李尚昆 魏志福 王永莉 汪亘 马雪云 张婷 何薇 玉晓丽 李伦 马贺 魏静宜
摘 要 【目的】古近系以来,伴随着青藏高原隆升、地层大规模逆冲和走滑,在青藏高原北部形成了众多内陆盆地。由于盆地位置的特殊性,盆地内部的古气候和古植被演化对厘清欧亚大陆古近系气候演化特征具有重要意义。【方法】利用青藏高原中东部囊谦盆地古近系沉积地层剖面中的生物标志化合物和总有机碳(TOC)含量重建了51.8~37.5 Ma囊谦盆地古气候和古植被演化历史。【结果与结论】囊谦盆地古近系气候指标演化历史具体可分为三个阶段。阶段Ⅰ(51.8~46.4 Ma),CPI值和TOC值均较低,Paq值偏高,ACL值和nC27/nC31在该时期呈现明显的变化趋势,可能是受到河流所带来的陆源沉积物混入影响,主峰碳大部分为nC22和nC23,植被类型以木本植物为主,气候条件相对较为潮湿;阶段Ⅱ(46.4~42.7 Ma),此阶段Paq值和nC27/nC31值逐渐降低,ACL值逐渐上升,主峰碳碳数逐渐由低碳数向中高碳数转变,植被类型逐渐由木本占优势转变为以草本植物为主,气候条件逐渐变干,同时伴有干湿交替的气候特征;阶段Ⅲ(42.7~37.5 Ma),Paq、nC27/nC31和ACL值变化不大,主峰碳碳数明显增加,高碳数正构烷烃明显增多,干旱化程度进一步增加;同时TOC明显增加,指示植被总生产力增强,可能是对中始新世温暖适宜期(MECO)的响应。此外,通过对比分析研究区以及相邻盆地气候变化的研究结果,认为囊谦盆地51.8~37.5 Ma期间的气候变化主要受全球性气候变化和特提斯海退缩的影响,青藏高原的隆升,海拔的增加对于囊谦盆地水汽影响较大,季风对于水汽影响较小。
关键词 正构烷烃;古气候;古植被;囊谦盆地;青藏高原
第一作者简介 李尚昆,男,1995年出生,硕士研究生,地球化学,E-mail: skdsgy@163.com
通信作者 魏志福,男,研究员,E-mail: weizf@lzb.ac.cn
中图分类号 P532 文献标志码 A
0 引言
青藏高原地处大陆内部,伴随古新世—始新世欧亚板块与印度板块的碰撞隆升,成为世界上面积最大、海拔最高的高原[1]。青藏高原东西长约2 800 km,南北宽300~1 500 km,总面积约250×104 km2,约占我国面积的25%,平均海拔4 000 m以上的地区面积达122×104 km2,被称为“世界第三极”。由于青藏高原面积巨大,相对纬度较低,加之海拔高,因此能够接收强烈的太阳辐射。正是由于这些特殊原因,使得青藏高原在夏季能够从印度洋向北吸收水分,而冬季来自西北的中纬度大气急流会对高原环境产生较强影响。此外,由于高海拔和寒冷的气候条件(年平均气温低于4 ℃),青藏高原地区生态环境脆弱,对气候变化响应比地球上大多数地区更为强烈[2]。
青藏高原自然历史发育极其年轻,受多种因素共同影响,形成了全世界最高、最年轻而水平地带性和垂直地带性紧密结合的自然地理单元。青藏高原是东亚、东南亚和南亚众多大江大河的发源地,也是中国与亚洲湖泊、湿地的聚集地。青藏高原现有湖泊面积占全国湖泊总面积的52%,是地球上海拔最高的湖泊群[3]。同时,青藏高原也是我国冰川分布量最多,面积最广的区域,目前青藏高原现代冰川条数占我国现代冰川总条数的80%,冰川面积占我国冰川总面积的84%,冰川冰储量占我国冰川总储量的80%[3]。青藏高原因其独特的地形与地理位置被称为全球气候变化的“起动机”与“放大器”,是全球变化研究的重点区域,也是开展长时间尺度气候变化研究的理想“实验室”,现已成为全球地学工作者关注的焦点。新生代以来青藏高原的气候变化引发了众多讨论,是中亚气候变化的重要组成部分,研究青藏高原气候变化对于理解亚洲干旱化和季风的产生与发展是必不可少的过程,且对于海洋化学和全球气候变化的理解也具有重要意义[4?15]。
由于缺少长时间尺度范围的连续沉积,前人对于青藏高原新生代以来气候演化方面的研究多集中于新生代晚期,研究时间尺度较短。此外,对于青藏高原气候演化的研究区域则多集中于青藏高原东北部,中部和南部的一些地区,目前对于中东部囊谦盆地长时间尺度气候变化的相关研究极少。并且所采用方法手段多见于孢粉学及黏土矿物方面的分析,辅之以粒度分析和沉积变化加以阐述。本研究从沉积物本身化学性质和分子学角度进行论述。有机地化手段利用生物标志化合物所记录的原始生物信息可以从多种角度,多指标相互印证,从而更为准确地反映研究区古植被古气候演化历史。本次研究所选取的囊谦盆地剖面具有较长的连续沉积序列,是研究整个始新世时期的气候演化过程理想的沉积剖面。此外,Zhang et al.[16]学者利用磁性地层学对于囊谦盆地剖面年代的确定,为重建囊谦盆地相和青藏高原中东部区域的植被演化和气候变化奠定了重要基础。
生物标志化合物来源于生物体,且保留着生物体内固有的有机化合物基本碳骨架,具有稳定性良好,保存时间长,适用范围广等优势[17]。从植物叶蜡中提取的正构烷烃可以在地质记录中长期保存,并可以记录其历史时期的古植被变化信息[18]。利用生物标志化合物已成为恢复古气候、重建古环境,探究古人类活动的重要研究手段,也是有机地球化学应用的一个重要领域。生物标志化合物重建古气候环境已广泛应用于海洋沉积物、湖泊和泥炭沉积物,以及黄土—古土壤[19?20]。青藏高原中东部囊谦盆地利用生物标志化合物重建古气候—植被演化的研究还处于空白阶段,本研究利用青藏高原东北部囊谦盆地地层剖面沉积物中的生物标志物和总有机碳(TOC)含量重建了51.8~37.5 Ma期间的古气候和古植被演化历史,以期为厘清欧亚大陆古近纪气候演化提供重要地质证据。
