时蕴琳 谢远云 康春国 迟云平 魏振宇 吴鹏 孙磊 汪烨辉
摘 要 【目的】砂砾石沉积物的沉积学、地球化学、锆石U-Pb年代研究对于地层划分、水系演化以及揭示山体的构造隆升历史和区域构造岩浆事件等具有重要意义。然而,呼伦贝尔巴彦塔拉砂砾石剖面薄弱的认知限制了其地层划分以及区域地表过程的深入理解。【方法】为此,对该剖面进行了沉积学、重矿物、地球化学和锆石U-Pb年代学分析。【结果】(1)沉积学、重矿物、地球化学特征和地貌证据以及锆石U-Pb年龄综合分析显示,巴彦塔拉砂砾石剖面沉积物主要是来自大兴安岭北段的中—酸性岩浆母岩,是初次循环的结果,沉积物堆积后经历了中等程度的化学风化;(2)结合宏观和微观角度(重矿物和地球化学指标等),并与大兴安岭东麓白土山组标准剖面对比,认为巴彦塔拉砂砾石剖面沉积物是在温暖偏干的氧化环境下形成的冲—洪积物堆积,其地层单位可以划分为白土山组;(3)构造背景判别图解表明构造背景为被动大陆边缘,碎屑锆石U-Pb年龄在100~200 Ma和250~350 Ma的年龄峰值记录了大兴安岭北段在古亚洲洋的闭合和古太平洋的俯冲、回退的区域构造背景下触发的多期岩浆构造事件。【结论】该研究为大兴安岭地区第四纪地层的划分和早更新世区域地表过程的重建提供了新的证据。
关键词 锆石U-Pb测年;地球化学;地层划分;沉积环境;白土山组;大兴安岭
第一作者简介 时蕴琳,女,1999年出生,硕士,第四纪地质与环境变化,E-mail: 1720926526@qq.com
通信作者 谢远云,男,博士,教授,第四纪地质与环境变化,E-mail: xyy0451@hrbnu.edu.cn
中图分类号 P535 文献标志码 A
0 引言
沉积环境在沉积学研究中起着至关重要的作用,沉积学特征作为地层对比与划分的基础,在探究源岩性质、化学风化与分选循环等沉积环境信息时,对详细的沉积学特征分析有着深刻的科学意义[1?2]。近几年,地球化学、矿物学等一些新兴学科开始迅速发展,这导致在恢复和重建古沉积环境中,广泛应用了重矿物[3?5]、元素地球化学[6?7]、年代学[8]、古地磁、孢粉等手段,补充沉积学研究的不足。在这些方法中,由于沉积物中的一些地球化学元素对氧化还原敏感,且在特定条件下会进行迁移、富集并重新组合,因此地球化学元素能够判断物源,在恢复和重建气候环境研究中也发挥作用[9];在物源条件一致时,重矿物表现出相似的组合特征,在物源条件不同时,因经历搬运与风化作用,从而导致重矿物组合特征发生明显变化[10],因此重矿物可以表明物源、源岩属性和沉积环境等特征,进而分析构造—气候的耦合关系;碎屑锆石年龄记录了碎屑矿物的物源与地层的最大沉积年龄等信息,进而成为探究沉积构造环境的重要手段之一[11?13]。因此碎屑沉积物的元素地球化学、重矿物和锆石U-Pb测年研究,对于恢复沉积环境和探究构造背景至关重要[14]。
白土山地层作为大兴安岭地区的第四纪下限,对于第四纪地层的划分和重建早更新世区域环境等具有重要的意义。早期对其的研究仅限于岩性特征,缺乏对地层全面属性的认知,其沉积环境与构造事件也存在较大争议[15?22],并且对于呼伦贝尔砂砾石剖面,目前还没有确定其地层年代。因此,对呼伦贝尔砂砾石剖面的沉积学、矿物学、地球化学属性以及锆石U-Pb年龄进行分析,为区域地层划分和对比提供了新的依据,厘定沉积时代,探讨沉积环境特征,确定地层划分归属,对第四纪地层划分以及更好地认识呼伦贝尔砂砾石剖面及其周边地区的构造演化提供了新的指示。
1 研究区概况
大兴安岭地区位于古生代古亚洲洋构造东部与中生代环太平洋构造强烈叠加—转换区域,自古生代以来受到多次块体拼合与陆内演化的复合影响,对探究中亚造山带的构造演化历史具有重要的作用[23?25]。大兴安岭北段地区位于兴安地块和额尔古纳地块上(图1a),在构造上属于兴蒙造山带,存在古生代古亚洲洋与中生代蒙古—鄂霍茨克洋两大构造域之间的叠加转换和中—新生代环太平洋构造域的俯冲增生等复杂的构造演化历程[26]。中生代以来,随着蒙古—鄂霍次克洋的闭合与太平洋向西俯冲,大量中酸性岩浆喷发和侵蚀,伴随产生了中酸性火山岩,以及出现了一系列E—W和WS—EN走向的断裂构造活动带。
研究区位于内蒙古自治区呼伦贝尔海拉尔区(49°06′~49°28′ N,119°28′~120°34′ E),大兴安岭西麓的低山丘陵与呼伦贝尔高平原东部边缘的交界处(图1b)。呼伦贝尔地处中温带,大陆性气候显著,冬季寒冷漫长,夏季温凉短促,降水量变率大,分布不均,年际变化也大。根据野外岩层组合、原岩建造、化石特征和地质接触关系等,研究区共出露8个地层单元,分别为第四纪沉积物、白垩纪花岗岩、侏罗纪花岗岩、二叠纪花岗岩、石炭纪变质岩、泥盆纪粉砂岩、奥陶纪板岩和下元古界片岩[27](图1c)。
2 样品与方法
2.1 样品采集与处理
呼伦贝尔巴彦塔拉砂砾石剖面(49°1′56″ N,119°43′3″ E),呈“穹型”暴露于地表,最厚处约15 m(图1d)。本研究对沉积学特征进行观察和分析,包括砾石特征与基质性质以及透镜体和层理特点等;极细砂和细砂透镜体沉积物用于重矿物研究,共6件;基质和泥质—粉砂透镜体样品用于地球化学分析,共7件;具有代表性的透镜体样品用于U-Pb锆石年代学研究,共1件(表1)。此外,为了对大兴安岭两侧砂砾石沉积物进行对比,引用了大兴安岭东麓龙江县和平安镇白土山剖面的重矿物与地球化学数据。
2.2 实验方法
选用范围为1.5 m×1.5 m的网格法对呼伦贝尔砂砾石剖面砾石进行采样,并在区域内随机选取不少于100颗砾石,观测每个砾石产状、成分、砾径、磨圆度和风化程度并进行统计。砾石岩性特征均通过观察被敲开的砾石新鲜面进行判断并制成相应图表。
重矿物鉴定具体过程如下:首先使用分样筛获取样品63~250 μm的粒度组分并低温烘干(<60 ℃),根据矿物比重的差异进行淘洗,再通过三溴甲烷(重液)分离,然后酒精反复冲洗被分离的样品,恒温烘干后称重,使用电磁法对样品进行磁选[28?29],最后,以双目镜和偏光镜为工具,进行重矿物的鉴定与识别,并且每个重矿物的鉴定数目大于900颗[30]。
地球化学样品测试具体过程如下:样品室内烘干后研磨至粉末状,然后用分样筛获得小于63 μm的粒度组分用于地球化学分析,由于矿物类型与组合的不均匀可能造成X射线系数吸收差异,因此常量元素在样品制成熔片后通过XRF光谱仪完成,实验结果更加准确[31],实验误差小于3%。在测试微量和稀土元素时使用电感耦合等离子体质谱仪(ICPMS)完成,测量过程中加入国际样品、重复样以及空白样品来保证实验准确性[32],实验误差小于2%,具有很高的可靠性。
锆石U-Pb测年具体过程如下:使用准分子193 nm激光剥蚀106 系统(NewWave, NWR193)和AnalytikJena AG PQMS030 elite ICP-MS 仪器(德国)进行分析。激光条件为:激光束斑直径30 μm,激光能量密度10 J/cm2,剥蚀频率8 Hz;载气使用高纯度He气辅助气为Ar气。用于仪器校准的NIST SRM 610的浓度值参考Pearce et al.[33]和Yuan et al. [34]给出的详细校准过程;标准锆石Plesovice[35]和Qinghu[36]为监控盲样。使用Glitter软件进行同位素比值及元素含量的计算;谐和年龄及图像使用Isoplot 4.15[37]得出;分析数据及锆石U-Pb谐和图给出的误差为1 σ,表示95%的置信度。
3 结果
3.1 沉积学特征
剖面整体向两侧延伸约30 m,倾向为105°,沉积物岩性以灰白色砂砾石堆积为主,局部见铁染与铁盘,夹灰白色黏土透镜体(图2a),透镜体最大厚度达2~3 m。沉积物局部可见平行层理发育(图2b);多层铁板层—铁板层的球形弯曲发育,产状为10°∠4°(图2d);弱固结铁锈色砂砾层底部测量产状,为320°∠5°;在剖面顶部,发现大量钙质结核,砂砾石堆积上覆灰白色亚砂土。
砾石粒径以0~80 mm为主,最大可达160 mm(图3a);基质以砂—粉砂和泥质为主;磨圆以次棱角(71%)为主,次圆(19%)次之,圆和棱角占比不足1%(图3b);风化程度以无(95.5%)—弱风化(4.5%)为主(图3c);砾石主要为石英质(61.2%)和凝灰岩(34.9%),其次是陆源碎屑岩(2.6%)和流纹岩(1.3%)(图2c、图3d)。
