄,咸水泉主体构造咸10井砂砾岩发育,为扇三角洲沉积[21];油泉子构造油8井发育泥灰岩及灰质泥岩,且藻灰岩发育,为浅湖沉积[27],与咸东1井深灰—灰黑色灰质泥页岩夹灰色含云灰黏土质粉砂岩为主的岩性有很大的差异,反映咸东1井区为半深湖沉积,分割了咸水泉主体构造与油泉子构造的沉积,使咸水泉主体构造与油泉子构造分属两类沉积体系,油气勘探开发不能一体化进行。
3.2 滑塌—碎屑流沉积的启示
通过前述分析得知咸东1井区在下油砂山组沉积期发育半深—深湖,而阿尔金山边缘以冲积扇—扇三角洲沉积为主[21],山前较陡地形及构造活动等诱因使得扇三角洲沉积砂体易于通过二次搬运在其前缘深水区形成滑塌—沉积物重力流沉积。
由于沉积物重力流沉积与半深—深湖烃源岩直接接触,油气更易运移到其形成的储层中而有利于形成以自生、自储、自盖为特色的地层—岩性油气藏[28?29]。我国鄂尔多斯盆地[29]和珠江口盆地[30?31]等的深水重力流油气勘探已获重大突破,特别是通过借鉴砂质碎屑流的沉积模式在鄂尔多斯盆地延长组长7油层组发现了储量规模为10亿吨级的庆城油田,将盆地深水油气勘探推入一个新阶段[32]。
咸东1井下油砂山组取心段主要为半深—深湖沉积夹有源于盆地边缘扇三角洲[21]的滑塌—碎屑流沉积,即该井下油砂山组半深—深湖沉积中发育沉积物重力流沉积储层。综上分析认为,柴达木盆地发育的不同时期,在阿尔金山前较深水区可能具备发育类似咸东1井滑塌—沉积物重力流沉积储层的条件,尚需进一步研究。
4 结论
(1) 咸东1井下油砂山组取心段深灰—灰黑色灰质泥页岩中夹薄—中层块状层理细粒杂砂岩(第5次取心),砂体顶、底部与泥岩突变接触,底界面为明显凸凹不平的侵蚀面,侵蚀面之下的泥页岩中变形层理发育,为沉积物再搬运的砂质碎屑流沉积。
(2) 咸东1井下油砂山组取心段深灰—灰黑色灰质泥页岩中夹含介壳—陆源碎屑的砾屑灰岩和具明显变形层理的粉砂岩及具明显变形层理的粉砂质团块(第1~3次取心),其变形纹层清晰且具明显的变形方向,为滑塌碎屑沉积。
(3) 咸东1井下油砂山组取心段主要为深灰—灰黑色灰质泥页岩夹灰色含云灰黏土质粉砂岩,泥页岩中发育水平层理及韵律层理等,粉砂岩中发育较多泥质纹层的小型单斜层理、上攀波痕纹理及厚互层层理等,为半深—深湖沉积夹由沉积物重力流演变为末期较弱的底流沉积。
(4) 盆地发育的不同时期,在阿尔金山前较深水区可能具备发育类似咸东1井滑塌—沉积物重力流沉积储层的条件,尚需进一步研究。
参考文献(References)
[1] 付锁堂,马达德,陈琰,等. 柴达木盆地油气勘探新进展[J]. 石
油学报,2016,37(增刊1):1-10.[Fu Suotang, Ma Dade, Chen
Yan, et al. New advance of petroleum and gas exploration in
Qaidam Basin[J]. Acta Petrolei Sinica, 2016, 37(Suppl. 1): 1-10.]
[2] 陈琰,雷涛,张国卿,等. 柴达木盆地石油地质条件、资源潜力
及勘探方向[J]. 海相油气地质,2019,24(2):64-74.[Chen Yan,
Lei Tao, Zhang Guoqing, et al. The geological conditions, resource
potential and exploration direction of oil in Qaidam Basin
[J]. Marine Origin Petroleum Geology, 2019, 24(2): 64-74.]