1 地质概况
囊谦盆地地处青海省与西藏自治区交界处,青藏高原中央地带的东北方向,且位于青藏高原中部的弯曲带,是青藏高原的构造过渡和弯曲部分,区域构造活动自东西向南北转换。该盆地的平均海拔为4 500~5 000 m,是印度—亚洲板块碰撞之后受古近纪压缩过程形成[21]。囊谦盆地属于羌塘地块,北部以金沙缝合线和松潘—甘孜地块为界,南部以班公—怒江缝合线和拉萨地块为界。处于32.00°~32.33°N,96.25°~96.75° E(图1)。研究区属大陆性季风气候,冬季漫长寒冷,夏季短暂多雨,气候凉爽,年降水主要集中于6—9月。同时,该盆地及其邻近地区也是大型河流系统重组以及季风和生物多样性演变的关键场所[22]。
研究区地层沉积相由辫状河、冲积扇逐渐发展到短期的浅水池/湖泊环境,最终演化为半咸水湖沉积。同时这种演替也反映囊谦盆地早期阶段的沉积受到了印亚板块碰撞挤压运动所导致的金沙缝合线的影响,并且气候条件整体逐渐变干,这种含咸水湖泊的沉积环境在中国西北半干旱地区的第四纪普遍发育良好[23]。
2 研究方法
2.1 采样与剖面年代序列
本研究中剖面年代数据来自于中国科学院青藏高原研究所张伟林老师所测古地磁年代[16]。囊谦剖面自下而上分为囊谦东(NQ2)、囊谦北(NQ1)、囊谦砖厂(NQ)三段进行采样,整体剖面长度自下而上约1 050 m,剖面上部NQ1段与上覆地层不整合接触,所以样品采集在NQ1段截止。其中NQ2段剖面共28个样品,长约500 m,NQ段共13个样品,长约120 m,共计67个样品,NQ1段共26个样品,长约254 m,其中在NQ段剖面有接近150~200 m的底层未露头,故采样剖面中有部分缺失,并且本次研究采样年代最新的样品为NQ1-242,相较张伟林老师所测古地磁剖面在NQ1段有所缺失,剖面地层图绘制长度以张伟林老师剖面长度为标准[16]。采样地层发育广泛的红层序列,岩性变化趋势大致为,下部以古土壤砂岩为主,中部以灰岩—泥灰岩为主,上部以粉砂岩—泥岩为并伴有发育明显的石膏层,这也反映了一种由半干旱逐渐转变为干旱的气候条件(图2)。剖面的下部和中部展现了一定的沉积序列,呈现从细砾岩—砂岩—粉砂岩—泥岩—泥灰岩/石灰岩的逐渐变化到以泥灰岩和石灰岩为主的地层特征,其中夹杂着较为薄层的粉砂岩—泥岩,可以被看作一定程度的地层沉积旋回,年代范围大致为距今51.8~37.5 Ma,通过计算所得沉积速率如图2所示。
2.2 总有机碳含量测定
有机碳含量测试之前利用玛瑙研钵将样品研磨至小于80目,然后用精度为万分之一的电子天平称量0.20 g粉末样品置于石英坩埚。样品上机测试之前,对称量好的待测样品用浓度6% 的盐酸浸泡24 h,进行酸化处理以去除无机碳。之后用去离子水漂洗至中性、烘箱40 ℃烘干。将装有样品的坩埚放在仪器的燃烧台上,由红外检测仪测量CO2的产生量,以计算每个样品的总有机碳(TOC)含量。样品前处理及测试实验在中国科学院西北生态环境资源研究院甘肃省油气资源研究重点实验室完成,仪器采用LECO CS900碳硫分析仪。
2.3 正构烷烃分析
本次研究共采集67个样品,采样间隔约10 m。利用传统索氏抽提装置进行有机质萃取,萃取获得的有机质用于有机地球化学分析。萃取之前,样品研磨至100~200目,抽提溶剂为二氯甲烷和甲醇(v∶v=9∶1),样品抽提时间为72 h。抽提的有机质与溶剂混合液样品使用氮气吹扫仪对抽提物进行蒸发浓缩,之后使用硅胶和氧化铝色谱柱将提取物分离成脂肪族、芳香族和极性组分。将脂肪族组分自然晾干并使用CHCl3稀释,使用气相色谱质谱法(GCMS)分析正构烷烃。测试过程中使用相同的程序检查空白样品以监测污染。
测试仪器条件:气相色谱— 质谱仪型号为HP6890GC/5973MS;毛细管柱为HP-5MS石英毛细管柱(30 mm×0.25 mm×0.25 μm),载气为高纯氦气,载气流速为1.2 mL/min,载气线速度为40 cm/s。柱子初温80 ℃,每分钟升温3 ℃,终温300 ℃,终温恒温20 min。离子源为EI,电离能为70 eV,离子源温度为280 ℃,质谱与色谱接口为280 ℃。正构烷烃分析测试实验在中国科学院西北生态环境资源研究院甘肃省油气资源勘探与评价重点实验室完成。
3 实验结果
囊谦剖面67个样品中代表性样品正构烷烃分布特征如图3所示,正构烷烃碳数分布在nC15~nC33,其中NQ2段共28个样品,其峰型大致可以分为两种类型,其中NQ2-3~NQ2-360共21个样品,呈双峰型分布模式,大多以nC22和nC23为主峰碳;NQ2-370~NQ2-483共7个样品则以单峰型分布,主峰碳以nC25为主。NQ 段共13 个样品,以单峰型分布,主峰碳为nC25,nC26,和nC27;NQ1 段共26 个样品,主要以双峰型分布,其中前峰部分主要以nC23为主峰碳,后峰部分主要以nC31为主峰碳,其中高碳数部分具有明显的奇碳优势。