3.2 重矿物
共鉴定出11种重矿物(表2),包括白钛石、绿帘石、角闪石、金红石、锆石、榍石、石榴子石、锐钛矿、钛铁矿、磁铁矿、赤/褐铁矿。呼伦贝尔砂砾石剖面重矿物以白钛石(32.54%)和钛铁矿(33.01%)占绝对优势,其次为磁铁矿(12.11%)、ZTR(6.53%)、赤褐铁矿(5.47%)和锐钛矿(1.34%)和绿帘石(0.52%)和石榴子石(0.11%)含量不足1%,其他矿物含量占8.38%,而榍石、金红石、角闪石仅在个别样品中出现且含量极低,为偶见矿物。
3.3 地球化学元素特征
3.3.1 常量元素
沉积物常量元素含量呈现出不同程度的变化,以SiO2(平均值为63.77%,下同)、Al2O3(16.65%)、Fe2O3 (12.32%)、FeO(11.08%)、K2O(2.52%)为主。与大陆上地壳(UCC)相比,Fe2O3、TiO2和FeO明显富集,而MgO、CaO、Na2O、K2O、MnO、P2O5明显亏损,SiO2和Al2O3与UCC含量则比较相近(图4a)。
3.3.2 微量元素
沉积物微量元素含量呈现复杂的变化(图4b),相较于UCC,在过渡元素(TTE)中,V、Zn、Ga、Ni明显富集,Cu、Cr、Co波动较大,而Sc与UCC含量比较接近;在大离子亲石元素(LILE)中,Rb、Ba总体亏损,Sr明显亏损,Cs明显富集,而Pb波动较大;在高场强元素(HFSE)中,Nb、Ta 明显亏损,Th、U、Zr、Hf 明显富集。
3.3.3 稀土元素
沉积物稀土总量(ΣREE)介于74.26~211.77,平均值为134.17,低于UCC(146.37)和后太古宙页岩标准值(PAAS,184.77),分配模式趋势的呈现与UCC呈现相似,即左陡右缓,Eu处呈现V字形,表明样品轻稀土富集、重稀土亏损和Eu负异常的分布特征(图4c)。
沉积物的轻稀土元素富集,总量(ΣLREE)介于66.67~190.61,平均值为117.48;而重稀土元素亏损,总量(ΣHREE)介于7.58~27.459;ΣLREE/ΣHREE介于4.54~9.01,平均值为7.45。δEu 介于0.65~0.95(平均值为0.74),δCe介于0.81~1.03(平均值为0.91),即样品存在Ce、Eu 负异常。(La/Sm)N 介于3.15~10.55,平均值为4.96,(Gd/Yb)N 比值介于0.68~1.32,平均值为1.01,表明轻重稀土分馏程度都比较明显。
3.4 锆石U?Pb 年龄
锆石是一种极稳定的重矿物,在沉积过程中,成分和年龄基本不受影响,因此被广泛用于判别物源特征[38?39]。选取呼伦贝尔砂砾石剖面1个透镜体样品开展锆石U-Pb测年分析,其中Th/U比值大部分大于0.3,表明锆石主要是岩浆成因。剔除谐和度小于90% 的锆石年龄数据,大于1 000 Ma 的锆石选择207Pb/206Pb年龄,小于1 000 Ma的年龄选择206Pb/238U年龄,最终绘制了碎屑锆石U-Pb年龄谱(图5)。
此次锆石年龄数据大部分位于谐和线上或附近,说明得到的年龄结果是可靠的。其碎屑锆石年龄谱具有两个年龄段组合,分别为100~200 Ma(中生代白垩纪—侏罗纪)和250~350 Ma(晚古生代二叠纪—石炭纪),其中中生代的年龄峰值为~126 Ma,晚古生代的年龄峰值为~302 Ma。
4 讨论
4.1 化学风化与沉积循环
4.1.1 化学风化特征
在沉积过程中,化学风化起着十分重要的作用,对沉积物地球化学组成产生了很大的影响[41?42],因此研究沉积物的化学风化特征,不仅可以确定物源,还可以作为恢复和重建古气候的重要手段[43?45]。风化作用会导致物质发生一定的改变,但元素是否存在仍由自身的性质决定,在化学风化过程中,Al3+等稳定的阳离子大部分可以在风化残留物中保存;而Na+、K+、Ca+等不稳定的阳离子则容易从母岩中流失并改变,进而在风化产物的碱金属中Al 的比例增加[46],以此为依据,提出了许多化学风化指数来衡量化学风化程度。Nesbitt et al.[47]提出化学蚀变指数CIA来判断源区风化程度,而为了排除成岩作用过程中钾交代作用增加的钾元素干扰,Harnois[48]又提出了化学风化指数(CIW)来评价沉积物的风化程度,CIA、CIW公式分别如下:
CIA = 100 × [Al2O3/(Al2O3 + CaO* + Na2O +K2O) ] (1)
CIW = [Al2O3/(Al2O3 + Na2O + CaO* ) ] (2)
式中:CaO*是硅酸盐中的CaO含量,常量元素含量用摩尔浓度表示。通常CIW、CIA的值和化学风化程度呈正比例关系[49?50]。(1)式中依据风化程度可以大致分为未风化、初级风化、中等风化、强烈风化四个等级;(2)式中,当CIW值为50~60时,即受到化学风化影响较微弱,当CIW大于70时,即受到化学风化影响较强烈。砂砾石剖面样品的CIA 值介于65.24~86.61,平均值为71.16,与上陆壳均值48相比较高;CIW值介于73.2~92.96,平均值为80.48,二者皆指示沉积物遭受了较高程度的化学风化。
除化学风化指数外,一些三元图解也可以用来化学风化及其趋势的预判。Nesbitt et al.[47]提出了A-CN-K三角模型图来判断化学风化程度与趋势,在图解中,沉积物落点都高于斜长石—钾长石连线,并且处于PAAS上方,说明了化学风化程度中等;沉积物的趋势线大致平行于A-CN连线且接近于A-K连线,指示斜长石基本被风化,并产生了风化产物伊利石,表明经历了中等的化学风化程度;样品点的分布也比较集中,这说明沉积物的化学风化过程稳定(图6a)。A-CNK-FM三元图解也常用于评估沉积物的化学风化程度,在图中样品点绝大部分处于斜长石—FM连线与绿泥石—伊利石连线之间,这同样说明样品沉积物的风化程度较高(图6b)。
在沉积环境中,Rb与Sr的地球化学行为存在差异,在风化过程中Rb不稳定且易淋湿,而Sr表现较稳定,因而判别风化强度时常用Rb/Sr比值[51],其比值越高说明化学风化作用越强。剖面沉积物的Rb/Sr值介于0.25~0.95,平均值为0.50,比UCC均值高,说明沉积物的风化程度中等。
沉积学也可以为砂砾石剖面沉积物的化学风化程度提供佐证。砾石的风化程度可以表明沉积物的风化程度[52],观察砾石的表面特征,可知砾石经历了无—弱风化作用,但其致密的结构导致不易被风化,所以指示样品遭受了较高程度的化学风化。在重矿物不断的剥离、搬运、沉积时,化学风化作用一直影响重矿物的含量与组合,样品沉积物的地球化学元素组成相似说明有稳定的物源;砾石以次棱角—次圆为主的磨圆度说明搬运距离较短,所以对砂砾石剖面沉积物而言,重矿物组合受物源和搬运距离因素的影响较小,主要受化学风化程度的控制。重矿物的稳定性与抗风化水平成正比,稳定重矿物在风化过程后仍然存在,不稳定重矿物在风化作用下则逐渐溶解消失。从样品的重矿物含量可以看出,白钛石、钛铁矿等稳定重矿物呈富集状态,角闪石和榍石等不稳定重矿物含量极低,结合Rb/Sr比值、化学风化指标与三角图解共同指示了砂砾石剖面沉积物的化学风化程度中等。
4.1.2 分选与沉积循环
识别沉积物的分选与沉积循环过程对恢复沉积物沉积过程具有重要意义。沉积物在搬运过程中受物理和化学作用的影响而出现分选现象,从而导致沉积物中非黏土矿物的增加和黏土矿物的减少,即不稳定元素含量会受到影响,进而地球化学特征也会发生变化,以此为依据,Cox et al.[53]提出了成分变异指数(ICV)用来反映沉积物成分成熟度以及判别沉积再循环过程。Parker[54]也根据元素(K、Ca、Na、Mg)与氧结合的键作为加权因子可以反映岩石的风化情况以及风化的敏感程度,提出使用风化指数(WIP)来估算沉积物的化学风化程度甚至区分初次沉积和再循环沉积[54?55]。ICV、WIP公式分别如下:
ICV = (CaO + K2O + Na2O + Fe2O3 + MgO +TiO2 + MnO)/Al2O3 (3)
WIP = 100 × (CaO*/0.7 + 2Na2O/0.35 +2K2O/0.25 + MgO/0.9) (4)
