呼其图 关平 王大华 李世恩 肖永军 张驰 白璐 张济华
摘 要 【目的】柴达木盆地北缘东段地区广泛出露侏罗纪残留地层。由于后期强烈改造,该地区侏罗纪原型盆地被严重破坏,其残留凹陷原始沉积关系、原型盆地发育及展布规律一直是学术界的研究热点。【方法】通过对该地区中侏罗统碎屑岩样品的重矿物Q型聚类分析、全岩地球化学以及碎屑锆石U-Pb年代学分析,进行了系统物源分析,并结合古构造背景、地层与沉积相特征,对该地区侏罗纪原型盆地进行了初步探讨。【结果与结论】(1)中侏罗世,可将研究区划分为5个沉积体系,各沉积区重矿物组合、全岩地球化学以及碎屑锆石年龄特征相异;(2)研究区物源母岩主要为中—酸性岩浆岩,混有不同程度的再旋回沉积岩;(3)物源区岩石的成因以大陆岛弧和活动大陆边缘为主,且普遍受到两期岩浆事件(200~300 Ma和400~500 Ma)的影响;(4)研究区与潜在物源区特征对比显示,A区物源主要来自柴北缘构造带,少量物源来自欧龙布鲁克古地块;B区物源主要来自北偏东方向的南祁连地体;C区和D区物源主要来自近物源供给,推测为北方向的古隆起;E区物源主要来自东部东昆仑鄂拉山附近;(5)研究区在大煤沟组第五段时期,发育多个小型分隔型湖盆,而到了大煤沟第七段时期,小柴旦—红山地区和霍布逊地区湖盆连通,成为统一湖盆。研究结果对于了解柴达木盆地侏罗纪演化,指示青藏高原北缘盆山体系的相互作用以及指导柴北缘东段油气勘探具有科学意义。
关键词 柴北缘东段;中侏罗统;物源分析;重矿物组合;元素地球化学;碎屑锆石U-Pb年代学
第一作者简介 呼其图,男,1994年出生,硕士研究生,石油地质学,E-mail: huqtu@pku.edu.cn
通信作者 关平,男,教授,E-mail: pguanl@pku.edu.cn
中图分类号 P512.2 文献标志码 A
0 引言
柴达木盆地北缘(以下简称为“柴北缘”)地区,由于受到持续的构造运动改造,侏罗纪盆地原始面貌被严重破坏,发育一系列北西向和北东向的断裂带,侏罗纪残留凹陷星罗棋布,导致该地区侏罗纪盆地充填机制、构造—沉积演化和盆地性质难以确定,研究难度较大,因此一直是学术界研究的热点问题。近年来,前人对柴北缘侏罗系的地层分布与层序格架[1?2]、构造特征及演化[3?5]、源—汇体系及岩相古地理特征[6?13]等方面进行了大量的研究,并对柴北缘侏罗纪原型盆地进行了初步的恢复[12,14?15]。然而,上述研究更多的是从宏观层面对柴北缘[6,9,12,14]或聚焦柴北缘西段[10?11]进行了研究,涉及柴北缘东段地区的研究较为薄弱。
钻井及露头资料证实,柴北缘东段小柴旦—红山以及霍布逊地区广泛出露侏罗纪残留地层[5,15],但目前对该区侏罗系物源及原型盆地相关研究存在不少争议。Yu et al.[8]、钱涛等[9]、Qian et al.[12]以及李军亮等[15]学者认为,柴北缘东段侏罗系物源主要来自南祁连山、东昆仑山、柴北缘构造带以及欧龙布鲁克古地块,且在早—中侏罗世之间物源区发生了明显的变化;同时以他们为代表的一些学者认为侏罗纪早期柴北缘处于多个小型、分隔型湖盆发育阶段,到侏罗纪晚期发展成为较大的统一盆地,但各家对于湖盆连通时间说法不一致。Shu et al.[7]、孙昌[16]以及郭帅[17]认为柴北缘东段侏罗系物源来自北部宗务隆山、南祁连山以及柴北缘基底;同时Shu etal.[7]认为侏罗纪时期红山凹陷和霍不逊凹陷为独立的沉积湖盆,被现今山系(侏罗纪之前已隆升)所分隔。简星[18]和Ritts et al.[19]认为柴北缘物源主要来自南祁连山,中—晚侏罗世之间物源发生了明显变化。综合各家观点,对于柴北缘东段侏罗系的争议主要体现在以下两个方面:(1)对柴北缘东段侏罗系物源存在争议;(2)对柴北缘东段各个侏罗纪残留凹陷原始沉积关系存在争议。因此,有必要对该区的侏罗系物源进行深入研究,并探讨原型盆地发育情况。
物源是连接沉积盆地和造山带的纽带,对沉积盆地进行物源分析,有助于了解盆地沉积充填和构造演化,是重建古地理环境以及恢复盆山体系相互作用的重要手段[20?22]。目前,对于柴北缘东段侏罗系的系统物源分析相对较少,现有研究主要以典型剖面(如大煤沟剖面)为研究对象,推测整个地区的侏罗纪物源演化,且物源分析方法较为单一,缺乏多方法结合的全区域的系统物源研究。物源分析可分为传统物源分析方法和非传统物源分析方法[22?24]。碎屑重矿物作为沉积物源信息的重要载体,其不同的种类组合能够代表不同的物源母岩类型[25],因此重矿物组合分析是沉积物源示踪的基本且重要的方法。但是,传统的重矿物组合分析多为将同一剖面同一层位的多个样品数据进行算术平均,以其平均值来指示该剖面特定层位的重矿物组合特征[6?7,26]。这不但难以表征来自同一物源区各个重矿物间的内在联系,而且对于多个物源供给的沉积体系,很难识别区分混源特征[27]。而基于多元统计方法的重矿物组合分析,能够有效弥补传统分析方法的缺点,能够真实反映物源信息全貌[24,28]。
本文选取柴北缘东段多个野外剖面的中侏罗统碎屑岩样品,对其进行了重矿物组合、全岩地球化学以及碎屑锆石U-Pb年龄特征的分析,结合该区古构造演化的讨论,完成了柴北缘东段中侏罗统的系统物源分析。最后结合地层与沉积相研究,对柴北缘东段侏罗纪原型盆地进行了初步讨论。研究结果对于了解柴达木盆地演化,指示青藏高原北缘盆山体系的相互作用以及指导柴北缘东段油气勘探具有一定的指导意义。
1 地质背景与野外沉积相研究
柴达木盆地位于青藏高原的东北部,分别以祁连山、阿尔金山和东昆仑山为界,整体呈现为三角形的几何形态(图1a),其中柴北缘位于柴达木盆地的东北部,被阿尔金山北段和祁连山西段两大山系所夹,是柴达木盆地的一级构造单元[17,29]。研究区位于柴北缘东段,其北侧为南祁连构造带,南侧为埃南断裂带,东西分别以绿梁山和怀头塔拉—旺尕秀一线为界。研究区由于中生代以来燕山期和喜山期构造运动的改造,发育一系列北西向和北东向的断裂带,将研究区改造成多个菱形组合的构造带(图1b)。钻井和露头资料证实,研究区现有侏罗纪残留凹陷主要为小柴旦凹陷、红山凹陷以及霍布逊凹陷,此外侏罗系还分布在欧龙布鲁克山前和旺尕秀等地区(图1c)。