本研究所选用的正构烷烃代用指标为nC27/nC31、正构烷烃(碳数>nC25)平均碳链长度(ACL)、正构烷烃(碳数>nC23)碳优势指数(CPI)以及水生植物正构烷烃相对输入量指标Paq,以及Pr/Ph,G(伽马蜡烷)/C30H(C30 αβ?藿烷),ΣnC22-/ΣnC22+ 等,相应计算公式如下[24?26]:
ACL27-31=(27×nC27 + 29×nC29 + 31×nC31 + 33×nC33)/(nC27 + nC29 + nC31 + nC33) (1)
CPI=0.5×([ nC23 + nC25 + nC27 + nC29 + nC31)(/ nC22 +nC24 + nC26 + nC28 + nC30)+(nC23 + nC25 + nC27 + nC29 +nC31)(/ nC24 + nC26 + nC28 + nC30 + nC32)] (2)
Paq=(nC23+nC25)(/ nC23+nC25+nC29+nC31) (3)
如图4和表1所示,囊谦剖面样品CPI值为1.02~3.54,平均值为1.65;ΣnC22-/ΣnC22+ 值为0.06~0.73,平均值为0.27;Paq为0.26~0.93,平均值为0.61;ACL值为26.46~29.66,平均值为28.27;nC27/nC31 为0.33~6.35,平均值为1.55;nC17/nC31值为0.01~4.57,平均值为0.59,TOC值为0.03%~0.20%,平均值为0.08%。
4 有机质来源
湖泊沉积物的有机质一般可分为两种来源:一是来自外源输入陆生高等植物来源;二是来自水体内部内源的水生生物来源,其主要由低等菌藻类生物和水生植物(挺水、沉水和漂浮植物)组成[26]。陆生高等植物正构烷烃碳数分布范围一般为nC15~nC33,通常以nC27、nC29 或nC33 为主峰,具有明显的奇碳优势;低等菌藻类生物正构烷烃碳数分布范围一般为nC15~nC17,多以nC17为主峰呈单峰型分布,无明显奇偶优势[25]。沉水/漂浮植物碳数分布一般为nC21~nC25,而挺水植物与高等植物的正构烷烃分布类似,双峰型分布则被认为是混合来源[26]。
前人提出沉积物Paq值可以指示沉水/漂浮植物输入的正构烷烃在高碳数正构烷烃中的比例,一般认为Paq值小于0.1时,生物源以陆源高等植物为主,Paq值介于0.1~0.4,生物源以挺水植物为主,Paq值介于0.4~1.0,生物源主要为沉水/漂浮水生大型植物。而囊谦剖面样品的Paq值为0.26~0.93,平均值为0.61,指示沉水/漂浮植物等水生植物的贡献较大。
此外,对于ΣnC21-/ΣnC22+ 和nC17/nC31这两个指标,前人认为也可指示水生低等菌藻类植物和高等植物的比例,其中nC17/nC31<0.5指示高等植物输入为主,nC17/nC31>2指示菌藻类输入为主,囊谦剖面样品的ΣnC21-/ΣnC22+ 值为0.06~0.73,平均值为0.27,nC17/nC31值为0.01~4.57,平均值为0.59[17,24]。
结合正构烷烃分布特征、主峰碳碳数变化、Paq等指标讨论囊谦盆地有机质来源,大致可以分为三个时期。
阶段Ⅰ(51.8~46.4 Ma):Paq整体偏高,平均值为0.80,nC17/nC31 平均值为0.97,指示生物源主要为沉水/漂浮水生大型植物;ΣnC21-/ΣnC22+ 平均值为0.32,指示水生菌藻类低等生物输入较少;主峰碳碳数多集中于nC25之前,多数以nC22和nC23为主峰碳;正构烷烃的分布谱图在该阶段也显示为明显的前峰优势,在该阶段的晚期约48.1~46.4 Ma有含量极少的高碳数正构烷烃后峰出现,这可能是水动力条件较强,带入了少量陆源有机质混入所致。
阶段Ⅱ(45~42.7 Ma):Paq明显减小,平均值为0.50,nC17/nC31 平均值为0.34,指示生物源主要由沉水/漂浮水生大型植物向陆生高等植物转变,指示陆源物质输入的增多;ΣnC21-/ΣnC22+ 平均值为0.18依旧指示水生菌藻类低等生物输入较少;在该阶段早期,主峰碳碳数多集中于nC25左右,在该阶段晚期逐渐向nC27过渡;正构烷烃的分布谱图在该阶段也显示为明显的单峰型。
阶段Ⅲ(42.7~37.5 Ma):Paq整体偏低,平均值为0.44,nC17/nC31 平均值为0.38,指示生物源以沉水/漂浮水生大型植物和陆生高等植物混合输入为主;ΣnC21-/ΣnC22+ 平均值为0.26,指示水生菌藻类低等生物输入较少;正构烷烃的分布谱图在该阶段显示为明显的双峰型,也指示了有机质来源为水生陆生混合来源。
总体而言,囊谦剖面沉积物有机质来源中低等水生菌藻类输入比较少,早中期有机质来源主要为沉水/漂浮植物等水生植物,中晚期逐渐混入部分陆地高等植物来源。
5 古植被与古气候演化