式中:常量元素含量用摩尔浓度表示,(3)式中,ICV越高与沉积物的成熟度成反比,ICV大于1表明沉积物成熟度低,说明沉积物可能是在构造活动背景下经历了首次循环沉积作用[56];ICV小于1表明沉积物成熟度高,为再循环沉积,也可能是在强烈化学风化条件下进行了初次循环[57]。(4)式中,化学风化和再循环程度越强,WIP越低。近年来,又提出利用CIA-WIP的二元图解来辨析沉积物是否经历再循环,经历初次循环时,CIA/WIP小于10,而经历再循环时,CIA/WIP大于10。砂砾石剖面样品ICV介于0.56~2.32,平均值为1.22;CIA/WIP值介于1.22~3.84,均未超过10;在CIA-WIP图解中(图7a),样品点显示出显著的线性关系,并处于UCC风化趋势线周围,这些均表明砂砾石剖面沉积物成熟度较低、属于初次循环的产物。
Zr/Sc-Th/Sc二元图解[58?59]被广泛应用于评价沉积物是否经历分选与再循环。沉积物再分选与再循环过程中,稳定重矿物不断富集导致某些元素(如Zr、Th、Sc等)的富集,其中Zr主要富集在锆石中,所以Zr/Sc 常用于反映锆石增加进而判断沉积物再循环[60],而Th/Sc比值在沉积再循环过程中没有明显的变化,因此可作为判断化学分异的指标[58],当沉积物经历初次循环时,Th/Sc比值随Zr/Sc比值增加而增加,即样品点沿着岩浆成分趋势线分布;当沉积物经历再循环时,随着Zr/Sc比值的增加,Th/Sc比值平缓分布,即样品点偏离了岩浆成分趋势线。呼伦贝尔砂砾石剖面样品点均分布在再循环趋势线周围,指示在沉积过程中主要受再循环的影响,这可能是锆石富集且含有部分陆源碎屑岩所致(图7b)。
4.2 沉积物源
砾石的发育常伴随造山活动,通常带有丰富的物源地信息,因此在追踪物源时常统计分析砾石特征[61?62]。呼伦贝尔砂砾石剖面地处大兴安岭西麓,砾石的磨圆度较差(图3b),说明其搬运距离较近,在沉积过程受到风化作用的影响有限,因而剖面的砾石特征可以被用来反映源区[63?64]。在砾石岩性组成中,凝灰岩和流纹岩等长英质岩石占97.4%(图3d),代表其母岩主要为中—酸性岩浆岩,且大兴安岭地区广泛发育该岩石,说明大兴安岭可能为呼伦贝尔砂砾石剖面物源。
而这一观点也得到了重矿物与地球化学证据的支持,通过对比分析研究区与潜在物源区的重矿物与地球化学特征可以判别物源。前人对于大兴安岭地区的研究已经比较全面,主要通过河流沉积物来反映其重矿物和地球化学的整体性特征,因此收集总结了潜在物源区大兴安岭东侧河流沉积物的重矿物与地球化学数据[62,65],如多布库尔河、诺敏河、阿伦河等,以此来代表大兴安岭地区重矿物与元素地球化学的综合性特征,并与呼伦贝尔砂砾石剖面重矿物与元素地球化学对比且展开分析。大兴安岭地区东侧碎屑重矿物主要为绿帘石和钛铁矿,赤褐铁矿、角闪石与辉石次之,指示母岩主要为中—酸性岩浆岩,与研究区基本一致;二者元素地球化学所揭示的源区母岩性质基本一致(图8)。因此,综合沉积学、重矿物与地球化学特征,并结合其区域地质背景,初步推断呼伦贝尔砂砾石剖面物源来自大兴安岭。
碎屑沉积物的地球化学研究被广泛应用于追踪沉积物源[69?70]。REE不易受迁移、沉积和成岩作用的影响,可以稳定保留在沉积物中并有效反映母岩性质。通常来说长英质岩石的ΣLREE/ΣHREE比值较高,Eu负异常;而铁镁质岩石的ΣLREE/ΣHREE比值低,Eu呈现无异常或正异常。呼伦贝尔砂砾石剖面沉积物稀土配分曲线趋势波动较小,稀土配分模式为轻稀土富集、重稀土亏损和Eu 负异常,与UCC和PAAS的分布模式相似,指示其源岩主要来自长英质火成岩。Al2O3/TiO2比值是指示沉积物源岩的主要手段之一[71],当Al2O3/TiO2小于14时,表明源岩主要为镁铁质岩石,当Al2O3/TiO2比值介于19~28时,表明源岩主要为长英质岩石。呼伦贝尔砂砾石剖面沉积物的Al2O3/TiO2 值介于15.56~46.13,平均值为26.49,指示了沉积物的长英质母岩属性。
一些不活动元素及其比值常用来指示碎屑沉积物的母岩性质[72]。由于沉积分选和再循环过程中,Hf含量随着锆石的富集而增加,因此La/Th-Hf的二元图解常用于判别母岩性质以及沉积再循环特征[66]。砂砾石剖面La/Th比值(1.69~2.42,平均值为1.97)和Hf 含量(6.98~20.14,平均值为13.18)整体较低,在La/Th-Hf判别图解中(图8a),样品点集中在长英质酸性源区附近。一般来说,La和Th等元素更多赋存在长英质岩石中,Sc、Co等元素则更多在铁镁质岩石中富集[73],因此Co/Th-La/Sc判别图解可以较好地判别母岩的性质[67],砂砾石剖面沉积物La/Sc 值介于2.1~3.16,Co/Th值介于0.21~1.48,样品点分布在长英质火山岩的周围(图8b)。并且,沉积物的Cr/Th比值为1.29~3.41,Th/Sc 比值介于1~1.72,在Th/Sc-Cr/Th二元图解中,样品点主要分布在长英质火山岩附近(图8c)。在TiO2-Zr双变量图中,沉积物全部分布在长英质火成岩区域[68](图8d),以上皆指示砂砾石剖面碎屑物具有长英质母岩属性,这也与稀土元素富集和Eu负异常的特点相符合。
综合砾石特征、重矿物与元素地球化学、稀土元素配分模式与地球化学元素比值和判别图解,确定了长英质岩浆母岩的物源贡献,这指示呼伦贝尔砂砾石剖面沉积物来自大兴安岭的中—酸性岩浆母岩。
锆石有极高的硬度与封闭温度,因而在风化、剥蚀、磨蚀等过程中,U-Pb同位素体系仍可以在经历各种地质过程后稳定存在[74?75],因此碎屑锆石年龄组合分布能够很好地判断沉积物的来源,通过对比分析研究区与潜在物源区的锆石U-Pb年龄分布特征进行物源判别[76]。为了进一步追踪物源,对呼伦贝尔砂砾石剖面进行了锆石U-Pb测年分析并绘制了年龄谐和图和年龄频谱图,在此基础上收集总结了前人对于潜在物源区大兴安岭北段的年代学研究成果[40],绘制了锆石U-Pb年龄谱(图5),并与呼伦贝尔地区锆石年龄分布特征对比并展开分析。结果显示,呼伦贝尔碎屑锆石年龄峰值特征与大兴安岭北段极其相似,具有100~200 Ma 和250~350 Ma 的锆石年龄峰值,说明呼伦贝尔砂砾石剖面的物源主要为大兴安岭北段。
4.3 沉积环境
砂砾石剖面地层的沉积环境可以从沉积学、地球化学特征和重矿物组成进行判断,其中沉积学主要从砾石砾径、磨圆度、分选性以及堆积情况等方面来指示沉积环境特点[64,77]。呼伦贝尔砂砾石剖面砾石砾径集中在0~80 mm,分选性与磨圆度较差,砾径大小不同且以次棱角和次圆为主要优势的砾石混杂堆积;局部夹杂着灰白色黏土透镜体;碎屑沉积物为初次循环,指示其搬运距离较短,并且存在明显发育的平行层理,表明有定向水流的改造。综合上述沉积学特征,认为砂砾石剖面沉积物为近距离搬运的冲—洪积物堆积。
在沉积物经历化学风化过程中,稳定元素不断富集,而碱金属元素迁移流失,因此在判别沉积物古气候时元素地球化学被广泛应用[78?79]。为了判别沉积过程中的气候条件,绘制了SiO2-Al2O3+K2O+Na2O的关系图,沉积物全部分布在干旱区域,指示在干旱条件下形成了砂砾石剖面沉积物(图9a)。古气候特征也可以利用Rb/Sr比值来指示[80],沉积时古气候越湿润,代表风化作用越强烈,致使Sr淋失得越彻底,Rb/Sr值越大。沉积物Rb/Sr介于0.25~0.95,平均值为0.5,指示砂砾石剖面属于干旱古气候。
在沉积过程中,沉积物受到氧化还原反应的影响,因此微量元素的含量及比值可以表明其沉积环境[81?83]。V元素在风化、成岩过程中受到的影响很小,稳定地存在于沉积物中;而Ni、Co元素在氧化还原性质不同的环境表现不同,因此在判别沉积环境中V/Cr、Ni/Co比值被广泛使用[84],V/Cr>4.5、Ni/Co>7指示为缺氧环境,V/Cr<2、Ni/Co>5 指示为富氧环境。在V/Cr-Ni/Co图解中,沉积物绝大部分分布在含氧—缺氧的过渡区间,指示其沉积环境为氧化环境(图9b)。
稳定重矿物有很强的抗风化的能力,在沉积过程中可以保存源岩的信息,因此可以用来判别沉积物的物源,进而为沉积演化的提供佐证[85]。呼伦贝尔砂砾石剖面沉积物的重矿物以稳定的白钛石和钛铁矿占绝对优势(表2),这两种矿物都是氧化环境下的产物,且基本没有不稳定矿物(角闪石和辉石),这指示沉积物经历了很强的化学风化强度,与沉积物较高的CIA值(图6)相对应,也和氧化条件相匹配。