[3] 臧士宾,赵为永,陈登钱,等. 柴达木盆地西部北区新近系非常
规低渗储集层特征及控制因素分析[J]. 沉积学报,2013,31(1):
157-166.[Zang Shibin, Zhao Weiyong, Chen Dengqian, et al.
Characteristics and controlling factors of the unconventional low
permeability reservoir of Neogene in the northwest of Qaidam Basin[
J]. Acta Sedimentologica Sinica, 2013, 31(1): 157-166.]
[4] 施泽进. 阿尔金南缘咸水泉推覆构造[J]. 成都理工大学学报(自
然科学版),2004,31(6):592-595.[Shi Zejin. Nappe tectonic of
Xianshuiquan on southern edge of Altun, Qinghai, China[J]. Journal
of Chengdu University of Technology (Science & Technology
Edition), 2004, 31(6): 592-595.]
[5] 黄凯,陈力琦,肖安成,等. 柴达木盆地西北缘咸水泉背斜新生
代变形特征及意义[J]. 高校地质学报,2018,24(5):761-768.
[Huang Kai, Chen Liqi, Xiao Ancheng, et al. Cenozoic deformation
characteristics of the Xianshuiquan anticline in the northwestern
Qaidam Basin and its significance[J]. Geological Journal
of China Universities, 2018, 24(5): 761-768.]
[6] 欧成华,蒋书虹,梁成钢,等. 柴达木盆地干柴沟—咸水泉地区
中深层储集层分布规律[J]. 特种油气藏,2011,18(4):11-13.
[Ou Chenghua, Jiang Shuhong, Liang Chenggang, et al. Reservoir
distribution in the mid-deep formation of the Ganchaigou-
Xianshuiquan region, Qaidam Basin[J]. Special Oil & Gas Reservoirs,
2011, 18(4): 11-13.]
[7] 欧成华,董兆雄,魏学斌. 柴达木盆地干柴沟—咸水泉地区中
—深层成岩演化及其对储集体性能的影响[J]. 古地理学报,
2011,13(1):85-95.[Ou Chenghua, Dong Zhaoxiong, Wei Xuebin.
Diagenetic evolution and its influence on reservoir properties
of the middle-deep strata in Ganchaigou-Xianshuiquan region of
Qaidam Basin[J]. Journal of Palaeogeography, 2011, 13(1):
85-95.]
[8] 路俊刚,陈世加,欧成华,等. 柴西北区咸水泉构造深层勘探潜
力分析[J]. 石油天然气学报(江汉石油学院学报),2010,32(4):
54-57,70.[Lu Jungang, Chen Shijia, Ou Chenghua, et al. The
deep analysis on exploration potential of Xianshuiquan deep structure
in the north of western Qaidam Basin[J]. Journal of Oil and
Gas Technology (Journal of Jianghan Petroleum Institute), 2010,
32(4): 54-57, 70.]
[9] 施洋,包建平,朱翠山,等. 柴达木盆地西部七个泉与咸水泉油
田原油地球化学特征对比研究[J]. 天然气地球科学,2010,21
(1):132-138.[Shi Yang, Bao Jianping, Zhu Cuishan, et al. Comparative
study on geochemistry between crude oils from Qigequan
and Xianshuiquan oilfields in western Qaidam Basin[J]. Natural
Gas Geoscience, 2010, 21(1): 132-138.]
[10] 党玉琪,尹成明,赵东升. 柴达木盆地西部地区古近纪与新近
纪沉积相[J]. 古地理学报,2004,6(3):297-306.[Dang Yuqi,
Yin Chengming, Zhao Dongsheng. Sedimentary facies of the
Paleogene and Neogene in western Qaidam Basin[J]. Journal of
Palaeogeography, 2004, 6(3): 297-306.]
[11] 陈峰,冯乔,徐明璞,等. 柴西地区上下油砂山组沉积相及有
利储层[J]. 山东国土资源,2014,30(5):9-13.[Chen Feng,
Feng Qiao, Xu Mingpu, et al. Analysis on depositional facies
and favorable reservoir of upper and lower part of Youshashan
Formation in western Chaixi area[J]. Shandong Land and Resources,
2014, 30(5): 9-13.]