综合近几年的研究[7?8,12,15,17],柴达木盆地侏罗系由下至上可分为三统五组:即下侏罗统湖西山组、小煤沟组;中侏罗统大煤沟组下段(部分学者将其归到下侏罗统)和上段;上侏罗统采石岭组(部分学者将其归到中侏罗统)和红水沟组。本文通过对柴北缘东段多个野外剖面的实测,以及对已有钻井资料的分析,发现研究区中侏罗统普遍出露,下侏罗统和上侏罗统出露有限,因此将柴北缘东段地区侏罗系由下至上分为下侏罗统,中侏罗统大煤沟组4~7段以及上侏罗统,其中下、上侏罗统不做进一步划分。研究区侏罗系地层主要包括各种粒度的碎屑岩(图2)。通过分析各种相标志,在研究区总共识别出三种沉积相类型,分别为冲积扇、辫状河和湖泊相(图2)。其中在小柴旦—红山凹陷,大煤沟组第四段时期沉积有限,为粗粒沉积,属于辫状河—辫状河三角洲相;第五段时期,盆地范围扩大,主要发育辫状河三角洲前缘—湖泊相沉积,此时该地区盆地处于填平补齐阶段;第六段时期,盆地范围进一步扩大,主要发育浅湖相沉积,部分区域发育辫状河三角洲相沉积;到第七段时,湖盆面积达到最大,主要发育半深湖—深湖相沉积。霍布逊凹陷在中侏罗统沉积阶段,经历了湖盆的填平补齐和两次湖进事件:大煤沟组第四段到大煤沟组第五段时期为第一期旋回,第五段时部分地区发育滨岸沼泽和滨湖沉积;大煤沟组第六段到大煤沟组第七段时期为第二期旋回,在第六段时期普遍发育辫状河三角洲沉积的基础上,湖盆面积持续扩大到第七段末期,达到本地区最大范围。
2 样品和测试方法
根据研究区的侏罗纪地层出露情况,分别从柴北缘东段的7条野外剖面采集了72件中侏罗统碎屑岩样品开展分析测试(图1c),其中重矿物分析样品47件,全岩地球化学分析样品31件,碎屑锆石U-Pb年代学分析样品6件。取样过程中,选取风化蚀变和成岩作用相对较弱的新鲜样品,重矿物分析样品岩性以中砂岩为主,全岩地球化学分析样品为泥岩和泥质粉砂岩,碎屑锆石U-Pb年代学分析样品为细砂岩或中砂岩。
2.1 重矿物测试方法 重矿物鉴定工作在廊坊诚信地质服务有限公司完成。重矿物鉴定步骤为:将500 g左右的砂岩样品无污染破碎后,分散筛分,使用重液(三溴甲烷)分离出重矿物,通过电磁场将重矿物分为无磁、电磁和强磁三部分,分别称重,在偏光显微镜下采用线型法(Line Counting)鉴定记点,每个样品统计超过500个重矿物(其中DMG-13,由于样品量较少,只统计262个颗粒),计算出不同重矿物的百分含量,测试结果如表1。具体重矿物测试方法可参考文献[30]。
2.2 全岩地球化学测试方法
全岩地球化学测试在北京大学造山带与地壳演化教育部重点实验室完成。主量元素测试使用扫描型波长色散X 射线荧光光谱仪(XRF,Thermo ArlAdvant XP+)进行测试,微量和稀土元素测试使用激光耦合等离子体质谱仪(ICP-MS)进行测试。全岩地球化学测试的预处理为将样品用钢研钵研磨破碎后,用标准分样筛过筛保留小于200目的部分。主量元素测定时,全岩粉末通过碱溶后制成熔片,之后使用XRF测定,测试过程使用国际标样GSR-4标定,主量元素的精确度控制在2%以内。样品烧失量通过重量法测定。微量和稀土元素的测定使用ICP-MS,执行《硅酸盐岩石化学分析方法第30部分:44个元素量测定》的测试标准,测试的微量和稀土元素的精确度控制在10%以内。具体测试方法可参考文献[31]。
2.3 碎屑锆石U?Pb 年龄测试方法
锆石挑选、制靶以及CL图像拍摄工作均在廊坊诚信地质服务有限公司完成。锆石挑选在上述重矿物处理工作的基础上,借助双目镜手工提纯至300~500颗粒,再随机选择200颗锆石制成标靶,并在扫描电镜下拍摄CL图像。锆石U-Pb年龄测试工作在北京大学造山带与地壳演化教育部重点实验室完成,使用配备有德国Lambda Physik公司的Compex102Excimer 激光器(工作物质ArF,波长193 nm)的Agilient 7500a ICP-MS进行测试,详细测试流程可以参考文献[32]。同位素比值使用GLITTER 软件计算,普通铅Pb 使用Andersen[33]方法校正。年龄计算和年龄谱的绘制使用Isoplot (version 4.15)[34]进行。
3 重矿物组合特征
3.1 重矿物Q 型聚类分析
为消除重矿物从源到汇的过程中受到的地质作用的影响,将重矿物数据中的不透明矿物和自生透明矿物去除,如重晶石、含铁矿物等[26],并对剩余的透明重矿物以100%进行加权。选取锆石、金红石、电气石、白钛石、锐钛矿、磷灰石、石榴石、帘石类、榍石和辉石等10 种重矿物作为变量,采用Q 型聚类Average Linkage方法,聚类得到砂岩不同重矿物组合类型(图3)。选取的10种矿物总含量在98%以上,表明选取的变量合理且基本能够代表各样品的所有信息[27]。
聚类结果可分为5个重矿物组合类型:Ⅰ类组合主要包括花石沟—羊肠子沟—绿草沟剖面样品,重矿物组合以锆石为主,含有少量电气石、白钛石、金红石和石榴石;Ⅱ类组合主要为花石沟—羊肠子沟—绿草沟—旺尕秀剖面样品,重矿物组合以锆石、白钛石、电气石和锐钛矿等矿物为主,同时含有少量金红石和石榴石等,与Ⅰ类组合一致,但相比前者锆石含量明显减少,含钛矿物含量显著上升;Ⅲ类组合主要为大煤沟剖面样品,重矿物组合以磷灰石和锆石为主,含有较低的锐钛矿、白钛石和电气石,大煤沟地区重矿物组合明显区别于研究区其他地区,磷灰石含量显著上升;Ⅳ类组合为红山沟—达山西剖面样品,重矿物组合以石榴石和帘石类为主,含有少量磷灰石、锆石和白钛石,与其他地区相比,该组合类型以石榴石为主且不稳定重矿物含量较高;Ⅴ类组合主要为旺尕秀剖面样品,重矿物以白钛石为主,次要重矿物组合为锆石、锐钛矿和电气石(图3,4)。
3.2 重矿物组合对物源的指示
Q型聚类分析能够较为完整的还原重矿物组合信息,而不同类型的重矿物组合则可以有效反映物源区的母岩特征[35]。本文在聚类分析结果基础上,对不同类型的重矿物组合进行了母岩类型的判别(表2),并将中侏罗世柴北缘东段划分为5个沉积体系(图4),分别为。
绿草沟—羊肠子沟—花石沟地区(A区)为一个沉积体系,包括Ⅰ类和Ⅱ类重矿物组合。I类和Ⅱ类重矿物组合尽管在重矿物含量上存在不同,但重矿物组合一致,主要为锆石、白钛石、电气石和锐钛矿,且母岩均为沉积岩和酸性岩浆岩,因此归为同一沉积体系。此外,A区相比其他沉积区,ZTR指数普遍较高,表明该区物源再旋回沉积岩的贡献较多,且沉积区离物源区较远。
大煤沟地区(B区)为一个沉积体系,为Ⅲ类重矿物组合,主要为磷灰石、锆石、锐钛矿和白钛石,母岩为酸性岩浆岩。此外,对于下、上侏罗统的重矿物组合物源研究同样表明大煤沟地区重矿物组合与柴北缘东段其他剖面存在明显不同,属于不同的沉积体系(未发表数据)。
红山沟和达山西地区虽然重矿物组合一致,均为Ⅳ类组合,以石榴石、帘石类、磷灰石和锆石为主,且物源母岩岩性相同,均为变质岩和酸性岩浆岩,但考虑到两个地区现今地理位置较远,地球化学和年代学分析都指示两者具有完全不同的性质(见后文),因此归为不同的沉积体系,分别为C区和D区。C区和D区沉积物不稳定重矿物含量相比其他地区明显较高,ZTR 指数较低,指示二者为近源沉积。