结合砾石特征、地球化学特征及其重矿物组成,认为呼伦贝尔砂砾石剖面是在温暖偏干的氧化条件下近距离搬运的冲—洪积物堆积。
4.4 地层对比与划分
将未划分地层的剖面与已经确定地层归属的剖面进行地层属性的对比,是一种判断地层划分归属的重要方法[86],经典的白土山组是以黑龙江省龙江县朱家坎白土山剖面为标准建立,之后灰白色夹黏土透镜体的砂砾石岩性特征作为白土山组地层划分的依据被广泛应用,据此大兴安岭东麓龙江县和平安镇均被划归为白土山组[87?88],而一直以来呼伦贝尔砂砾石剖面的地层划分归属尚未有定论,存在诸多的不确定性。属性的全面建立是地层划分的基础,因此结合研究新成果,整合分析了沉积学、矿物岩石学以及地质年代学等多种手段,在此基础上将呼伦贝尔砂砾石剖面与大兴安岭东麓龙江县和平安镇白土山剖面进行对比,判断其地层划分归属。
从沉积物颜色上看,三者同为灰白色砂砾石堆积(图2);从砾石的磨圆度和风化程度来看,研究区磨圆度以次棱角—次圆为主,处于龙江县白土山组和平安镇白土山组之间,这可能是由于呼伦贝尔砂砾石剖面为近源沉积,且三者CIA数值接近,皆为较强的风化程度;从砾石的岩性对比可以看出,呼伦贝尔砂砾石剖面以石英质和凝灰岩为主,其次为陆源碎屑岩和流纹岩,龙江县白土山以流纹岩、脉石英、凝灰岩为主,其次为陆源碎屑岩及花岗岩,平安镇白土山岩性以凝灰岩为主,流纹岩和石英岩质岩石次之,三者砾石岩性相似;另外,三者基质均为砂—粉砂和泥;从地层结构来看,三者的细颗粒物质均以透镜体的方式存在;从沉积物的成因类型来看,三者均为冲—洪积物堆积;从剖面所在区域气候环境来看,三者皆为干旱氧化环境。此外三者重矿物种类及含量大致相同,均以白钛石、绿帘石、钛铁矿、ZTR、赤褐铁矿和锐钛矿为主,但个别矿物(如绿帘石)含量受区位特征、气候等因素影响略有差异,且三者地球化学元素的含量与变化趋势以及母岩性质均十分相近(图8,10)。
根据沉积物的各类属性特征,包括沉积物颜色、砾石特点与基质性质、地层结构、沉积物成因类型和气候环境、重矿物和母岩性质等,可判断呼伦贝尔砂砾石剖面为白土山组。但仍然需要年代学证据的支撑来判断剖面的地层归属,因此在下一步工作中将开展呼伦贝尔砂砾石剖面的年代学研究,如ESR和埋藏测年等。
4.5 构造意义
4.5.1 构造背景重建
在经历地质构造作用时,碎屑沉积物的产生可以用来揭示源区的构造演化。随着地球化学测试技术的提高,对碎屑沉积物的地球化学组成进行分析是现今常用的重建源区构造背景的方法[89?91]。在沉积过程中,由于受到风化和成岩作用的影响,常量元素不稳定的化学性质导致被误判,而不活动的微量元素稳定的化学性质导致受到的影响很小,所以被广泛用于判别源区的构造背景[90]。砂砾石沉积物化学风化程度中等,因而可以使用微量元素重建构造背景,La-Th-Sc和Th-Sc-Zr/10图解常用来判断沉积物源区的构造背景[92],砂砾石沉积物样品点均落在被动大陆边缘区域,与大兴安岭处于板块内部且构造相对稳定的情况相符(图11)。
4.5.2 对区域构造岩浆事件的指示
大兴安岭北段位于兴蒙造山带东部,其构造演化可分为早古生代微板块拼合、中生代蒙古—鄂霍茨克洋俯冲闭合、古太平洋板块的俯冲与回退等多个构造域作用下的多阶段构造演化,具有十分复杂的地质演化历史,揭示其背后的动力学背景并重建区域构造历史显得尤为重要。
地球化学指标在指示构造环境中通常存在不确定性[93],因而判别沉积物的构造环境时需要一同分析地质构造事件。有研究显示,东北沙地的碎屑锆石年龄非常稳定[94],因此呼伦贝尔砂砾石剖面单个样品的碎屑锆石U-Pb年龄数据仍具有很强的代表性,可以有效代表剖面的整体特征。此外,碎屑锆石每个年龄峰值均代表源区在该时期发生过一定规模的构造—岩浆事件[95],因而,呼伦贝尔砂砾石剖面100~200 Ma和250~350 Ma两个主要年龄峰值,是对大兴安岭北段多期次构造岩浆事件的综合响应。
晚二叠世以来,古亚洲洋板块俯冲与华北克拉通发生碰撞,并沿索伦—西拉木伦—长春—延吉缝合带自西向东于晚二叠世—早三叠世呈剪刀式闭合[96?98]。在此期间板块内部产生大量造山运动,导致大兴安岭北段广泛发育了构造—岩浆事件[99],呼伦贝尔锆石出现250~350 Ma的年龄峰值是对这一时期岩浆构造事件的响应。
自早侏罗世开始,蒙古—鄂霍茨克洋向南俯冲并呈剪刀式闭合。此外,古太平洋板块开始向西俯冲,与同时期燕山运动产生了叠加作用从而形成区域扩展构造背景,导致岩石圈的减薄、上地幔底侵并发生熔融作用进而了发生了大量岩浆活动[100?103]。早白垩世晚期,东北陆边缘岩浆作用的空间范围逐渐向东收缩,古太平洋板块开始向东回退[104?105],地壳弧后延伸、岩石圈地幔减薄,导致上地幔顶部软流层物理化学性质等发生巨变且区域岩浆上涌而产生了大规模岩浆活动[106?109],这也与呼伦贝尔锆石~126 Ma的年龄峰值相对应。
综上,呼伦贝尔砂砾石剖面的中生代—古生代(100~350 Ma)锆石年龄为古亚洲洋闭合和古太平洋俯冲、回退的时间提供了新的证据。
5 结论
(1) 呼伦贝尔砂砾石剖面岩性以灰白砂砾石堆积为主,夹杂黏土透镜体,局部可见平行层理以及多层铁板层—铁板层的球形弯曲。砾石分选与磨圆度较差,风化程度为无—弱风化,基质为砂—粉砂和泥。砾石岩性以石英质(61.2%)和凝灰岩(34.9%)为主,其次为陆源碎屑岩(2.6%)和流纹岩(1.3%)。
(2) 呼伦贝尔砂砾石剖面重矿物以白钛石(32.54%)和钛铁矿(33.01%)为主,磁铁矿(12.11%)、ZTR(6.53%)、赤褐铁矿(5.47%)和锐钛矿(1.34%)次之,绿帘石(0.52%)、金红石(0.07%)和石榴子石(0.11%)含量较低,其他矿物含量为8.38%,未见或极少见不稳定矿物,表明砂砾石剖面沉积物经历了较强的化学风化作用。
(3) 呼伦贝尔砂砾石剖面沉积物CIA、CIW指数和Rb/Sr 比值均较高,结合A-CN-K 和A-CNK-FM 图解,研究区经历了中等程度的化学风化作用;ICV值与Th/Sc-Zr/Sc、CIA-WIP图解表明砂砾石剖面沉积物成熟度较低,属于初次循环的产物。综合砾石特征、重矿物与元素地球化学、稀土元素配分模式、地球化学元素比值和源岩性质判别图解,确定了来自大兴安岭的长英质岩浆母岩的物源贡献,并通过与大兴安岭北段地区碎屑锆石年龄谱对比,进一步证明物源区来自大兴安岭北段。
(4) 沉积学、地球化学和重矿物特征共同指示呼伦贝尔砂砾石剖面属于温暖偏干的氧化条件中近距离搬运的冲—洪积物堆积,并可与大兴安岭东麓龙江县和平安镇白土山组进行对比,初步判断呼伦贝尔砂砾石剖面为白土山组。
(5) 砂砾石剖面为被动大陆边缘构造背景,在古亚洲洋的闭合和古太平洋俯冲、回退的区域构造背景下,触发多期构造—热事件并产生大量岩浆活动,这与呼伦贝尔锆石峰值年龄(100~200 Ma,250~350Ma)相对应。
致谢 地球化学实验得到了兰州大学甘肃省西部矿产资源重点实验室闫晓丽、陈万峰、熊聪慧老师的支持,重矿物组成得到了河北廊坊诚信地质公司张佩萱老师的指导,碎屑锆石年龄得到了诚谱检测技术(廊坊) 有限公司李鹏、张雁子、刘铭平和王根涛的帮助。研究生赵延卓参与了锆石U?Pb 测年的实验处理,刘俊贺、宋莹、刘若男、高宏宇、赵慧莹、张鑫茹和符锦霞参加了实验室样品处理工作,在此一并表示感谢。对提供宝贵修改意见的评审专家,一并谨致谢忱。感谢辛勤付出的编辑部老师,使论文得以完善。
参考文献(References)
[1] 常西玲,郭进京,常璐璐,等. 西秦岭北缘渐新世砾岩沉积特征
及沉积环境:渐新世—中新世盆地构造环境约束[J/OL]. 沉积
学报,2023, 41(5):1495-1511. [Chang Xiling, Guo Jinjing,
Chang Lulu, et al. Characteristics of Oligocene conglomerates
and their sedimentary environment in the northern margin of west
Qinling: Constraints on the tectonic setting of the Oligocene-
Miocene basin[J]. Acta Sedimentologica Sinica, 2023, 41(5):
1495-1511.]