前人研究表明,正构烷烃以nC27或nC29为主峰碳时,代表木本植物占主导地位,主峰碳以nC31为主时,草本植物占主导地位。因此,nC27/nC31比值的变化一般用来反映木本与草本植物相对含量的变化,其值增大指示草本植物向木本植物演化,其值减小则指示木本植物向草本植物的演化[27]。不同链长的正构烷烃对应不同的植物来源,因此,湖泊沉积物中长链正构烷烃(碳数>nC26)的平均碳链长度(ACL)也可以用来指示不同的植被类型[27],草本植物的平均碳链长度大于木本植物,ACL值的变化可以反映木本和草本植物相对丰度的变化。
囊谦剖面沉积物的nC27/nC31 值和ACL 值(碳数nC25~nC33)协同变化,呈一定程度的负相关关系(n=67,R2=0.47),nC27/nC31值平均值为0.33~6.35,平均值为1.55;ACL 值介于27.11~30.25,平均值为29.05;CPI值介于1.02~3.54,平均值为1.64。
前人研究显示,水生植物正构烷烃相对输入量指标Paq值可以反映湿地环境地质历史中降水量的变化,Paq值较高表明来源于沉水/浮水植物的中链正构烷烃含量较高,指示湖泊扩张,湿度较高;反之则认为陆源高等植物和挺水植物的贡献量增大,指示低的湖水面,表明气候条件较为干旱。相关研究结论已经在青藏高原被证实并广泛应用[28?33]。此外,前人认为温度与正构烷烃链长(ACL)具有一定的正相关性;当温度升高时,植物趋向于合成更长链的正构烷烃[33];同时ACL值的变化可以反映海洋沉积物古温度的相对变化,并认为ACL值的变化可以反映陆地沉积物源区古温度的相对变化,其结果在现代植物叶片正构烷烃与温度变化的研究中也得到了证实[34?35]。
本研究结果显示,在51.8~37.5 Ma期间,囊谦剖面正构烷烃指标总体变化趋势相似(图4),指示囊谦盆地的植被对于气候变化响应较为敏感,尤其是在温度和湿度方面。根据正构烷烃指标及TOC变化趋势,囊谦剖面在45 Ma和42.7 Ma出现了明显的气候转变,囊谦盆地自始新世至渐新世的古植被和古气候演化可以划分为以下三个阶段。
阶段Ⅰ(51.8~46.4 Ma):该时期Paq值较高,CPI值较低,主峰碳碳数以nC23为主,nC27/nC31值在该阶段早期Ⅰ-1时期偏高,这也印证了该时期植物类型以中链木本水生植物为主;在该段时期,沉积相为辫状河以及短期湖泊,河流相沉积相属于水动力条件较强的开放体系,而在这样的体系下,地表径流所携带的陆生植物可能是影响陆生植物输入的重要因素,所以关于ACL和nC27/nC31这两个指标在该阶段晚期Ⅰ-2时期所显示的总体链长偏高的现象,可能是降雨以及地表径流所带来的外源陆地植被输入所致[34]。
前人研究结果显示,ACL在一定程度上可以反映气候的温暖程度,更长链的正构烷烃,往往对应更温暖的气候特征[34?35],然而这样的结论也需要稳定的沉积环境和植被类型作为基础支撑。在阶段Ⅰ的正构烷烃分布模式和沉积环境方面均不够稳定,沉积相为开放体系的河流相,所以不能直接认为其处于一个较低温度的环境。在这一阶段,TOC(0.03%~0.11%,平均值为0.60%)也有相对较低的值,而总有机碳含量也是对于湖泊沉积物有机质含量的一种反映,较低的值可能是由沉积环境不稳定所致,故在阶段Ⅰ时期,囊谦盆地的气候条件可能相对湿润,温度方面则需要更多其他指标佐证。
阶段Ⅱ(45~42.7 Ma):该阶段初期与阶段Ⅰ-2相比,ACL值显著减小,nC27/nC31值显著增大,这样的现象可能是由于在植被类型没有发生改变,依旧以水生木本植物为主的条件下,沉积环境发生了快速改变,由上一阶段的不稳定河流相转变成了较为稳定的半咸水湖相,水动力大幅减弱,河流和降水所携带的陆源有机质输入快速减少,致使ACL和nC27/nC31随之发生相应的变化。
该段时期沉积相逐渐趋于稳定,ACL值总体逐渐升高,nC27/nC31逐渐减小,Paq值明显减小,主峰碳碳数逐渐向中高碳数转变,大多以nC25为主峰碳,共同表明该时期整体植被类型由木本植物为主逐渐转变为以草本植物为主,且TOC含量相较于上一阶段也有了一定的增加,表明随沉积环境稳定植物生产力出现了提升。由于植物叶蜡烷烃的ACL反映了叶片上表皮蜡质对叶片水平衡的调节程度,烷烃的碳链越长,锁水能力越强,叶蜡烷烃ACL与温度之间存在相关性正是由于叶片对植物体内水分的调节,随着温度升高,叶片水的蒸腾作用增强,为保持体内的水分平衡,植物叶片上表皮需要更强的锁水能力,于是植物合成的叶蜡烷烃的碳链就越长[36]。所以在相对逐渐稳定的沉积环境下,ACL值的升高可能意味着温度在一定程度上的升高。同时Paq值的逐渐减小也指示气候出现长期逐渐干旱化的趋势,并且与岩性变化有所对应,地层中开始出现了石膏夹层,响应了变干的气候特征。
阶段Ⅲ(42.7~37.5 Ma):该段时期沉积相以泥滩盐湖为主,在正构烷烃指标上,ACL值整体保持较高的趋势,CPI 值明显增大,而Paq 值和nC27/nC31的值同样保持整体较低的趋势,主峰碳高碳数比例明显增多,均指示了陆生高等植物比例的迅速上升,这反映在正构烷烃的分布上,可能导致更高比例的奇数碳正构烷烃,呈现更为明显的奇偶优势[25]。这一趋势可以从正构烷烃分布图上看出(图3),峰型为双峰型且奇偶优势明显。综上所述,该时期以草本植物为主要植被类型。