旺尕秀地区(E区)为一个沉积体系,为Ⅴ类重矿物组合,以白钛石为主,含有一定量的锐钛矿和电气石,母岩以再旋回沉积岩为主。旺尕秀地区与柴北缘东段其他地区相隔较远,可能属于柴北缘东段的外围剖面,存在不同的物源来源。
4 全岩地球化学特征
4.1 主、微量元素特征
泥岩和泥质粉砂岩主量元素对北美页岩标准化图显示(图5a),相对于北美页岩,部分主量元素表现为亏损状态,其中严重亏损CaO和Na2O,较为亏损Fe2O3、MgO、MnO以及P2O5,轻微亏损K2O。花石沟、绿草沟和羊肠子沟(A区)泥岩样品主量元素特征较为一致(Na2O含量的不同可能与后期遭受的风化作用的强度不同有关),明显区别于红山沟(C区)、达山西(D区)泥岩样品,前者CaO、Na2O、MnO以及P2O5亏损更为明显,红山沟(C区)泥岩样品仅CaO较为亏损,指示为不同的物源体系。而达山西(D区)样品除SiO2、Al2O3和TiO2以外,其余主量元素均严重亏损,明显区别于其他地区,同样指示具有不同的物源来源。
泥岩和泥质粉砂岩微量元素,相对于上地壳而言(图5b),整体亏损高场强元素Nb和Ta。其中泥岩明显富集Cs、Th、U和V,明显亏损Sr,轻微亏损 Ta;泥质粉砂岩除Ba较为富集以外,其余微量元素均为亏损状态,明显亏损Cs以及高场强元素。泥岩微量元素配分模式具有非常高的一致性,指示研究区整体为较稳定的地块。其中红山沟(C区)泥岩样品表现出与其他剖面样品的不同,相对富集Sr、Ba等大离子亲石元素和V、Co等亲硫元素,相对亏损Nb、Ta等高场强元素;达山西(D区)泥岩样品相对其他样品明显富集Cs,亏损Rb、Ba,指示可能来自不同的物源区。
在稀土元素对上地壳标准化模式图中(图5c),泥岩样品稀土元素配分模式具有非常高的一致性,而泥质粉砂岩样品具有明显的差异,稀土元素总含量泥岩相比泥质粉砂岩更高,分别为124.58~321.19 μg/g(平均值为243.93 μg/g),42.41~708.83μg/g(平均值为207.81 μg/g)。相对于上地壳,研究区样品稀土元素总含量更接近于北美页岩平均稀土元素总含量(173.2 μg/g)[36]。将泥岩稀土元素对北美页岩标准化后(图5d),发现花石沟、羊肠子沟和绿草沟(A区)泥岩样品表现出轻微的轻稀土富集和重稀土亏损的特征,红山沟(C区)和大煤沟(B区)泥岩样品也有类似特征(LREE/HREE=6.21~10.22,平均值为7.74;LaN/YbN=0.31~6.38,平均值为1.48)。达山西(D区)样品表现出较为一致的轻重稀土元素配分模式,与其他泥岩样品明显不同,指示达山西与上述剖面(包括红山沟)为不同的沉积体系。此外,研究区泥岩样品整体上表现为Eu 元素轻微负异常(0.84~1.07,平均值为0.99)。
4.2 地球化学特征对物源的指示
沉积岩的化学成分记录了物源区的物质成分信息,尤其是稀土元素、高场强元素以及一些大离子亲石元素等微量元素,如La、Sc、Co、Th、Zr、Hf、Ti等,由于其极低的溶解度和迁移性,能够较为完整的保存物源区信息,是判断物源母岩类型和物源区构造背景的有效工具[38?39]。此次利用元素特征以及前人总结的图解法进一步推测了物源区特征。
Roser et al.[40]提出利用沉积岩主量元素判别函数F1-F2的二元图解判断物源区母岩岩性。如图6a所示,样品主要落在中性岩浆岩、酸性岩浆岩以及石英质物源区域,其中A区主要落在中性岩浆岩和石英质物源区域,指示研究区以中酸性岩浆岩物源为主,再旋回沉积岩物源供给为次,C区和D区主要落在基性铁镁质物源区,指示受到玄武质物源的供给。此外,A区主量元素配分模式明显区别于C区和D区,C区和D区也表现为不同的特征。
McLennan et al.[41]提出可以使用Th/Sc vs. Zr/Sc二元图解评价沉积物的物源成分变化以及沉积再旋回的影响。研究区中侏罗统泥岩样品较为一致的Th/Sc比值表明源区母岩成分整体上为岩浆岩和再旋回沉积岩的混合,其中A区样品受到再旋回沉积岩的影响较为明显(羊肠子沟样品尤为明显),与重矿物组合ZTR指数较高特征相符合(图6b)。Floydet al.[42]建立的La/Th vs. Hf二元图解以及Gu et al.[43]建立的Co/Th-La/Sc二元图解可以用来判断不同的弧成分和沉积物源。在La/Th vs. Hf二元图解中(图6c),研究区中侏罗统样品除了部分泥质粉砂岩样品以外整体表现为较低的La/Th比值(平均值为2.74),较高的Hf含量(平均值为7.88),表明研究区中侏罗统物源主要为酸性岩浆岩,且存在一定的再旋回沉积岩,其中A区受到沉积岩再旋回的影响较大,部分B区以及C区泥质粉砂岩样品表现为混合岩浆岩物源的特征。Co/Th-La/Sc二元图解显示(图6d),研究区中侏罗统样品主要落在长英质火山岩源区附近,轻微偏向花岗岩源区,其中Co/Th平均值为1.51,La/Sc平均值为3.95,表明源岩是以长英质物源为主,有花岗岩物源的混入。
此外,长英质物源具有Eu的负异常以及LREE/HREE的高比值[23]。研究区稀土元素配分模式具有相似的特征,表现为轻稀土元素轻微富集(图5d),Eu显示轻微负异常(0.84~1.07,平均值为0.99)以及LREE/HREE比值较高(6.21~10.22,平均值为7.74),同样表明柴北缘东段具有长英质物源特征。
综上,研究区中侏罗统物源整体上以酸性物源为主,不同程度地受到再旋回沉积岩的影响。其中A区受到再旋回沉积岩贡献较为明显(羊肠子沟样品尤为明显),B区具有长英质和玄武质混合物源的特征,C区和D区具有长英质和安山质混合物源特征,但二者具有明显不同的元素特征,属于不同的沉积体系,E区表现为酸性物源特征(只有一个泥质粉砂岩样品)。上述结果与重矿物组合分析结果较为一致。
5 碎屑锆石U?Pb年代学特征
5.1 柴北缘东段中侏罗统砂岩年龄特征
基于上述沉积体系划分结果,选取较为典型的样品进行了碎屑锆石U-Pb年龄测试(表3)。一般来说,对于典型的碎屑锆石U-Pb定年,每个样品大约选取80~110颗锆石进行测试即可满足有效统计分析的要求[44],但本次研究中部分样品中锆石不满足测试要求,导致有效测点较少(rHSG-7样品仅有21个有效测点)。