[2] Sun J M, Zhang Z L, Cao M M, et al. Timing of seawater retreat
from proto-paratethys, sedimentary provenance, and tectonic rotations
in the Late Eocene-Early Oligocene in the Tajik Basin, Central
Asia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,
2020, 545: 109657.
[3] 呼其图,关平,王大华,等. 柴达木盆地北缘东段中侏罗统物源
分析:来自重矿物、元素地球化学及碎屑锆石年代学的证据[J].
沉积学报,2024,42(2):466-485.[HuQitu, Guan Ping, Wang Dahua,
et al. Provenance analysis of the Middle Jurassic in northeastern
Qaidam Basin: Evidence from heavy minerals, elemental
geochemistry and detrital zircon U-Pb geochronology[J]. Acta
Sedimentologica Sinica, 2024, 42(2): 466-485.]
[4] 孙建勋,吴亮,肖长源,等. 黔北普宜地区晚三叠世二桥组砂岩
碎屑锆石U-Pb 年龄、重矿物分析及地质意义[J]. 地质学报,
2022,96 (3) :824-839. [Sun Jianxun, Wu Liang, Xiao
Changyuan, et al. Implications of detrital zircon U-Pb ages and
analysis of heavy minerals from sandstone of the Late Triassic
Erqiao Formation in Puyi area, north Guizhou[J]. Acta Geologica
Sinica, 2022, 96(3): 824-839.]
[5] 潘世乐,蒋赟,康健,等. 柴北缘冷湖七号下干柴沟组上段古气
候及物源分析[J]. 沉积学报,2021,39(5):1292-1304.[Pan
Shile, Jiang Yun, Kang Jian, et al. Analysis of paleoclimate and
source of the upper section, Lower Ganchaigou Formation, Lenghu
No. 7 region, north Qaidam Basin[J]. Acta Sedimentologica
Sinica, 2021, 39(5): 1292-1304.]
[6] 熊国庆,王剑,胡仁发. 贵州梵净山地区震旦系微量元素特征
及沉积环境[J]. 地球学报,2008,29(1):51-60.[Xiong Guoqing,
Wang Jian, Hu Renfa. Trace element characteristics and
sedimentary environment of the Sinian system of the Fanjingshan
area in Guizhou province[J]. Acta Geoscientica Sinica, 2008, 29
(1): 51-60.]
[7] 李国刚,李云海,布如源,等. 晚更新世以来南极罗斯海陆坡沉
积物岩芯常量元素地球化学特征及其古环境意义[J]. 海洋地质
与第四纪地质,2022,42(4):1-11.[Li Guogang, Li Yunhai, Bu
Ruyuan, et al. Geochemical characteristics and paleoenvironmental
implications of major elements in sediments from the continental
slope of the Ross Sea, Antarctica since Late Pleistocene[J].
Marine Geology & Quaternary Geology, 2022, 42(4): 1-11.]
[8] 任永健,张成信,孟庆伟. 张广才岭南部杨木岗组的厘定及物
源分析[J]. 地质学报,2022,96(7):2333-2347.[Ren Yongjian,
Zhang Chengxin, Meng Qinwei. Determination of the Yangmugang
Formation in southern section of Zhangguangcai range and
its provenance analysis[J]. Acta Geologica Sinica, 2022, 96(7):
2333-2347.]
[9] Xie Y Y, Yuan F, Zhan T, et al. Geochemistry of loess deposits in
northeastern China: Constraint on provenance and implication for
disappearance of the large Songliao palaeolake[J]. Journal of the
Geological Society, 2018, 175(1): 146-162.
[10] 胡鹏,鲍志东,于兴河,等. 碎屑重矿物差异与物源演化:以长
岭凹陷乾北地区青三段—姚一段为例[J]. 中国矿业大学学报,
2017,46(2):375-387.[Hu Peng, Bao Zhidong, Yu Xinghe, et
al. Detrital heavy mineral difference and its implication for
provenance: A case study of the Third member of Qingshankou
Formation and the First member of Yaojia Formation in Qianbei
area, Changling Sag[J]. Journal of China University of Mining
& Technology, 2017, 46(2): 375-387.]
[11] Andersen T, van Niekerk H, Elburg M A. Detrital zircon in an
active sedimentary recycling system: Challenging the ‘source-tosink
approach to zircon-based provenance analysis[J]. Sedimentology,
2022, 69(6): 2436-2462.
[12] Armstrong-Altrin J S. Detrital zircon U-Pb geochronology and
geochemistry of the Riachuelos and Palma Sola beach sediments,
Veracruz State, Gulf of Mexico: A new insight on palaeoenvironment[
J]. Journal of Palaeogeography, 2020, 9(1): 28.
[13] 张凌,王平,陈玺赟,等. 碎屑锆石U-Pb年代学数据获取、分析
与比较[J]. 地球科学进展,2020,35(4):414-430.[Zhang Ling,
Wang Ping, Chen Xiyun, et al. Review in detrital zircon U-Pb
geochronology: Data acquisition, analysis and comparison[J].
Advances in Earth Science, 2020, 35(4): 414-430.]
[14] 徐杰,姜在兴. 碎屑岩物源研究进展与展望[J]. 古地理学报,
2019,21(3):379-396. [Xu Jie, Jiang Zaixing. Provenance
analysis of clastic rocks: Current research status and prospect[J].
Journal of Palaeogeography, 2019, 21(3): 379-396.]
[15] 张庆云,林泽蓉. 白山土组堆积物成因的讨论[J]. 长春地质学
院学报,1981(4):89-96.[Zhang Qingyun, Lin Zerong. Discussion
on the genesis of the Baitushan Formation[J]. Journal of
Changchun Institute of Geology, 1981(4): 89-96.]
[16] 孙建中. 松辽平原冰缘期的划分[J]. 地理科学,1981,1(2):
163-170.[Sun Jianzhong. Quaternary periglacial stages of the
Songliao Plain[J]. Scientia Geographica Sinica, 1981, 1(2):
163-170.]
[17] 孙建中,王雨灼,张庆云. 松辽平原第四纪地层的划分—几种
年代学方法的应用[J]. 西安地质学院学报,1982(2):79-91,
10.[Sun Jianzhong, Wang Yuzhuo, Zhang Qingyun. Division of
Quaternary strata in Songliao Plain: Application of several
chronological methods[J]. Journal of Earth Sciences and Environment,
1982(2): 79-91, 10.]
[18] 裘善文,张爱新,夏玉梅,等. 东北白土山冰期的商榷[J]. 冰川
冻土,1983,5(2):9-18.[Qiu Shanwen, Zhang Aixin, Xia Yumei,
et al. A discussion on the Baitushan ice age in northeast
China[J]. Journal of Glaciology and Geocryology, 1983, 5(2):
9-18.]
[19] 裘善文,李风华. 东北“白土山冰期”沉积物成因与时代的研
究[J]. 冰川冻土,1985,7(3):195-203.[Qiu Shanwen, Li Fenghua.
Studies on genesis and time of the deposits of “The
Baitushan Ice Age” in Northeast China[J]. Journal of Glaciology
and Geocryology, 1985, 7(3): 195-203.]
[20] 裘善文,夏玉海,汪佩芳,等. 松辽平原更新世地层及其沉积
环境的研究[J]. 中国科学(B 辑),1988(4):431-441.[Qiu
Shanwen, Xia Yuhai, Wang Peifang, et al. Study on Pleistocene
strata and sedimentary environment in Songliao Plain[J]. Science
China Series B, 1988(4): 431-441.]
[21] 裘善文,王锡魁,李取生,等. 伊通火山群地区“白土山组”地
层研究新进展[J]. 地层学杂志,2001,25(4):279-282.[Qiu
Shanwen, Wang Xikui, Li Qusheng, et al. New advances in the
stratigraphic study on the “Baitushan Formation” of the Yitong
volcanic area[J]. Journal of Stratigraphy, 2001, 25(4): 279-282.]
[22] 王庆,杨景春. 松辽分水岭东段白土山组成因与时代[J]. 地层
学杂志,1995,19(4):287-290.[Wang Qing, Yang Jingchun.
The genesis and age of the Baitushan Formation in the eastern area
of the Songliao divide[J]. Journal of Stratigraphy, 1995, 19(4):
287-290.]
[23] 徐备,赵盼,鲍庆中,等. 兴蒙造山带前中生代构造单元划分
初探[J]. 岩石学报,2014,30(7):1841-1857.[Xu Bei, Zhao
Pan, Bao Qingzhong, et al. Preliminary study on the pre-
Mesozoic tectonic unit division of the Xing-Meng Orogenic Belt
(XMOB)[J]. Acta Petrologica Sinica, 2014, 30(7): 1841-1857.]
[24] 梁琛岳,刘永江,李伟,等. 大兴安岭北段伸展隆升样式:来自
科洛—嘎拉山韧性变形带的证据[J]. 岩石学报,2018,34(10):
2873-2900.[Liang Chenyue, Liu Yongjiang, Li Wei, et al. The
extensional uplift style of north part of the Da Hinggan Mountains:
Evidences from ductile deformation zone of Keluo-
Galashan[J]. Acta Petrologica Sinica, 2018, 34(10): 2873-
2900.]
[25] Zhao X, Coe R S, Gilder S A, et al. Palaeomagnetic constraints
on the palaeogeography of China: Implications for Gondwanaland[
J]. Australian Journal of Earth Sciences, 1996, 43(6):
643-672.
[26] 赵勇伟,樊祺诚. 大兴安岭哈拉哈河—绰尔河第四纪火山岩
地幔源区与岩浆成因[J]. 岩石学报,2012,28(4):1119-1129.