该段时期,ACL、Paq、nC27/nC31 和CPI 显示了较为一致的变化趋势(图4)。同时,我们对于囊谦样品的总有机碳含量(TOC)进行了测定,结果表明相较于阶段Ⅱ ,阶段Ⅲ 具有更高的TOC(0.04%~0.20%,平均值为0.10%)值,这在一定程度上佐证了植物生产力的提高,与奇碳优势更明显的阶段Ⅲ的正构烷烃分布也有所对应,反映这一时期的气候条件更适宜草本植物的生长,ACL值也在较为稳定的沉积环境下保持高值,可能是对于温度变暖的一些响应,并且与同时期40 Ma左右的中始新世大暖期(MECO)事件对应良好(图4),也可能是受到该变暖事件的影响。且在该时期Paq值保持较低的值,同时期地层中发育大量的石膏层,均指示气候进一步干旱化,所以我们认为在该段时期气候条件总体相对温暖且持续干旱化。
对比本研究有机地化指标与前人在囊谦盆地YAL 剖面[37](图5b)以及RZ 剖面[38](图5b)年代约41.2~37.8 Ma(巴尔通期)的孢粉学结果以及碎屑样品粒度分析结果,显示在晚始新世时期气候特征具有明显的波动与周期性。据此我们认为,即使气候整体处于温暖条件下,该阶段气候仍具有短期的干湿交替变化。对比本研究结果与同年代尺度始新世西宁盆地气候记录,显示气候变化趋势基本一致(图5a,c),柴达木盆地和可可西里盆地等研究结果均较为一致[37?42]。据此认为,即使气候整体处于变暖且持续干旱的条件,该阶段仍具有短期的干湿交替。
前人认为,较低的姥植比(Pr/Ph<0.6)通常代表缺氧的超盐度环境,而较高的伽马蜡烷值也反映环境盐度较高[43]。本次囊谦样品Pr/Ph最大值为0.74,最小值为0.10,平均值为0.32,根据其变化特征可以分为三个阶段,在阶段Ⅰ,Pr/Ph平均值值为0.30,阶段Ⅱ为0.38,阶段Ⅲ为0.31。同样,伽马蜡烷/C30 αβ-藿烷(G/C30H)最大值为0.71,最小值为0.04,平均值为0.14,其在阶段Ⅰ平均值为0.13,阶段Ⅱ平均值为0.18,阶段Ⅲ平均值为0.13。根据伽马蜡烷比值的阶段性变化特征可知,在整个漫长的52~37.5 Ma时期,囊谦盆地总体含盐度也具有逐步升高的趋势,尤其在阶段Ⅱ出现了相对更为明显的盐度增加,这也与岩性变化对应良好。所以整体来看,从51.8~37.5 Ma期间,囊谦盆地气候主要演化特征显示为逐渐变干且在中晚期明显升温的趋势。
6 驱动机制
青藏高原隆起是新生代以来最重要的地质造山活动,在全球和区域气候变化中发挥着重要作用。许多先前使用敏感实验的模拟,无论有没有青藏高原作为主体,都发现隆升过程对亚洲季风的形成和演化、亚洲内陆的干旱化,以及区域和全球气候变化有着显著影响[44?45]。
前人大量研究表明,影响亚洲内陆干旱化的主要原因之一是全球气候变冷。例如,Long et al.[39]通过结合正构烷烃生物标志化合物和孢粉学记录对西宁盆地沉积物展开研究,认为在始新世末到渐新世初期间的气候变冷变干是源于全球气温在此期间的下降,这与Dupont-Nivet et al.[40]所得结论基本一致。
此外,大洋环流会带来大量的水汽,海陆分布发生改变会导致洋盆形状发生改变,从而进一步改变大洋环流的模式。太平洋—特提斯海—大西洋之间的环球热带洋流完全中断可能是晚白垩纪—晚中新世特提斯海的消亡所致[46]。
始新世期间,青藏高原内部的重要水汽来源之一就是特提斯海,特提斯海的变化能够引发海陆间热力性质的改变,所以特提斯海退缩意味着通往青藏高原内部的水汽减少,其对于干旱化进程的影响不言而喻。晚始新世—早渐新世,印度板块和亚洲板块持续碰撞,同期海平面也有所降低,指示副特提斯海的进一步消亡。而青藏高原内陆地区的水汽来源主要受西风环流的控制,因此副特提斯海的退缩对青藏高原内陆地区的干旱化进程必然有着重要的影响[47]。
通过对比囊谦盆地正构烷烃相关指标及TOC记录的气候演化特征与西宁盆地谢家剖面气候演化记录[38](图5a,c)可以发现,在50.5~37.8 Ma时期,西宁盆地植被类型由木本植物为主逐渐演化为草本植物为主,气候整体干旱并较为温暖,这与囊谦盆地具有相似的演化特征;前人认为该段时期西宁盆地的水汽都是西风带来的。因此,推测囊谦盆地始新世气候变化驱动机制与西宁盆地相似,水汽来源也较为一致,主要受西风控制。
前人通过囊谦盆地碳酸盐氧同位素[48]和对于青藏高原中部的伦波拉盆地古高度[49]相关研究表明,晚始新世青藏高原海拔高度有所提升,结合帕米尔造山带的隆升挤压,这可能进一步导致了特提斯海在47~40 Ma产生穿时性退缩[50],与此同时,囊谦盆地气候也持续干旱化(图5d);青藏高原的隆升可能进一步阻挡了西风携带的以特提斯海为主要来源的水汽,并且全球深海氧同位素[51]在同一时期所反映的全球气候变冷也可能让内陆地区的水汽输送更加困难(图5e),这些原因可能共同导致囊谦盆地的干旱化。
囊谦盆地始新世的沉积速率显示,始新世早期和中期的沉积速率明显大于中晚期,这可能意味着囊谦盆地在始新世早期和中期的隆升程度大于始新世晚期,所以晚始新世可能没有剧烈的构造隆升。