[12] 王馨冉. 柴达木盆地西北地区下油砂山组储层特征及控制因
素分析[D]. 北京:中国石油大学(北京),2019.[Wang Xinran.
Reservoir characteristics and controlling factors of Xiayoushashan
Formation in the northwestern Qaidam Basin[D]. Beijing:
China University of Petroleum (Beijing), 2019.]
[13] 赵贤正,陈子炓,陈洪德,等. 柴达木盆地西部地区第三系湖
相藻(蓝细菌)灰岩储层成因类型[J]. 沉积学报,2004,22(2):
216-224.[Zhao Xianzheng, Chen Ziliao, Chen Hongde, et al.
Genetic types of Tertiary lacustrine algal(cyanobacteria) limestones
reservoirs in western Qaidam Basin[J]. Acta Sedimentologica
Sinica, 2004, 22(2): 216-224.]
[14] 欧成华,董兆雄. 柴达木盆地干柴沟—咸水泉地区渐新统—
中新统沉积相分布特征[J]. 地质论评,2010,56(5):653-663.
[Ou Chenghua, Dong Zhaoxiong. Sedimentary facies distribution
characteristics of Oligocene-Miocene in Ganchaigou-
Xianshuiquan area, Qaidam Basin[J]. Geological Review, 2010,
56(5): 653-663.]
[15] 金强,查明,赵磊. 柴达木盆地西部第三系盐湖相有效生油岩
的识别[J]. 沉积学报,2001,19(1):125-129.[Jin Qiang, Zha
Ming, Zhao Lei. Identification of effective source rocks in the
Tertiary evaporate facies in the western Qaidam Basin[J]. Acta
Sedimentologica Sinica, 2001, 19(1): 125-129.]
[16] 王建功,张道伟,石亚军,等. 柴达木盆地西部地区渐新世下
干柴沟组上段盐湖沉积特征[J]. 吉林大学学报(地球科学版),
2020,50(2):442-453.[Wang Jiangong, Zhang Daowei, Shi Yajun,
et al. Salt lake depositional characteristics of Upper
member of Lower Ganchaigou Formation, western Qaidam Basin
[J]. Journal of Jilin University (Earth Science Edition), 2020, 50
(2): 442-453.]
[17] 张小军,张世铭,苟迎春,等. 柴西下干柴沟组湖相白云岩特
征及成因分析[J]. 沉积学报,2019,37(4):785-797.[Zhang
Xiaojun, Zhang Shiming, Gou Yingchun, et al. Characteristics
and origin analysis of lacustrine dolomites in the Lower Ganchaigou
Formation, western Qaidam Basin[J]. Acta Sedimentologica
Sinica, 2019, 37(4): 785-797.]
[18] 高红灿,郑荣才,魏钦廉,等. 碎屑流与浊流的流体性质及沉
积特征研究进展[J]. 地球科学进展,2012,27(8):815-827.
[Gao Hongcan, Zheng Rongcai, Wei Qinlian, et al. Reviews on
fluid properties and sedimentary characteristics of debris flows
and turbidity currents[J]. Advances in Earth Science, 2012, 27
(8): 815-827.]
[19] Shanmugam G. Deep-water processes and facies models: Implications
for sandstone petroleum reservoirs[M]. New York: Elsevier,
2006.
[20] Shanmugam G. 深水砂体成因研究新进展[J]. 石油勘探与开
发,2013,40(3):294-301.[Shanmugam G. New perspectives
on deep-water sandstones: Implications[J]. Petroleum Exploration
and Development, 2013, 40(3): 294-301.]
[21] 苏妮娜,金振奎,宋璠,等. 柴达木盆地新近系沉积特征及演
化[J]. 中南大学学报(自然科学版),2015,46(11):4155-4164.
[Su Nina, Jin Zhenkui, Song Fan, et al. Sedimentary characteristics
and evolution of Neogene in Qaidam Basin[J]. Journal of
Central South University (Science and Technology), 2015, 46
(11): 4155-4164.]
[22] Reineck H E, Singh I B. Depositional sedimentary environments:
With reference to terrigenous clastics[M]. 2nd ed. Berlin:
Springer, 1980.