锆石内部结构、Th/U比值以及稀土元素含量是确定锆石成因的重要条件[12]。本次研究中,阴极发光照片显示,大部分锆石颗粒为自形—半自形,不同程度地保留岩浆震荡环带(图7)且具有较高的Th/U 比值,表明绝大多数锆石为岩浆结晶锆石。剔除谐和度小于90% 的锆石年龄数据,对大于1 000 Ma的锆石采用207Pb/206Pb年龄,对小于1 000 Ma的年龄采用206Pb/238U年龄,绘制了如图8a所示的碎屑锆石年龄谱。同时总结了前人关于潜在物源区的年代学研究成果,绘制了如图8b所示的潜在物源区年龄谱。
碎屑锆石年龄谱显示,柴北缘东段中侏罗统碎屑锆石具有6个年龄段组合,分别为200~300 Ma(二叠纪—三叠纪);400~500 Ma(晚寒武世—早泥盆世);750~1 000 Ma(新元古代);1 600~1 800 Ma(古元古代晚期);2 000~2 200 Ma(古元古代中期)2 300~2 600 Ma(新太古代—古元古代早期),可以看出不同沉积区的砂岩样品具有不同的年龄特征,且有一定的规律性(图8a)。
5.2 碎屑锆石年龄对物源的指示
研究区中侏罗统砂岩样品以晚寒武世—早泥盆世、二叠纪—三叠纪两期锆石年龄为主。A区绿草沟以及花石沟样品均以二叠纪—三叠纪和晚寒武世—早泥盆世锆石年龄为主,含有少量古元古代晚期和新太古代—古元古代早期锆石年龄,同样指示来自同一物源区。羊肠子沟砂岩样品锆石年龄较为古老,主要为新太古代—古元古代,指示物源母岩较为古老,结合全岩地球化学分析结果,推测受到再旋回沉积岩的影响较多,可能为多物源供给的结果。综合认为,羊肠子沟地区虽然与花石沟和绿草沟地区属于同一沉积体系,但同时受到多个物源的供给(后文将详细讨论)。羊肠子沟样品在重矿物Q型聚类分析中较为分散的特征也可以证明这一点(图3)。B区大煤沟样品以二叠纪—三叠纪年龄为主,奥陶纪—早泥盆世锆石年龄为辅[8,18],与A区年龄特征相似,但综合考虑前文重矿物和地球化学分析结果,认为具有不同的物源来源,应单独讨论。C区红山沟砂岩样品以二叠纪—三叠纪锆石和晚寒武世—早泥盆世锆石年龄为主,同B区大煤沟情况类似,应单独讨论其物源。值得注意的是,红山沟样品有效年龄数据较少,年代学物源指向性可能较弱。D区达山西砂岩样品年龄以新元古代为主,以晚寒武世—早泥盆世为次,与A区砂岩样品锆石年龄存在不同,推测具有单独的物源来源或者受到多物源供给,属于不同的物源体系。E区旺尕秀样品以新太古代—古元古代为主[18],相比其他地区年龄较为古老。下面将结合古构造背景进行详细讨论。
6 柴北缘东段古构造背景讨论
柴北缘侏罗纪盆地的发育与该区前侏罗纪的大地构造演化密不可分,因此讨论柴北缘古构造演化是判断该区侏罗纪原型盆地物源以及了解盆山体系相互作用的重要方式。
如上所述,柴北缘东段中侏罗统碎屑锆石U-Pb年龄以晚寒武世—早泥盆世、二叠纪—三叠纪为主,以太古代—古元古代早期、古元古代晚期等较老年龄(主要为羊肠子沟)为辅,且重矿物和地球化学特征指示物源母岩主要为中—酸性岩浆岩,混有不同程度的再旋回沉积岩,表明该区物源区的岩石由至少两期岩浆活动事件所形成。同时,微量和稀土元素的Th-Co-Zr/10、Th-Sc-Zr/10 和La-Th-Sc 三端元图解显示(图9),物源区岩石基本上在大陆岛弧和活动大陆边缘区域,少量羊肠子沟样品在被动大陆边缘区域;稀土元素整体上轻微富集LREE,显示轻微Eu负异常,指示柴北缘东段中侏罗统物源区岩石形成时的构造环境以大陆岛弧和活动大陆边缘为主[39](图5d)。因此,推测晚寒武世—早泥盆世与二叠纪—三叠纪这两期岩浆活动事件应该代表了柴北缘物源区的两次重要的构造活动,而较老的年龄(主要为羊肠子沟)则可能代表了柴北缘地区基底的再旋回。结合前人研究,进行如下讨论。
柴北缘地区从大地构造背景上可分为狭义上的柴北缘构造带、欧龙布鲁克古地块(或全吉地块)和宗务隆早古生代—晚古生代裂陷槽三个构造单元[73],南北分别为柴达木地体和南祁连山构造带(图10)。这些地质单元构成了柴北缘东段侏罗系的潜在物源区(图1c)。
柴北缘地区经历了早古生代的洋壳俯冲—陆陆碰撞造山—陆壳俯冲阶段以及晚古生代的后造山陆内伸展—挤压造山隆升阶段。加里东运动时期,柴北缘洋壳开始向欧龙布鲁克地块俯冲并最终发生柴达木地块—欧龙布鲁克古地块的陆陆碰撞造山,形成了滩间山蛇绿岩—岛弧火山岩带和鱼卡—沙柳河高压—超高压碰撞构造带[48]。上述加里东期形成的两个构造带统称为柴北缘构造带或柴北缘UHP构造带[7?8,12,73],该构造带主要发育以滩间山群为代表的造山带型沉积建造,以浅变质的碎屑岩—碳酸盐岩和岩浆岩组合(包括榴辉岩、石榴石橄榄岩和石榴石辉石岩集合体)为特征,代表了活动大陆边缘和岛弧环境[14,48]。在前人对柴北缘构造带的年龄认识基础上,结合上述所测得年龄和地球化学判识,认为这一时期形成的岩石组合构成了柴北缘中侏罗统母岩的主要岩石类型(图8)。这一结论也得到了其他学者的支持[8?9,12]。
晚海西期—印支期,柴北缘受到北部宗务隆裂陷槽闭合和北特提斯洋俯冲消减的影响,发生构造反转,在挤压构造背景下使得柴北缘地区活化再次隆升,导致早二叠统直至中三叠统被剥蚀[48,73]。在该阶段,柴北缘主要发育碎屑岩—碳酸盐岩以及伴随印支期构造运动的岩浆岩组合(锡铁山附近有广泛出露)[12,14]。结合前人以及本文研究(图8),认为印支期的岩石组合构成了柴北缘中侏罗统母岩的次要岩石类型。
值得注意的是,欧龙布鲁克古地块在加里东期和晚海西—印支期,一直处于被挤压隆升状态,且该地块为古老的克拉通残余地块,主要由前寒武变质结晶基底(包括德令哈杂岩、达肯达坂群以及全吉群)[12,48]和早古生代地台型稳定沉积建造(碎屑岩—碳酸盐岩组合)[14]组成,代表了被动大陆边缘构造环境。结合碎屑锆石年龄特征(图8),认为该地块为柴北缘东段侏罗系提供了部分物源(尤其是羊肠子沟地区)。
中生代末期—新生代以后,在燕山晚期—喜山期构造运动下,受印度板块和欧亚板块碰撞的影响,柴北缘中生界遭受抬升剥蚀,侏罗纪原型盆地被严重破坏,形成了现今柴北缘东段的沉积—构造格局[16?18](图1b、图10)。
综上所述,柴北缘地区在前侏罗纪发生的两期较大的岩浆事件以及同时期欧龙布鲁克古地块的抬升控制了研究区的中侏罗统物源供给,分别为:(1)晚寒武世—早泥盆世之间的加里东期岩浆事件,是柴北缘东段中侏罗统的主要物源区;(2)二叠纪—三叠纪之间的海西—印支期岩浆事件,是该区的次要物源区。
7 柴北缘东段中侏罗统物源方向推测及原型盆地初步分析
柴北缘东段侏罗纪原型盆地难以识别,各侏罗纪残留凹陷原始沉积关系不清,因此理应对各侏罗纪沉积区分开进行物源讨论,而非从宏观层面[15,17?19]或以典型剖面为例[8?9,13,16]进行推测。通过对比研究区以及潜在物源区的岩石学、年代学以及大地构造背景的特征,对中侏罗世各沉积区进行了如下的物源方向推测(图11)。