此外,青藏高原的隆升可能进一步阻隔了南亚季风对青藏高原中东部的影响,从而季风所携带的水汽无法到达青藏高原内陆地区。相比之下,处于青藏高原东南部[50?51](剑川盆地,马尔康盆地)和西南部[49](伦波拉盆地)的一些盆地,在始新世中晚期沉积相与囊谦盆地的沉积相大不相同,主要代表河流、沼泽、三角洲和淡水湖的相环境,而囊谦盆地则主要为盐湖相。在这些盆地中,植物化石等类似的有机质大量存在,尤其剑川盆地地层中发现了明显的煤层,表明西藏南部的气候条件更为湿润,可能为热带/亚热带气候,受来自南方的I~AM 型季风驱动[52](印度尼西亚—澳大利亚季风)。这与藏中北部和东北部地区(囊谦盆地,西宁盆地,柴达木盆地等)的半干旱/干旱气候形成鲜明对比。由此可见,囊谦盆地始新世期间可能受到南部季风的影响相对较小。
7 结论
通过对囊谦剖面沉积物的正构烷烃相关指标和总有机碳含量对比研究,重建了青藏高原中东部51.8~37.5 Ma的古气候和古植被演化历史,得出以下初步结论。
(1) 囊谦剖面沉积物有机质来源中低等水生菌藻类输入比较少,早中期有机质来源主要为沉水/漂浮植物等水生植物,中晚期逐渐混入部分陆地高等植物来源。
(2) 结合各项有机地球化学指标,囊谦盆地51.8~37.5 Ma以来的古气候与古植被演化可以分为三个阶段:阶段Ⅰ(51.8~46.4 Ma),气候条件整体湿润,植被类型以水生草本植物为主;阶段Ⅱ(45~42.7 Ma),气候条件逐渐转干,温度有所上升,伴随周期性干湿变化,植被类型由木本植物为主转变为草本植物为主;阶段Ⅲ(42.7~37.2 Ma),气候条件持续干旱,可能受到MECO事件影响,有机质含量明显增大,植被类型以草本植物为主。
(3) 通过多指标体系重建的囊谦盆地始新世的气候演化历史与邻区气候变化、特提斯海退缩进程,全球深海氧同位素对比研究,认为囊谦盆地始新世气候变化主要受全球性气候变化和特提斯海退缩的影响,青藏高原的隆升,海拔的增加对于囊谦盆地水汽影响较大,季风对于水汽影响较小。
参考文献(References)
[1] 张海霞. 青藏高原东北部黄土记录的释光测年及末次冰消期
以来气候变化研究[D]. 兰州:兰州大学,2020.[Zhang Haixia.
Paleoclimatic changes revealed by luminescence chronology and
proxy indexes of loess records in the northeastern Tibetan Plateau
since the last deglaciation[D]. Lanzhou: Lanzhou University,
2020.]
[2] Liu X D, Cheng Z G, Yan L B, et al. Elevation dependency of recent
and future minimum surface air temperature trends in the Tibetan
Plateau and its surroundings[J]. Global and Planetary
Change, 2009, 68(3): 164-174.
[3] 徐祥德,董李丽,赵阳,等. 青藏高原“亚洲水塔”效应和大气水
分循环特征[J]. 科学通报,2019,64(27):2830-2841.[Xu
Xiangde, Dong Lili, Zhao Yang, et al. Effect of the Asian Water
Tower over the Qinghai-Tibet Plateau and the characteristics of atmospheric
water circulation[J]. Science Bulletin, 2019, 62(27):
2830-2841.]
[4] Ruddiman W F, Kutzbach J E. Plateau uplift and climate change
[J]. Sci Am, 1991, 264(3): 66-75.
[5] Edmond J M. Himalayan tectonics, weathering processes, and the
strontium isotope record in marine limestones[J]. Science, 1992,
258(5088): 1594-1597.
[6] Raymo M E, Ruddiman W F. Tectonic forcing of Late Cenozoic
climate[J]. Nature, 1992, 359(6391): 117-122.
[7] Molnar P, England P, Martinod J. Mantle dynamics, uplift of
the Tibetan Plateau, and the Indian monsoon[J]. Reviews of
Geophysics, 1993, 31(4): 357-396.
[8] Molnar P. Mio-Pliocene growth of the Tibetan Plateau and evolution
of East Asian climate[J]. Palaeontologia Electronica, 2005, 8
(1): 1-23.