[Zhao Yongwei, Fan Qicheng. Mantle sources and magma genesis
of Quaternary volcanic rocks in the Halaha River and Chaoer
River area, Great Xingan Range[J]. Acta Petrologica Sinica,
2012, 28(4): 1119-1129.]
[27] 王洪涛. 大兴安岭中段晚中生代以来的隆升剥露史[D]. 长
春:吉林大学,2022.[Wang Hongtao. Uplift and exhumation
history of the middle Greater Khingan Mountains since Late Mesozoic[
D]. Changchun: Jilin University, 2022.]
[28] 康春国,李长安,王节涛,等. 江汉平原沉积物重矿物特征及
其对三峡贯通的指示[J]. 地球科学:中国地质大学学报,2009,
34(3):419-427.[Kang Chunguo, Li Changan, Wang Jietao, et
al. Heavy minerals characteristics of sediments in Jianghan
Plain and its indication to the forming of the Three Gorges[J].
Earth Science: Journal of China University of Geosciences,
2009, 34(3): 419-427.]
[29] 侯心茹,谢远云,康春国,等. 大兴安岭东麓白土山组地层的
沉积学特征:对地层划分的指示[J]. 沉积学报,2023,41(3):
720-734.[Hou Xinru, Xie Yuanyun, Kang Chunguo, et al. Sedimentological
characteristics of the Baitushan Formation in the
eastern foothills of the Great Xingan Range: Implications for
stratigraphic divisions[J]. Acta Sedimentologica Sinica,2023,41
(3):720-734.]
[30] 王嘉新,谢远云,康春国,等. 哈尔滨荒山岩芯重矿物特征对
松花江第四纪水系演化的指示[J]. 第四纪研究,2020,40(1):
79-94.[Wang Jiaxin, Xie Yuanyun, Kang Chunguo, et al. The
indication of the heavy mineral characteristics of the core in Harbin
Huangshan to the Quaternary drainage evolution of Songhua
River[J]. Quaternary Sciences, 2020, 40(1): 79-94.]
[31] 袁方,谢远云,詹涛,等. 地球化学组成揭示的杜蒙沙地化学
风化和沉积再循环特征及其对风尘物质贡献的指示[J]. 地理
科学,2017,37(12):1885-1893.[Yuan Fang, Xie Yuanyun,
Zhan Tao, et al. Source-area weathering and recycled sediment
for Dumeng sandy land inferred from geochemistry compositions:
Implication for contribution to aeolian dust[J]. Scientia
Geographica Sinica, 2017, 37(12): 1885-1893.]
[32] 魏春艳,谢远云,康春国,等. 哈尔滨地区罗家窝棚组地层的
沉积学、矿物学及地球化学特征:对沉积环境的指示[J]. 地质
科学,2022,57(1):172-189. [Wei Chunyan, Xie Yuanyun,
Kang Chunguo, et al. Sedimentological, mineralogical, and geochemical
characteristics of the Luojiawopeng Fm. in Harbin: Implications
for the sedimentary environment[J]. Chinese Journal
of Geology, 2022, 57(1): 172-189.]
[33] Pearce N J G, Perkins W T, Westgate J A, et al. A compilation of
new and published major and trace element data for NIST SRM
610 and NIST SRM 612 glass reference materials[J]. Geostandards
and Geoanalytical Research, 1997, 21(1): 115-144.
[34] Yuan H L, Gao S, Liu X M, et al. Accurate U-Pb age and trace
element determinations of Zircon by laser ablation-Inductively
Coupled Plasma-Mass Spectrometry[J]. Geostandards and Geoanalytical
Research, 2004, 28(3): 353-370.
[35] Sláma J, Ko?ler J, Condon D J, et al. Ple?ovice zircon: A new
natural reference material for U-Pb and Hf isotopic microanalysis
[J]. Chemical Geology, 2008, 249(1/2): 1-35.
[36] Li X H, Tang G Q, Gong B, et al. Qinghu zircon: A working
reference for microbeam analysis of U-Pb age and Hf and O
isotopes[J]. Chinese Science Bulletin, 2013, 58(36): 4647-4654.
[37] Ludwig K R. User's manual for Isoplot/Ex, Version 3. 00: A geochronological
toolkit for Microsoft Excel[J]. Berkeley Geochronology
Center Special Publication, 2003, 4(2): 1-70.
[38] Jiang Z W, Luo J L, Liu X S, et al. Provenance and implication
of Carboniferous-Permian detrital zircons from the Upper Paleozoic,
southern Ordos Basin, China: Evidence from U-Pb geochronology
and Hf isotopes[J]. Minerals, 2020, 10(3): 265.
[39] Cawood P A, Nemchin A A. Provenance record of a rift basin:
U/Pb ages of detrital zircons from the Perth Basin, western Australia[
J]. Sedimentary Geology, 2000, 134(3/4): 209-234.
[40] Wu F Y, Sun D Y, Ge W C, et al. Geochronology of the Phanerozoic
granitoids in northeastern China[J]. Journal of Asian Earth
Sciences, 2011, 41(1): 1-30.
[41] Maharana C, Srivastava D, Tripathi J K. Geochemistry of sediments
of the Peninsular rivers of the Ganga Basin and its implication
to weathering, sedimentary processes and provenance[J].
Chemical Geology, 2018, 483: 1-20.
[42] Asiedu D K, Agoe M, Amponsah M, et al. Geochemical constraints
on provenance and source area weathering of metasedimentary
rocks from the Paleoproterozoic (~2. 1 Ga) Wa-Lawra
Belt, southeastern margin of the West African Craton[J]. Geodinamica
Acta, 2019, 31(1): 27-39.
[43] 付玲,关平,赵为永,等. 柴达木盆地古近系路乐河组重矿物
特征与物源分析[J]. 岩石学报,2013,29(8):2867-2875.[Fu
Ling, Guan Ping, Zhao Weiyong, et al. Uplift of NW margin of
Qaidam Basin in the Late Eocene: Implications for the initiation
of Altyn Fault[J]. Acta Petrologica Sinica, 2013, 29(8): 2867-
2875.]
[44] 杨守业,印萍. 自然环境变化与人类活动影响下的中小河流
沉积物源汇过程[J]. 海洋地质与第四纪地质,2018,38(1):1-
10.[Yang Shouye, Yin Ping. Sediment source-to-sink processes
of small mountainous rivers under the impacts of natural environmental
changes and human activities[J]. Marine Geology &
Quaternary Geology, 2018, 38(1): 1-10.]
[45] 林刚,陈琳莹,罗敏,等. 西太平洋新不列颠海沟表层沉积物
的地球化学特征及其物源指示[J]. 海洋地质与第四纪地质,
2019,39(3):12-27.[Lin Gang, Chen Linying, Luo Min, et al.
The geochemical characteristics of the surface sediments in the
New Britain Trench of the western Pacific Ocean and their implications
for provenance[J]. Marine Geology & Quaternary Geology,
2019, 39(3): 12-27.]
[46] 罗情勇,钟宁宁,王延年,等. 华北北部中元古界洪水庄组页
岩地球化学特征:物源及其风化作用[J]. 地质学报,2013,87
(12):1913-1921.[Luo Qingyong, Zhong Ningning, Wang Yannian,
et al. Geochemistry of Mesoproterozoic Hongshuizhuang
Formation shales in northern North China: Lmplications for
provenance and source weathering[J]. Acta Geologica Sinica,
2013, 87(12): 1913-1921.]
[47] Nesbitt H W, Young G M. Early Proterozoic climates and plate
motions inferred from major element chemistry of lutites[J]. Nature,
1982, 299(5885): 715-717.
[48] Harnois L. The CIW index: A new chemical index of weathering
[J]. Sedimentary Geology, 1988, 55(3/4): 319-322.
[49] 冯连君,储雪蕾,张启锐,等. 化学蚀变指数(CIA)及其在新元
古代碎屑岩中的应用[J]. 地学前缘,2003,10(4):539-544.
[Feng Lianjun, Chu Xuelei, Zhang Qirui, et al. CIA (Chemical
Index of Alteration) and its applications in the Neoproterozoic
clastic rocks[J]. Earth Science Frontiers, 2003, 10(4): 539-544.]
[50] 杨江海,杜远生,徐亚军,等. 砂岩的主量元素特征与盆地物
源分析[J]. 中国地质,2007,34(6):1032-1044.[Yang Jianghai,
Du Yuansheng, Xu Yajun, et al. Major element characteristics of
sandstones and provenance analysis of basins[J]. Geology in
China, 2007, 34(6): 1032-1044.]
[51] 陈骏,汪永进,陈旸,等. 中国黄土地层Rb和Sr 地球化学特征
及其古季风气候意义[J]. 地质学报,2001,75(2):259-266.
[Chen Jun, Wang Yongjin, Chen Yang, et al. Rb and Sr geochemical
characterization of the Chinese loess and its implications
for palaeomonsoon climate[J]. Acta Geologica Sinica,
2001, 75(2): 259-266.]
[52] 刘聃,陈汉林,林秀斌,等. 南天山西部山前新生代晚期三期
构造活动:来自乌鲁克恰提剖面砾石统计的证据[J]. 岩石学
报,2012,28(8):2414-2422.[Liu Dan, Chen Hanlin, Lin Xiubin,
et al. Three episodes of tectonism in western South Tian
Shan during Late Cenozoic: Evidences from gravel counting in
Wulukeqiati sedimentary succession[J]. Acta Petrologica Sinica,
2012, 28(8): 2414-2422.]