A区花石沟和绿草沟母岩岩性主要为中酸性岩浆岩和再旋回沉积岩,年龄以晚寒武世—早泥盆世和二叠纪—三叠纪为主,ZTR指数较为一致,指示母岩主要为加里东期和印支期岩体,且从源到汇搬运距离较为一致。考虑到柴北缘构造带的出露特征以及上述古构造背景的讨论,推测A区花石沟和绿草沟地区的物源来自锡铁山方向柴北缘构造带(岛弧—火山岩带和高压—超高压碰撞带),欧龙布鲁克古地块有少量物源供给。上述结论与前人主要物源为南祁连山[17?19]或东昆仑山[8,15]的观点不一致。A区羊肠子沟地区虽与上述地区归为同一类沉积体系,但母岩岩性以再旋回沉积岩为主(地球化学分析结果,图6),母岩年龄较老(图8a),表明物源区受到柴北缘地区两期岩浆活动的影响较少,因此认为羊肠子沟具有多个物源来源。结合碎屑锆石年龄对比(图8)和古构造背景讨论,认为羊肠子沟地区主要物源来自欧龙布鲁克古地块,次要物源来自与花石沟和绿草沟同源的柴北缘构造带,这也符合羊肠子沟物源区表现为稳定的被动大陆边缘构造背景的特征(图9)。Yu et al.[8]、钱涛等[9]以及Qian et al.[12]以及也得出了同样的结论。此外,A区较高的ZTR指数说明A区离物源区较远,并非现今相近的隆凹相间的构造格局;红山凹陷和霍布逊凹陷同属一个沉积体系说明,埃姆尼克山和达达肯乌拉山并非Shu et al.[7]所认为的侏罗纪时期已经隆起,分隔了红山凹陷和霍布逊凹陷,而是后来遭到了挤压隆升。
B区大煤沟重矿物组合和地球化学特征与其他沉积区具有明显的不同,属于独立的沉积体系,应单独对其进行物源讨论,且本文认为不能通过大煤沟剖面的研究来指示柴北缘东段(或柴北缘)的侏罗纪物源演化。大煤沟地区物源母岩主要为酸性岩浆岩,母岩年龄以二叠纪—三叠纪为主,奥陶纪—早泥盆世[8,18]为辅,表明该区物源区更多地受到海西—印支期岩浆活动的影响,推测为宗务隆裂陷槽闭合的结果。根据与潜在物源区的年龄对比(图8),以及自东北向西南方向的古水流[15,17],本文推测B区物源主要来自北偏东方向的南祁连地体,次要物源来自欧龙布鲁克古地块。上述结论与前人认为大煤沟物源主要来自宗务隆山的观点不一致[7,17]。
尽管C区红山沟和D区达山西具有相似的重矿物组合特征,但年代学和地球化学特征表明,两者为独立的沉积体系。而且二者地理位置较远,不太可能受到统一物源的供给。C区红山沟母岩年龄为二叠纪—三叠纪和晚寒武世—早泥盆世,具有与A区较为一致的年龄特征,但重矿物组合和地球化学特征表明其具有与A区完全不同的物源来源。从较低的ZTR指数(表1)以及与周缘基岩较为一致的重矿物比例特征[7],推测红山沟物源主要来自北部的近源古隆起,有待进一步研究证实。D区达山西地区母岩年龄以新元古代为主,以晚寒武世—早泥盆世为次,表明该区具有混合物源特征,主要物源与霍布逊凹陷主体部分不同,但依旧受到柴北缘构造带加里东期岩体的物源供给。钻井数据表明达山西北方向为古隆起(欧1井只有上侏罗统),加之较低的ZTR指数,认为其物源主要来自北方向的近源古隆起。
E区旺尕秀相比研究区其他地区,属于外围剖面。旺尕秀母岩岩性以再旋回沉积岩为主,年龄较老,以新太古代—古元古代为主[18],指示旺尕秀物源区并未受到柴北缘两期岩浆事件的影响,物源为古老的基底岩石,推测来自东昆仑鄂拉山地区,有待进一步研究。
结合物源分析结果以及地层与沉积相认识,对柴北缘东段中侏罗世原型盆地初步分析认为,在大煤沟组第五段时期,研究区主要发育一套河流相—滨湖相沉积体系。各剖面大煤沟组第五段与下伏地层不整合关系指示(图2),直到该时期侏罗纪湖盆并未广泛发育,仅在大煤沟地区、小柴旦—红山地区以及霍布逊地区零星发育。其中需要特别指出的是,大煤沟地区与小柴旦—红山地区为两个独立的沉积体系。在大煤沟组第七段时期,研究区主要发育一套河流相—滨湖—浅湖—半深湖的沉积体系。相比大煤沟组第五段,此时小柴旦—红山地区和霍布逊地区湖盆连通,大煤沟地区湖盆范围进一步扩大,且在红山沟地区和达山地区发育一套新的湖相—滨湖沉积体系,地层情况与大煤沟相似,为单独的沉积体系(图12)。结合前人关于柴北缘东段侏罗纪的构造研究[8,12,14?15],认为柴北缘东段,大煤沟组第五段时期,发育多个小型分隔型湖盆,到大煤沟第七段时期,小柴旦—红山地区和霍布逊地区湖盆连通,成为统一湖盆。值得注意的是,大煤沟、红山沟以及达山西地区为独立的沉积体系,不属于统一湖盆。
8 结论
(1) 重矿物Q型聚类分析结果表明,在柴北缘东段共识别出5个沉积体系,各沉积区重矿物组合特征明显,具有明显的分区性。
(2) 研究区中侏罗统物源母岩以中—酸性岩浆岩为主,混有不同程度的再旋回沉积岩。
(3) 柴北缘东段母岩构造背景以大陆岛弧和活动大陆边缘为主,前侏罗纪的两期岩浆事件(200~300 Ma和400~500 Ma)以及同时期欧龙布鲁克古地块的抬升控制了研究区的物源供给,其中加里东期形成的大陆岛弧和活动大陆边缘成因的岩石组合构成了物源区的主要岩石类型。
(4) 通过对比研究区与潜在物源区特征,认为A区物源主要来自锡铁山方向柴北缘构造带,其中羊肠子沟主要物源来自欧龙布鲁克古地块;B区物源主要来自北偏东方向的南祁连地体;C区和D区物源主要来自近物源供给,推测为北方向的古隆起;E区物源主要来自东部的鄂拉山地区。
(5) 大煤沟组第五段时期,柴北缘东段发育多个小型分隔型湖盆,到大煤沟第七段时期,小柴旦—红山地区和霍布逊地区湖盆连通,成为统一湖盆。值得注意的是,大煤沟、红山沟以及达山西地区为独立的沉积体系,不属于统一湖盆。
致谢 感谢厦门大学简星老师以及另外两位审稿专家提出的宝贵意见,使得本文内容更加科学严谨。感谢编辑老师在修改过程中提供的帮助。本文所用柴北缘东段的元素地球化学数据、锆石测年数据可以通过国家冰川冻土沙漠科学数据中心获取,网址http://www.ncdc.ac.cn/portal/metadata/0e59815a?2de2?4032?9e92?cde43475f0c1。
参考文献(References)
[1] 邵龙义,李猛,李永红,等. 柴达木盆地北缘侏罗系页岩气地质
特征及控制因素[J]. 地学前缘,2014,21(4):311-322.[Shao
Longyi, Li Meng, Li Yonghong, et al. Geological characteristics
and controlling factors of shale gas in the Jurassic of the northern
Qaidam Basin[J]. Earth Science Frontiers, 2014, 21(4):
311-322.]