[9] An Z S, Kutzbach J E, Prell W L, et al. Evolution of Asian monsoons
and phased uplift of the Himalaya-Tibetan Plateau since
Late Miocene times[J]. Nature, 2001, 411(6833): 62-66.
[10] Harris N. The elevation history of the Tibetan Plateau and its implications
for the Asian monsoon[J]. Palaeogeography, Palaeoclimatology,
Palaeoecology, 2006, 241(1): 4-15.
[11] Walker J C G, Hays P B, Kasting J F. A negative feedback
mechanism for the long-term stabilization of earths surface
temperature[J]. Journal of Geophysical Research, 1981, 86
(C10): 9776-9782.
[12] Berner R A, Lasaga A C, Garrels R M. The carbonate-silicate
geochemical cycle and its effect on atmospheric carbon dioxide
over the past 100 million years[J]. American Journal of Science,
1983, 283(7): 641-683.
[13] Raymo M E, Ruddiman W F, Froelich P N. Influence of Late
Cenozoic mountain building on ocean geochemical cycles[J].
Geology, 1988, 16(7): 649-653.
[14] Zachos J C, Kump L R. Carbon cycle feedbacks and the initiation
of Antarctic glaciation in the earliest Oligocene[J]. Global
and Planetary Change, 2005, 47(1): 51-66.
[15] Hren M T, Bookhagen B, Blisniuk P M, et al. δ18 O and δD of
streamwaters across the Himalaya and Tibetan Plateau: Implications
for moisture sources and paleoelevation reconstructions[J].
Earth and Planetary Science Letters, 2009, 288(1/2): 20-32.
[16] Zhang W L, Fang X M, Zhang T, et al. Eocene rotation of the
northeastern central Tibetan Plateau indicating stepwise compressions
and eastward extrusions[J]. Geophysical Research Letters,
2020, 47(17): e2020GL088989.
[17] 谢树成,梁斌,郭建秋,等. 生物标志化合物与相关的全球变
化[J]. 第四纪研究,2003,23(5):521-528.[Xie Shucheng, Liang
Bin, Guo Jianqiu, et al. Biomarkers and the related global
change[J]. Quaternary Sciences, 2003, 23(5): 521-528.]
[18] Zhang Z H, Zhao M X, Eglinton G, et al. Leaf wax lipids as
paleovegetational and paleoenvironmental proxies for the
Chinese Loess Plateau over the last 170 kyr[J]. Quaternary
Science Reviews, 2006, 25(5/6): 575-594.
[19] Cranwell P A, Eglinton G, Robinson N. Lipids of aquatic
organisms as potential contributors to lacustrine sediments—II
[J]. Organic Geochemistry, 1987, 11(6): 513-527.
[20] Xie S C, Chen F H, Wang Z Y, et al. Lipid distributions in loesspaleosol
sequences from Northwest China[J]. Organic Geochemistry,
2003, 34(8): 1071-1079.
[21] Horton B K, Yin A, Spurlin M S, et al. Paleocene-Eocene
syncontractional sedimentation in narrow, lacustrine-dominated
basins of east-central Tibet[J]. GSA Bulletin, 2002, 114(7):
771-786.
[22] Su T, Spicer R A, Li S H, et al. Uplift, climate and biotic changes
at the Eocene-Oligocene transition in south-eastern Tibet[J].
National Science Review, 2019, 6(3): 495-504.
[23] Fang X M, Dupont-Nivet G, Wang C S, et al. Revised chronology
of central Tibet uplift (Lunpola Basin)[J]. Science Advances,
2020, 6(50): eaba7298.
[24] Ficken K J, Li B, Swain D L, et al. An n-alkane proxy for the
sedimentary input of submerged/floating freshwater aquatic macrophytes[
J]. Organic Geochemistry. 2000, 31(7/8): 745-749.
[25] Eglinton G, Hamilton R J. Leaf Epicuticular Waxes: The waxy
outer surfaces of most plants display a wide diversity of fine
structure and chemical constituents[J]. Science, 1967, 156
(3780): 1322-1335.
[26] Dodd R S, Afzal-Rafii Z. Habitat-related adaptive properties of
plant cuticular lipids[J]. Evolution, 2000, 54(4): 1438-1444.
[27] 王永莉. 东亚南北气候区现代土壤及湖相沉积中生物标志物
特征与气候意义[D]. 兰州:兰州大学,2006.[Wang Yongli.
Characteristics and climatic implications of biomarkers in modern
soils along north-south transection of East Asia and lacustrine
sediments[D]. Lanzhou: Lanzhou University, 2006.]
[28] Cranwell P A. Chain-length distribution of n-alkanes from lake
sediments in relation to post-glacial environmental change[J].
Freshwater Biology, 1973, 3(3): 259-265.
[29] 蒲阳,张虎才,王永莉,等. 青藏高原冰蚀湖沉积物正构烷烃
记录的气候和环境变化信息:以希门错为例[J]. 科学通报,
2011,56(14):1132-1139.[Pu Yang, Zhang Hucai, Wang Yongli,
et al. Climatic and environmental implications from n-alkanes
in glacially eroded lake sediments in Tibetan Plateau: An example
from Ximen Co[J]. Chinese Science Bulletin, 2011, 56(14):
1132-1139.]
[30] Duan Y, Xu L. Distributions of n-alkanes and their hydrogen isotopic
composition in plants from Lake Qinghai (China) and the
surrounding area[J]. Applied Geochemistry, 2012, 27(3):
806-814.
[31] Hou J Z, D'Andrea W J, Wang M D, et al. Influence of the Indi‐
an monsoon and the subtropical jet on climate change on the Tibetan
Plateau since the Late Pleistocene[J]. Quaternary Science
Reviews, 2017, 163: 84-94.