[53] Cox R, Lowe D R, Cullers R L. The influence of sediment
recycling and basement composition on evolution of mudrock
chemistry in the southwestern United States[J]. Geochimica et
Cosmochimica Acta, 1995, 59(14): 2919-2940.
[54] Parker A. An index of weathering for silicate rocks[J]. Geological
Magazine, 1970, 107(6): 501-504.
[55] Xie Y Y, Yuan F, Zhan T, et al. Geochemical and isotopic characteristics
of sediments for the Hulun Buir sandy land, Northeast
China: Implication for weathering, recycling and dust provenance
[J]. Catena, 2018, 160: 170-184.
[56] van de Kamp P C, Leake B E. Petrography and geochemistry of
feldspathic and mafic sediments of the northeastern Pacific margin[
J]. Transactions of the Royal Society of Edinburgh: Earth
Sciences, 1985, 76(4): 411-449.
[57] Cullers R L, Podkovyrov V N. Geochemistry of the Mesoproterozoic
Lakhanda shales in southeastern Yakutia, Russia: Implications
for mineralogical and provenance control, and recycling
[J]. Precambrian Research, 2000, 104(1/2): 77-93.
[58] Mclennan S M, Taylor S R, Mcculloch M T, et al. Geochemical
and Nd-Sr isotopic composition of deep-sea turbidites: Crustal
evolution and plate tectonic associations[J]. Geochimica et Cosmochimica
Acta, 1990, 54(7): 2015-2050.
[59] Mongelli G, Critelli S, Perri F, et al. Sedimentary recycling,
provenance and paleoweathering from chemistry and mineralogy
of Mesozoic continental redbed mudrocks, Peloritani mountains,
southern Italy[J]. Geochemical Journal, 2006, 40(2): 197-209.
[60] Hassan S, Ishiga H, Roser B P, et al. Geochemistry of Permian-
Triassic shales in the Salt Range, Pakistan: Implications for
provenance and tectonism at the Gondwana margin[J]. Chemical
Geology, 1999, 158(3/4): 293-314.
[61] 赵红格,刘池洋,王海然,等. 贺兰山北段晚三叠世沉积物源
分析[J]. 沉积学报,2012,30(4):654-660.[Zhao Hongge, Liu
Chiyang, Wang Hairan, et al. Analysis of Late Triassic sedimentary
provenance in the north of Helan Mountain[J]. Acta Sedimentologica
Sinica, 2012, 30(4): 654-660.]
[62] 吴鹏,谢远云,康春国,等. 早更新世晚期松花江水系袭夺:地
球化学和沉积学记录[J]. 地质学报,2020,94(10):3144-3160.
[Wu Peng, Xie Yuanyun, Kang Chunguo, et al. The capture of
the Songhua River system in the late Early Pleistocene: Geochemical
and sedimentological records[J]. Acta Geologica Sinica,
2020, 94(10): 3144-3160.]
[63] 周延坤. 《岩相古地理基础和工作方法》[J]. 石油物探译丛,
1987(2):80.[Zhou Yankun. Lithofacies palaeogeography basis
and working methods[J]. Petroleum Reservoir Evaluation and
Development, 1987(2): 80.]
[64] 李忠,王道轩,林伟,等. 库车坳陷中—新生界碎屑组分对物
源类型及其构造属性的指示[J]. 岩石学报,2004,20(3):655-
666. [Li Zhong, Wang Daoxuan, Lin Wei, et al. Mesozoic-
Cenozoic clastic composition in Kuqa Depression, Northwest
China: Implication for provenance types and tectonic attributes
[J]. Acta Petrologica Sinica, 2004, 20(3): 655-666.]
[65] 李秋杭,谢远云,康春国,等. 基于人工和TIMA自动化方法的
松花江水系重矿物组成:对源—汇物源示踪的指示[J]. 海洋地
质与第四纪地质,2022,42(3):170-183.[Li Qiuhang, Xie
Yuanyun, Kang Chunguo, et al. Heavy mineral composition of
the Songhua River system identified by manual and TIMA automatic
methods and implications for provenance tracing[J]. Marine
Geology & Quaternary Geology, 2022, 42(3): 170-183.]
[66] Floyd P A, Leveridge B E. Tectonic environment of the Devonian
Gramscatho Basin, South Cornwall: Framework mode and geochemical
evidence from turbiditic sandstones[J]. Journal of the
Geological Society, 1987, 144(4): 531-542.
[67] Spalletti L A, Queralt I, Matheos S D, et al. Sedimentary petrology
and geochemistry of siliciclastic rocks from the Upper Jurassic
Tordillo Formation (Neuquén Basin, western Argentina): Implications
for provenance and tectonic setting[J]. Journal of
South American Earth Sciences, 2008, 25(4): 440-463.
[68] Hayashi K I, Fujisawa H, Holland H D, et al. Geochemistry of
?1. 9 Ga sedimentary rocks from northeastern Labrador, Canada
[J]. Geochimica et Cosmochimica Acta, 1997, 61(19): 4115-
4137.
[69] Roser B P, Korsch R J. Determination of tectonic setting of
sandstone-mudstone suites using SiO2 content and K2O/Na2O
ratio[J]. The Journal of Geology, 1986, 94(5): 635-650.
[70] Cullers R L. The geochemistry of shales, siltstones and sandstones
of Pennsylvanian-Permian age, Colorado, USA: Implications
for provenance and metamorphic studies[J]. Lithos, 2000,
51(3): 181-203.
[71] Girty G H, Ridge D L, Knaack C, et al. Provenance and depositional
setting of Paleozoic chert and argillite, Sierra Nevada,
California[J]. Journal of Sedimentary Research, 1996, 66(1):
107-118.
[72] Cullers R L, Basu A, Suttner L J. Geochemical signature of
provenance in sand-size material in soils and stream sediments
near the Tobacco Root batholith, Montana, U. S. A. [J]. Chemical
Geology, 1988, 70(4): 335-348.
[73] Armstrong-Altrin J S, Lee Y I, Verma S P, et al. Geochemistry
of sandstones from the Upper Miocene Kudankulam Formation,
southern India: Implications for provenance, weathering, and tectonic
setting[J]. Journal of Sedimentary Research, 2004, 74(2):
285-297.
[74] Cherniak D J, Watson E B. Pb diffusion in zircon[J]. Chemical
Geology, 2001, 172(1/2): 5-24.
[75] Wang F, Xu W L, Meng E, et al. Early Paleozoic amalgamation
of the Songnen-Zhangguangcai range and Jiamusi massifs in the
eastern segment of the Central Asian Orogenic Belt: Geochronological
and geochemical evidence from granitoids and rhyolites[
J]. Journal of Asian Earth Sciences, 2012, 49: 234-248.
[76] 陈斌,李壮,王家林,等. 辽东半岛~2. 2Ga 岩浆事件及其地质
意义[J]. 吉林大学学报(地球科学版),2016,46(2):303-320.
[Chen Bin, Li Zhuang, Wang Jialin, et al. Liaodong peninsula
~2. 2 Ga magmatic event and its geological significance[J]. Journal
of Jilin University (Earth Science Edition), 2016, 46(2):
303-320.]
[77] 王昆山,石学法,刘升发,等. 泰国湾西部表层沉积物重矿物
分布特征:对物质来源和沉积环境的指示[J]. 第四纪研究,
2014,34(3):623-634.[Wang Kunshan, Shi Xuefa, Liu Shengfa,
et al. Spatial distribution of heavy minerals in the surface
sediments from the western gulf of Thailand: Implications for
sediment provenance and sedimentary environment[J]. Quaternary
Sciences, 2014, 34(3): 623-634.]
[78] 陈渠,吕镔,刘秀铭,等. 伊犁典型黄土磁学与常量元素地球
化学特征及其古气候意义[J]. 第四纪研究,2021,41(6):1632-
1644.[Chen Qu, Lü Bin, Liu Xiuming, et al. Rock magnetism
and geochemical characteristics of major elements of typical
loesss in the Ily Basin and their paleoclimatic significance[J].
Quaternary Sciences, 2021, 41(6): 1632-1644.]
[79] 马万里,江小青,李璇,等. 柴达木盆地西北缘上干柴沟组泥
岩地球化学特征与古环境古气候意义[J]. 矿物岩石地球化学
通报,2021,40(5):1166-1180.[Ma Wanli, Jiang Xiaoqing, Li
Xuan, et al. Geochemical characteristics and paleoenvironment
paleoclimate significance of mudstone in the Shang-Gan-Chai-
Gou Formation at the northwestern margin of Qaidam Basin[J].
Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 40
(5): 1166-1180.]
[80] 弋双文,鹿化煜,周亚利,等. 晚第四纪科尔沁黄土堆积的Rb-
Sr 地球化学特征及古气候变化[J]. 海洋地质与第四纪地质,
2013,33(2):129-136.[Yi Shuangwen, Lu Huayu, Zhou Yali, et
al. Rb/Sr geochemistry of loess deposits in the Horqin dunefield,
northeastern China, and its implications for climate change
during Late Quaternary[J]. Marine Geology & Quaternary
Geology, 2013, 33(2): 129-136.]
[81] Nameroff T J, Calvert S E, Murray J W. Glacial-interglacial variability
in the eastern tropical North Pacific oxygen minimum
zone recorded by redox-sensitive trace metals[J]. Paleoceanography,
2004, 19(1): PA1010.
[82] Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox
and paleoproductivity proxies: An update[J]. Chemical
Geology, 2006, 232(1/2): 12-32.