[2] 郭佳佳,孙国强,龙国徽,等. 柴达木盆地北缘冷湖五号构造下
侏罗统沉积—成岩环境分析[J]. 天然气地球科学,2017,28
(12):1839-1845.[Guo Jiajia, Sun Guoqiang, Long Guohui, et
al. Sedimentary diagenesis environment of the Lower Jurassic in
Lenghu V tectonic belt, northern Qaidam Basin[J]. Natural Gas
Geoscience, 2017, 28(12): 1839-1845.]
[3] 李明义,岳湘安,江青春,等. 柴达木盆地北缘主要构造带构造
演化与油气成藏关系[J]. 天然气地球科学,2012,23(3):461-
468.[Li Mingyi, Yue Xiang'an, Jiang Qingchun, et al. Relationship
between hydrocarbon accumulation and tectonic evolution in
main structural belt of the northern border of Qaidam Basin[J].
Natural Gas Geoscience, 2012, 23(3): 461-468.]
[4] 方世虎,赵孟军,张水昌,等. 柴达木盆地北缘构造控藏特征与
油气勘探方向[J]. 地学前缘,2013,20(5):132-138.[Fang Shihu,
Zhao Mengjun, Zhang Shuichang, et al. Structural control on
hydrocarbon accumulation and its implication for petroleum exploration
in northern Qaidam Basin[J]. Earth Science Frontiers,
2013, 20(5): 132-138.]
[5] 孙波,王金铎,王大华,等. 柴北缘东段中—新生代构造演化及
其对油气的控制作用[J]. 中国石油勘探,2019,24(3):351-360.
[Sun Bo, Wang Jinduo, Wang Dahua, et al. Mesozoic-Cenozoic
structural evolution and its control over oil and gas in the eastern
section of the northern margin of the Qaidam Basin[J]. China
Petroleum Exploration, 2019, 24(3): 351-360.]
[6] Jian X, Guan P, Zhang D W, et al. Provenance of Tertiary sandstone
in the northern Qaidam Basin, northeastern Tibetan Plateau:
Integration of framework petrography, heavy mineral analysis and
mineral chemistry[J]. Sedimentary Geology, 2013, 290: 109-125.
[7] Shu D G, Xu S M, Wu S, et al. Jurassic sedimentary provenances
of the Hongshan and Huobuxun Sags in the eastern segment of the
northern Qaidam Basin: Basin-mountain coupling[J]. Geological
Journal, 2017, 52(Suppl. 1): 380-393.
[8] Yu L, Xiao A C, Wu L, et al. Provenance evolution of the Jurassic
northern Qaidam Basin (West China) and its geological implications:
Evidence from detrital zircon geochronology[J]. International
Journal of Earth Sciences, 2017, 106(8): 2713-2726.
[9] 钱涛,王宗秀,柳永清,等. 柴达木盆地北缘侏罗纪沉积物源分
析:地层序列及LA-ICP-MS 年代学信息[J]. 中国科学(D辑):
地球科学,2018,48(2):224-242.[Qian Tao, Wang Zongxiu, Liu
Yongqing, et al. Provenance analysis of the Jurassic northern
Qaidam Basin: Stratigraphicsuccession and LA-ICP-MS geochronology[
J]. Science China (Seri. D): Earth Sciences, 2018, 48
(2): 224-242.]
[10] Zhao J F, Zeng X, Tian J X, et al. Provenance and paleogeography
of the Jurassic northwestern Qaidam Basin (NW China):
Evidence from sedimentary records and detrital zircon geochronology[
J]. Journal of Asian Earth Sciences, 2020, 190:
104060.
[11] Zhao X D, Zhao J F, Zeng X, et al. Early-Middle Jurassic paleogeography
reconstruction in the western Qaidam Basin: Insights
from sedimentology and detrital zircon geochronology[J]. Marine
and Petroleum Geology, 2020, 118: 104445.
[12] Qian T, Wang Z X, Wang Y, et al. Jurassic evolution of the
Qaidam Basin in western China: Constrained by stratigraphic
succession, detrital zircon U-Pb geochronology and Hf isotope
analysis[J]. GSA Bulletin, 2021, 133(11/12): 2291-2318.
[13] Hu J J, Ma Y S, Li Z X, et al. Jurassic sediments geochemical
constraints on provenance, weathering process, and palaeoclimate
variation of the north margin of Qaidam Basin, northeastern
Tibetan Plateau[J]. Geological Journal, 2020, 55(4):
3247-3257.
[14] 冯乔,付锁堂,张小莉,等. 柴达木盆地及邻区侏罗纪原型盆
地恢复及油气勘探前景[J]. 地学前缘,2019,26(1):44-58.
[Feng Qiao, Fu Suotang, Zhang Xiaoli, et al. Jurassic prototype
basin restoration and hydrocarbon exploration prospect in the
Qaidam Basin and its adjacent area[J]. Earth Science Frontiers,
2019, 26(1): 44-58.]
[15] 李军亮,肖永军,王大华,等. 柴达木盆地东部侏罗纪原型盆
地恢复[J]. 地学前缘,2016,23(5):11-22.[Li Junliang, Xiao
Yongjun, Wang Dahua, et al. Jurassic prototype basin
reconstruction in east part of Qaidam Basin[J]. Earth Science
Frontiers, 2016, 23(5): 11-22.]
[16] 孙昌. 柴北缘大煤沟地区侏罗系大煤沟组物源分析[D]. 西
安:长安大学,2018.[Sun Chang. Provenance analysis of Jurassic
Dameigou Formation in Dameigou area, northern margin of
Qaidam Basin[D]. Xian: Chang'an University, 2018.]
[17] 郭帅. 柴北缘东段侏罗纪沉积—构造演化[D]. 青岛:中国石
油大学(华东),2012.[Guo Shuai. Research on Jurassic sedimentary
and tectonic evolution of the east sector of northern
Qaidam Basin[D]. Qingdao: China University of Petroleum
(East China), 2012.]
[18] 简星. 柴达木盆地北部中—新生代沉积演化及其构造、气候
意义[D]. 北京:北京大学,2013.[Jian Xing. Controls on Mesozoic
and Cenozoic sedimentary evolution of the northern
Qaidam Basin: Tectonic and climatic implications[D]. Beijing:
Peking University, 2013.]