[32] Zheng Y H, Zhou W J, Meyers P A, et al. Lipid biomarkers in
the Zoigê -Hongyuan peat deposit: Indicators of Holocene climate
changes in west China[J]. Organic Geochemistry, 2007, 38
(11): 1927-1940.
[33] 崔景伟,黄俊华,谢树成. 湖北清江现代植物叶片正构烷烃和
烯烃的季节性变化[J]. 科学通报,2008,53(11):1318-1323.
[Cui Jingwei, Huang Junhua, Xie Shucheng. Characterstics of
seasonal variations of leaf n-alkanes and n-alkenes in modern
higher plants in Qingjiang, Hubei province, China[J]. Chinese
Science Bulletin, 2008, 53(11): 1318-1323.]
[34] 何薇,汪亘,王永莉,等. 四川邛海湖泊沉积物记录的过去
30 cal. ka B. P. 以来的古气候环境特征[J]. 第四纪研究,
2018,38(5):1179-1192.[He Wei, Wang Gen, Wang Yongli, et
al. Characteristics of climate and environment over the past
30 cal. ka B. P. recorded in lacustrine deposits of the Qionghai
Lake, Sichuan province[J]. Quaternary Sciences, 2018, 38(5):
1179-1192.]
[35] Sorrel P, Eymard I, Leloup P H, et al. Wet tropical climate in SE
Tibet during the Late Eocene[J]. Scientific Reports, 2017, 7(1):
7809.
[36] Wang J, Axia E, Xu Y P, et al. Temperature effect on abundance
and distribution of leaf wax n-alkanes across a temperature
gradient along the 400 mm isohyet in China[J]. Organic
Geochemistry, 2018, 120: 31-41.
[37] Yuan Q, Vajda V, Li Q K, et al. A Late Eocene palynological record
from the Nangqian Basin, Tibetan Plateau: Implications for
stratigraphy and paleoclimate[J]. Palaeoworld, 2017, 26(2):
369-379.
[38] Yuan Q, Barbolini N, Rydin C, et al. Aridification signatures
from fossil pollen indicate a drying climate in east-central Tibet
during the Late Eocene[J]. Climate of the Past, 2020, 16(6):
2255-2273.
[39] Long L Q, Fang X M, Miao Y F, et al. Northern Tibetan Plateau
cooling and aridification linked to Cenozoic global cooling: Evidence
from n-alkane distributions of Paleogene sedimentary sequences
in the Xining Basin[J]. Chinese Science Bulletin, 2011,
56(15): 1569-1578.
[40] Dupont-Nivet G, Krijgsman W, Langereis C G, et al. Tibetan
Plateau aridification linked to global cooling at the Eocene-
Oligocene transition[J]. Nature, 2007, 445(7128): 635-638.
[41] Miao Y F, Wu F L, Chang H, et al. A Late-Eocene palynological
record from the Hoh Xil Basin, northern Tibetan Plateau, and its
implications for stratigraphic age, paleoclimate and paleoelevation[
J]. Gondwana Research, 2016, 31: 241-252.
[42] Ye C C, Yang Y B, Fang X M, et al. Paleolake salinity evolution
in the Qaidam Basin (NE Tibetan Plateau) between ~42 and
29 Ma: Links to global cooling and Paratethys Sea incursions[J].
Sedimentary Geology, 2020, 409: 105778.
[43] 张一伟. 油气藏形成与勘探[M]. 北京:石油工业出版社,
2003.[Zhang Yiwei. Formation and exploration of oil and gas
reservoirs[M]. Beijing: Petroleum Industry Press, 2003.]
[44] Kutzbach J E, Guetter P J, Ruddiman W F, et al. Sensitivity of
climate to Late Cenozoic uplift in southern Asia and the American
west: Numerical experiments[J]. Journal of Geophysical Research,
1989, 94(D15): 18393-18407.
[45] Ruddiman W F, Kutzbach J E. Forcing of Late Cenozoic northern
Hemisphere climate by plateau uplift in southern Asia and
the American west[J]. Journal of Geophysical Research, 1989,
94(D15): 18409-18427.
[46] Popov S V, R?gl F, Rozanov A Y, et al. Lithologicalpaleogeographic
maps of paratethys: 10 maps Late Eocene to
Pliocene[J]. Courier Forschungsinstitut Senckenberg, 2004, 250:
1-46.
[47] Hasty S. New biomedical engineering study findings have been
reported by researchers at university of Miami, department of
biomedical engineering[J]. Energy Business Journal, 2011, jan. 3
(oct. 31): 11-12.
[48] Li L, Fan M, Davila N, et al. Carbonate stable and clumped isotopic
evidence for Late Eocene moderate to high elevation of the
east-central Tibetan Plateau and its geodynamic implications[J].
Base of the Kiaman Its Definition & Global Stratigraphic Significance,
2019, 131(5/6):831-844. .
[49] Wei W, Lu Y C, Xing F C, et al. Sedimentary facies associations
and sequence stratigraphy of source and reservoir rocks of the lacustrine
Eocene Niubao Formation (Lunpola Basin, central Tibet)
[J]. Marine and Petroleum Geology, 2017, 86: 1273-1290.
[50] Sun J M, Windley B F, Zhang Z L, et al. Diachronous seawater
retreat from the southwestern margin of the Tarim Basin in the
Late Eocene[J]. Journal of Asian Earth Sciences, 2016, 116:
222-231.
[51] Zachos J, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations
in global climate 65 Ma to present[J]. Science, 2001, 292
(5517): 686-693.
[52] Spicer R A. Tibet, the Himalaya, Asian monsoons and biodiversity:
in what ways are they related?[J]. Plant Diversity, 2017, 39(5):
233-244.