[83] 陆雨诗,胡勇,侯云东,等. 鄂尔多斯盆地西缘羊虎沟组微量
元素地球化学特征及沉积环境指示意义[J]. 科学技术与工程,
2021,21(28):11999-12009.[Lu Yushi, Hu Yong, Hou Yundong,
et al. Geochemical characteristics of trace elements in
Yanghugou Formation in the western margin of Ordos Basin and
their implications for sedimentary environment[J]. Science Technology
and Engineering, 2021, 21(28): 11999-12009.]
[84] 张天福,孙立新,张云,等. 鄂尔多斯盆地北缘侏罗纪延安组、
直罗组泥岩微量、稀土元素地球化学特征及其古沉积环境意
义[J]. 地质学报,2016,90(12):3454-3472.[Zhang Tianfu, Sun
Lixin, Zhang Yun, et al. Geochemical characteristics of the
Jurassic Yanan and Zhiluo Formations in the northern margin of
Ordos Basin and their paleoenvironmental implications[J]. Acta
Geologica Sinica, 2016, 90(12): 3454-3472.]
[85] 李思琪,谢远云,康春国,等. 物源—河流过程—化学风化对
松花江水系沉积物重矿物组成的影响[J]. 地质科学,2022,57
(1):207-229.[Li Siqi, Xie Yuanyun, Kang Chunguo, et al. Influence
of provenance-river process-chemical weathering on
heavy mineral composition of the Songhua River sediment[J].
Chinese Journal of Geology, 2022, 57(1): 207-229.]
[86] 朱吉昌,冯有良,孟庆任,等. 渤海湾盆地晚中生代构造地层
划分及对比:对燕山运动的启示[J]. 中国科学(D辑):地球科
学,2020,50(1):28-49.[Zhu Jichang, Feng Youliang, Meng
Qingren, et al. Late Mesozoic tectonostratigraphic division and
correlation of Bohai Bay Basin: Implications for the Yanshanian
Orogeny[J]. Science China (Seri. D): Earth Sciences, 2020, 50
(1): 28-49.]
[87] 孙杨,谢远云,迟云平,等. 大兴安岭东麓龙江县白土山组地
层特征:化学风化、沉积循环、源—汇体系和沉积环境[J]. 山地
学报,2022,40(1):14-28.[Sun Yang, Xie Yuanyun, Chi Yunping,
et al. Stratigraphic characteristics of the Baitushan Formation
in Longjiang county, eastern foothills of the Great Xingan
range, China: Chemical weathering, sediment cycling, sourcesink
system and sedimentary environment[J]. Mountain Research,
2022, 40(1): 14-28.]
[88] 孙建华,谢远云,康春国,等. 大兴安岭东麓平安镇白土山组
的地层属性:对物源和沉积环境的指示[J]. 地层学杂志,2022,
46(2):196-208.[Sun Jianhua, Xie Yuanyun, Kang Chunguo, et
al. Stratigraphic properties of the Baitushan Formation in
Pingan town, the eastern foot of the great Hinggan Mountains:
An indication of provenance and sedimentary environment[J].
Journal of Stratigraphy, 2022, 46(2): 196-208.]
[89] Taylor S R, McLennan S M. The continental crust: Its composition
and evolution. xvi + 312 pp. Oxford, London, Edinburgh,
Boston, Palo Alto, Melbourne: Blackwell Scientific. Price ?16.
80 (paperback). ISBN 0 632 01148 3[J]. Geological Magazine,
1985, 122(6): 673-674.
[90] McLennan S M, Taylor S R, Eriksson K A, et al. Geochemistry
of Archean shales from the Pilbara Supergroup, western Australia
[J]. Geochimica et Cosmochimica Acta, 1983, 47(7): 1211-
1222.
[91] Roser B P, Korsch R J. Provenance signatures of sandstonemudstone
suites determined using discriminant function analysis
of major-element data[J]. Chemical Geology, 1988, 67(1/2):
119-139.
[92] Bhatia M R, Crook K A W. Trace element characteristics of
graywackes and tectonic setting discrimination of sedimentary
basins[J]. Contributions to Mineralogy and Petrology, 1986, 92
(2): 181-193.
[93] Rudnick R L, Gao S. 3. 01- Composition of the continental crust
[J]. Treatise on Geochemistry, 2003, 3: 1-64.
[94] 汪烨辉,谢远云,康春国,等. 科尔沁沙地粗—细组分的碎屑
锆石 U-Pb 年龄特征:对定量物源及区域构造—岩浆演化事件
的指示[J/OL]. 地质学报,doi:10. 19762/j. cnki. dizhixuebao.
2023041.[Wang Yehui, Xie Yuanyun, Kang Chunguo, et al. Detrital
zircon U-Pb age signatures of coarse-fine fractions in the
Horqin sand land: Implications for quantitative provenance and
regional tectonic-magmatic evolutionary events[J/OL]. Acta
Geologica Sinica, doi:10. 19762/j. cnki. dizhixuebao. 2023041.]
[95] 孔令耀,郭盼,万俊,等. 大别造山带中元古代变沉积岩碎屑
锆石U-Pb 年代学与Hf 同位素特征及其地质意义[J]. 地球科
学,2022,47(4):1333-1348.[Kong Lingyao, Guo Pan, Wan
Jun, et al. Detrital zircon U-Pb geochronology and Hf isotopes
of Mesoproterozoic metasedimentary rocks in Dabie Orogen and
its geological significance[J]. Earth Science, 2022, 47(4): 1333-
1348.]
[96] 李锦轶,高立明,孙桂华,等. 内蒙古东部双井子中三叠世同
碰撞壳源花岗岩的确定及其对西伯利亚与中朝古板块碰撞时
限的约束[J]. 岩石学报,2007(3):565-582.[Li Jinyi, Gao
Liming, Sun Guihua, et al. Shuangjingzi Middle Triassic syncollisional
crust-derived granite in the east Inner Mongolia and
its constraint on the timing of collision between Siberian
and Sino-Korean paleo-plates[J]. Acta Petrologica Sinica, 2007
(3): 565-582.]
[97] Jian P, Liu D Y, Kr?ner A, et al. Evolution of a Permian intraoceanic
arc-trench system in the Solonker suture zone, Central
Asian Orogenic Belt, China and Mongolia[J]. Lithos, 2010, 118
(1/2): 169-190.
[98] Wang Y N, Xu W L, Wang F. Transition from a passive to active
continental margin setting for the NE Asian continental margin
during the Mesozoic: Insights from the sedimentary formations
and paleogeography of the eastern Jiamusi massif, NE China[J].
GSA Bulletin, 2022, 134(1/2): 94-112.
[99] Wilde S A. Final amalgamation of the Central Asian Orogenic
Belt in NE China: Paleo-Asian Ocean closure versus paleo-
Pacific plate subduction-a review of the evidence[J]. Tectonophysics,
2015, 662: 345-362.
[100] 吴福元,王建刚,刘传周,等. 大洋岛弧的前世今生[J]. 岩石
学报,2019,35(1):1-15.[Wu Fuyuan, Wang Jiangang, Liu
Chuanzhou, et al. Intra-oceanic arc: Its formation and evolution
[J]. Acta Petrologica Sinica, 2019, 35(1): 1-15.]
[101] Xu B, Charvet J, Chen Y, et al. Middle Paleozoic convergent
orogenic belts in western Inner Mongolia (China): Framework,
kinematics, geochronology and implications for tectonic evolution
of the Central Asian Orogenic Belt[J]. Gondwana Research,
2013, 23(4): 1342-1364.
[102] Zhou J B, Wilde S A. The crustal accretion history and tectonic
evolution of the NE China segment of the Central Asian
Orogenic Belt[J]. Gondwana Research, 2013, 23(4): 1365-
1377.
[103] Guo L, Wang T, Castro A, et al. Petrogenesis and evolution of
Late Mesozoic granitic magmatism in the Hohhot metamorphic
core complex, Daqing Shan, North China[J]. International
Geology Review, 2012, 54(16): 1885-1905.
[104] Wu F Y, Yang J H, Xu Y G, et al. Destruction of the North China
Craton in the Mesozoic[J]. Annual Review of Earth and
Planetary Sciences, 2019, 47: 173-195.
[105] Ma Q, Xu Y G. Magmatic perspective on subduction of paleo-
Pacific plate and initiation of big mantle wedge in East Asia[J].
Earth-Science Reviews, 2021, 213: 103473.
[106] Yang W, Li S G. Geochronology and geochemistry of the Mesozoic
volcanic rocks in western Liaoning: Implications for
lithospheric thinning of the North China Craton[J]. Lithos,
2008, 102(1/2): 88-117.
[107] Jiang Y H, Jiang S Y, Ling H F, et al. Petrogenesis and tectonic
implications of Late Jurassic shoshonitic lamprophyre dikes
from the Liaodong Peninsula, NE China[J]. Mineralogy and
Petrology, 2010, 100(3/4): 127-151.
[108] 刘永江,冯志强,蒋立伟,等. 中国东北地区蛇绿岩[J]. 岩石
学报,2019,35(10):3017-3047. [Liu Yongjiang, Feng
Zhiqiang, Jiang Liwei, et al. Ophiolite in the eastern Central
Asian Orogenic Belt, NE China[J]. Acta Petrologica Sinica,
2019, 35(10): 3017-3047.]
[109] Fang W, Dai L Q, Zheng Y F, et al. Identification of Jurassic
mafic arc magmatism in the eastern North China Craton:
Geochemical evidence for westward subduction of the paleo-
Pacific slab[J]. GSA Bulletin, 2021, 133(7/8): 1404-1420.