[19] Ritts B D, Biffi U, Hendrix M, et al. Mesozoic northeast
Qaidam Basin: Response to contractional reactivation of the
Qilian Shan, and implications for the extent of Mesozoic
intracontinental deformation in Central Asia[M]//Hendrix M S,
Davis G A. Paleozoic and Mesozoic tectonic evolution of central
and eastern Asia: From continental assembly to intracontinental
deformation[M]. Boulder, Colorado: Geological
Society of America, 2001: 293-316.
[20] 王成善,李祥辉. 沉积盆地分析原理与方法[M]. 北京:高等教
育出版社,2003.[Wang Chengshan, Li Xianghui. Sedimentary
basin: From principles to analyses[M]. Beijing: Higher Education
Press, 2003.]
[21] Weltje G J, von Eynatten H. Quantitative provenance analysis of
sediments: Review and outlook[J]. Sedimentary Geology, 2004,
171(1/2/3/4): 1-11.
[22] 李林林. 盆地沉积物源分析研究进展[J]. 地壳构造与地壳应
力文集,2018(1),27-47.[Li Linlin. The development in sedimentary
provenance studies[J]. Bulletin of the Institute of Crustal
Dynamics, 2018(1), 27-47.]
[23] 王轲,翟世奎. 沉积物源判别的地球化学方法[J]. 海洋科学,
2020,44(12):132-143.[Wang Ke, Zhai Shikui. Geochemical
methods for identification of sedimentary provenance[J]. Marine
Sciences, 2020, 44(12): 132-143.]
[24] 许苗苗,魏晓椿,杨蓉,等. 重矿物分析物源示踪方法研究进
展[J]. 地球科学进展,2021,36(2):154-171.[Xu Miaomiao,
Wei Xiaochun, Yang Rong, et al. Research progress of
provenance tracing method for heavy mineral analysis[J].
Advances in Earth Science, 2021, 36(2): 154-171.]
[25] 刘宝珺,曾允孚. 岩相古地理基础和工作方法[M]. 北京:地质
出版社,1985.[Liu Baojun, Zeng Yunfu. Lithofacies paleogeographic
basis and working methods[M]. Beijing: Geological
Publishing House, 1985.]
[26] 李林林,郭召杰,管树巍,等. 柴达木盆地西南缘新生代碎屑
重矿物组合特征及其古地理演化[J]. 中国科学(D辑):地球科
学,2015,45(6):780-798.[Li Linlin, Guo Zhaojie, Guan Shuwei,
et al. Heavy mineral assemblage characteristics and the Cenozoic
paleogeographic evolution in southwestern Qaidam Basin
[J]. Science China (Seri. D): Earth Sciences, 2015, 45(6):
780-798.]
[27] 余烨,张昌民,李少华,等. 多元统计分析在地质学中的应用:
以惠州凹陷M层物源分析为例[J]. 地质科学,2014,49(1):
191-201.[Yu Ye, Zhang Changmin, Li Shaohua, et al. Application
of multivariate statistic analysis in geology: A case of
provenance analysis in the M strata, Huizhou Depression[J].
Chinese Journal of Geology, 2014, 49(1): 191-201.]
[28] 陈容涛,王清斌,王飞龙,等. 重矿物多元统计分析在物源研
究中的应用:以黄河口凹陷为例[J]. 新疆石油天然气,2017,13
(2):1-5.[Chen Rongtao, Wang Qingbin, Wang Feilong, et al.
Application of heavy minerals multivariate statistic analysis to
provenance studies: A case of Huanghekou Depression[J]. Xinjiang
Oil & Gas, 2017, 13(2): 1-5.]
[29] 陈波,王波,管斌,等. 柴北缘西段古近系优质储层孔隙成因
类型及其控制因素[J]. 天然气地球科学,2016,27(8):1454-
1465.[Chen Bo, Wang Bo, Guan Bin, et al. Pore genetic types
and its controlling factors on Paleogene strata in the northern
margin of the Qaidam Basin, China[J]. Natural Gas Geoscience,
2016, 27(8): 1454-1465.]
[30] Mange M A, Maurer H F W. Heavy minerals in colour[M]. London:
Chapman & Hall, 1992.
[31] Jian X, Guan P, Zhang W, et al. Geochemistry of Mesozoic and
Cenozoic sediments in the northern Qaidam Basin, northeastern
Tibetan Plateau: Implications for provenance and weathering[J].
Chemical Geology, 2013, 360-361: 74-88.
[32] Wang J L, Wu C D, Li Z, et al. Geochronology and geochemistry
of volcanic rocks in the Arbasay Formation, Xinjiang
province (Northwest China): Implications for the tectonic evolution
of the North Tianshan[J]. International Geology Review,
2017, 59(10): 1324-1343.
[33] Andersen T. Correction of common lead in U-Pb analyses that
do not report 204Pb[J]. Chemical Geology, 2002, 192(1/2):
59-79.
[34] Ludwig K R. Isoplot 3. 75: A geochronological toolkit for
Microsoft Excel[J]. Berkeley CA: Berkeley Geochronology
Center Special Publication, 2012, 5: 1-75.
[35] Boggs Jr S. Petrology of sedimentary rocks[M]. 2nd ed. Cambridge:
Cambridge University Press, 2009.
[36] Haskin M A, Haskin L A. Rare earths in European shales: A redetermination[
J]. Science, 1966, 154(3748): 507-509.
[37] Taylor S R, McLennan S M. The continental crust: Its composition
and evolution: An examination of the geochemical record
preserved in sedimentary rocks[M]. Oxford: Blackwell Scientific
Publications, 1985.
[38] 毛光周,刘池洋. 地球化学在物源及沉积背景分析中的应用
[J]. 地球科学与环境学报,2011,33(4):337-348.[Mao Guang‐
zhou, Liu Chiyang. Application of geochemistry in provenance
and depositional setting analysis[J]. Journal of Earth Sciences
and Environment, 2011, 33(4): 337-348.]
[39] Bhatia M R. Rare earth element geochemistry of Australian
Paleozoic graywackes and mudrocks: Provenance and tectonic
control[J]. Sedimentary Geology, 1985, 45(1/2): 97-113.
[40] Roser B P, Korsch R J. Provenance signatures of sandstonemudstone
suites determined using discriminant function analysis
of major-element data[J]. Chemical Geology, 1988, 67(1/2):
119-139.
[41] McLennan S M, Hemming S, McDaniel D K, et al. Geochemical
approaches to sedimentation, provenance, and tectonics[M]//
Johnsson M J, Basu A. Processes controlling the composition of
clastic sediments. Geological society of America[M]. Boulder,
Colorado, 1993: 21-40.
[42] Floyd P A, Leveridge B E. Tectonic environment of the Devonian
Gramscatho Basin, south Cornwall: Framework mode and geochemical
evidence from turbiditic sandstones[J]. Journal of the
Geological Society, 1987, 144(4): 531-542.
[43] Gu X X, Liu J M, Zheng M H, et al. Provenance and tectonic
setting of the Proterozoic turbidites in Hunan, South China: Geochemical
evidence[J]. Journal of Sedimentary Research, 2002,
72(3): 393-407.
[44] Zhu W, Wu C D, Wang J L, et al. Heavy mineral compositions
and zircon U-Pb ages of Cenozoic sandstones in the SW Qaidam
Basin, northern Tibetan Plateau: Implications for provenance and
tectonic setting[J]. Journal of Asian Earth Sciences, 2017, 146:
233-250.