[23] 朱筱敏. 沉积岩石学[M]. 4 版. 北京:石油工业出版社,2008.
[Zhu Xiaomin. Sedimentary petrology[M]. 4th ed. Beijing:
Petroleum Industry Press, 2008.]
[24] 高红灿,郑荣才,肖斌,等. 二连盆地白音查干凹陷下白垩统
腾格尔组滑塌—浊流沉积特征:以达49 井为例[J]. 石油学报,
2017,38(7):777-792.[Gao Hongcan, Zheng Rongcai, Xiao
Bin, et al. Slump-turbidite sedimentary characteristics of the
Lower Cretaceous Tenggeer Formation in Baiyinchagan Sag of
Erlian Basin: A case study of well Da 49[J]. Acta Petrolei Sinica,
2017, 38(7): 777-792.]
[25] Moscardelli L, Wood L, Mann P. Mass-transport complexes and
associated processes in the offshore area of Trinidad and
Venezuela[J]. AAPG Bulletin, 2006, 90(7): 1059-1088.
[26] Posamentier H W, Martinsen O J. The character and genesis of
submarine mass-transport deposits: Insights from outcrop and
3D seismic data[C]//Shipp R C, Weimer P, Posamentier H W.
Mass-transport deposits in deepwater settings. Tulsa, Pklahoma:
SEPM Special Publication, 2011: 7-38.
[27] 陈琰,夏晓敏,赵健,等. 柴达木盆地西部地区新近系藻灰岩
沉积特征及形成机制[J]. 沉积学报,2022,40(5):1323-1334.
[Chen Yan, Xia Xiaomin, Zhao Jian, et al. Sedimentary characteristics
and formation mechanisms of Neogene algal limestone
in western Qaidam Basin[J]. Acta Sedimentologica Sinica, 2022,
40(5):1323-1334.]
[28] 李文厚,周立发,符俊辉,等. 库车坳陷上三叠统的浊流沉积
及石油地质意义[J]. 沉积学报,1997,15(1):20-24.[Li Wenhou,
Zhou Lifa, Fu Junhui, et al. Turbidity current deposits and
their significance for petroleum geology of Upper Triassic in the
Kuqa Depression[J]. Acta Sedimentologica Sinica, 1997, 15(1):
20-24.]
[29] 郑荣才,文华国,韩永林,等. 鄂尔多斯盆地白豹地区长6油
层组湖底滑塌浊积扇沉积特征及其研究意义[J]. 成都理工大
学学报(自然科学版),2006,33(6):566-575.[Zheng Rongcai,
Wen Huaguo, Han Yonglin, et al. Discovery and significance of
sublacustrine slump turbidite fans in Chang 6 oil-bearing formation
of Baibao region in Ordos Basin, China[J]. Journal of
Chengdu University of Technology (Science & Technology Edition),
2006, 33(6): 566-575.]
[30] 彭大钧,陈长民,庞雄,等. 南海珠江口盆地深水扇系统的发
现[J]. 石油学报,2004,25(5):17-23.[Peng Dajun, Chen
Changmin, Pang Xiong, et al. Discovery of deep-water fan system
in South China Sea[J]. Acta Petrolei Sinica, 2004, 25(5):
17-23.]
[31] 郑荣才,郑哲,高博禹,等. 珠江口盆地白云凹陷珠江组海底
扇深水重力流沉积特征[J]. 岩性油气藏,2013,25(2):1-8.
[Zheng Rongcai, Zheng Zhe, Gao Boyu, et al. Sedimentary features
of the gravity flows in submarine fan of Zhujiang Formation
in Baiyun Sag, Pearl River Mouth Basin[J]. Lithologic
Reservoirs, 2013, 25(2): 1-8.]
[32] 付锁堂,付金华,牛小兵,等. 庆城油田成藏条件及勘探开发
关键技术[J]. 石油学报,2020,41(7):777-795.[Fu Suotang,
Fu Jinhua, Niu Xiaobing, et al. Accumulation conditions and
key exploration and development technologies in Qingcheng oilfield[
J]. Acta Petrolei Sinica, 2020, 41(7): 777-795.]