[45] Fu J G, Liang X Q, Zhou Y, et al. Geochemistry, zircon U-Pb
geochronology and Hf isotopes of granitic rocks in the Xitieshan
area, north Qaidam, Northwest China: Implications for Neoproterozoic
geodynamic evolutions of north Qaidam[J]. Precambrian
Research, 2015, 264: 11-29.
[46] Yang J Z, Liu X C, Wu Y B, et al. Zircon record of oceancontinent
subduction transition process of dulan UHPM Belt,
north Qaidam[J]. Journal of Earth Science, 2015, 26(5):
617-625.
[47] Yu S Y, Zhang J X, Sun D Y, et al. Petrology, geochemistry, zircon
U-Pb dating and Lu-Hf isotope of granitic leucosomes within
felsic gneiss from the north Qaidam UHP terrane: Constraints
on the timing and nature of partial melting[J]. Lithos, 2015, 218-
219: 1-21.
[48] Song S G, Su, Li X H, et al. Grenville-age orogenesis in
the Qaidam-Qilian block: The link between South China and
Tarim[J]. Precambrian Research, 2012, 220-221: 9-22.
[49] 朱小辉,陈丹玲,刘良,等. 柴北缘锡铁山地区镁铁质岩石的
时代及地球化学特征[J]. 地质通报,2012,31(12):2079-2089.
[Zhu Xiaohui, Chen Danling, Liu Liang, et al. Chronology and
geochemistry of the mafic rocks in Xitieshan area, north Qaidam
[J]. Geological Bulletin of China, 2012, 31(12): 2079-2089.]
[50] Song S G, Su L, Li X H, et al. Tracing the 850-Ma continental
flood basalts from a piece of subducted continental crust in the
north Qaidam UHPM belt, NW China[J]. Precambrian Research,
2010, 183(4): 805-816.
[51] Wu C L, Wooden J L, Robinson P T, et al. Geochemistry and zircon
SHRIMP U-Pb dating of granitoids from the west segment
of the North Qaidam[J]. Science in China Series D: Earth
Sciences, 2009, 52(11): 1771-1790.
[52] 吴才来,郜源红,吴锁平,等. 柴达木盆地北缘大柴旦地区古
生代花岗岩锆石SHRIMP 定年[J]. 岩石学报,2007,23(8):
1861-1875.[Wu Cailai, Gao Yuanhong, Wu Suoping, et al. Zircon
SHRIMP U-Pb dating of granites from the Da Qaidam area
in the north margin of Qaidam Basin, NW China[J]. Acta Petrologica
Sinica, 2007, 23(8): 1861-1875.]
[53] 孟繁聪,张建新,杨经绥. 柴北缘锡铁山早古生代HP/UHP 变
质作用后的构造热事件:花岗岩和片麻岩的同位素与岩石地
球化学证据[J]. 岩石学报,2005,21(1):45-56.[Meng Fancong,
Zhang Jianxin, Yang Jingsui. Tectono-thermal event of
POST-HP/UHP metamorphism in the Xitieshan area of the north
Qaidam mountains, western China: Isotopic and geochemical
evidence of granite and gneiss[J]. Acta Petrologica Sinica, 2005,
21(1): 45-56.]
[54] Gehrels G E, Yin A, Wang X F. Detrital-zircon geochronology
of the northeastern Tibetan Plateau[J]. GSA Bulletin, 2003, 115
(7): 881-896.
[55] 杨明慧,宋建军. 柴达木盆地冷湖花岗岩体岩石学初步研究
[J]. 西北地质,2002,35(3):94-98.[Yang Minghui, Song Jianjun.
Petrology of the Lenghu granite mass, northwestern
Qaidam Basin, China[J]. Northwestern Geology, 2002, 35(3):
94-98.]
[56] Wu C L, Yang J S, Wooden J, et al. Zircon SHRIMP dating of
granite from Qaidamshan, NW China[J]. Chinese Science Bulletin,
2002, 47(5): 418-422.
[57] Yu X J, Fu S T, Wang Z D, et al. The discovery of Early Paleoproterozoic
high-Na trondhjemite in the northeastern Qaidam Basin:
Evidence from the drilling core samples[J]. Precambrian Research,
2017, 298: 615-628.
[58] Zhang L, Wang Q Y, Chen N S, et al. Geochemistry and detrital
zircon U-Pb and Hf isotopes of the paragneiss suite from the
Quanji massif, SE Tarim Craton: Implications for Paleoproterozoic
tectonics in NW China[J]. Journal of Asian Earth
Sciences, 2014, 95: 33-50.
[59] Liao F X, Zhang L, Chen N S, et al. Geochronology and geochemistry
of meta-mafic dykes in the Quanji massif, NW China:
Paleoproterozoic evolution of the Tarim Craton and implications
for the assembly of the Columbia supercontinent[J]. Precambrian
Research, 2014, 249: 33-56.
[60] Chen N S, Liao F X, Wang L, et al. Late Paleoproterozoic multiple
metamorphic events in the Quanji massif: Links with Tarim
and North China Cratons and implications for assembly of the
Columbia supercontinent[J]. Precambrian Research, 2013, 228:
102-116.
[61] Chen N S, Zhang L, Sun M, et al. U-Pb and Hf isotopic compositions
of detrital zircons from the paragneisses of the Quanji
massif, NW China: Implications for its early tectonic evolutionary
history[J]. Journal of Asian Earth Sciences, 2012, 54-55:
110-130.
[62] 张璐,巴金,陈能松,等. 全吉群碎屑锆石的U-Pb 年龄谱和微
量元素:基底热事件信息和早期演化启示[J]. 地球科学:中国
地质大学学报,2012,37(增刊1):28-42.[Zhang Lu, Ba Jin,
Chen Nengsong, et al. U-Pb Age spectra and trace elements of
detrital zircon from Quanji Group: Implications for thermal
events and early evolution in the basement[J]. Earth Science:
Journal of China University of Geosciences, 2012, 37(Suppl. 1):
28-42.]
[63] Chen N S, Gong S L, Sun M, et al. Precambrian evolution of the
Quanji Block, northeastern margin of Tibet: Insights from zircon
U-Pb and Lu-Hf isotope compositions[J]. Journal of Asian Earth
Sciences, 2009, 35(3/4): 367-376.
[64] 崔加伟,郑有业,孙祥,等. 青海省赛支寺花岗闪长岩及其暗
色包体成因:锆石U-Pb 年代学、岩石地球化学和Sr-Nd-Hf 同
位素制约[J]. 地球科学,2016,41(7):1156-1170.[Cui Jiawei,
Zheng Youye, Sun Xiang, et al. Origin of granodiorite and mafic
microgranular enclave in Saizhisi, Qinghai province: Zircon UPb
geochronological, geochemical and Sr-Nd-Hf isotopic constraints[
J]. Earth Science, 2016, 41(7): 1156-1170.]
[65] 刘娜,任二峰,张天继,等. 南祁连东段早古生代梁脊岩体岩
浆岩锆石U-Pb 年龄及地球化学特征研究[J]. 青海大学学报
(自然科学版),2016,34(1):81-87.[Liu Na, Ren Erfeng,
Zhang Tianji, et al. The dating of zircon U-Pb of igneous rock of
Liangji rock in the eastern part of the South Qilian Mountains
[J]. Journal of Qinghai University (Natural Science Edition),
2016, 34(1): 81-87.]
[66] 胡万龙,贾志磊,王金荣,等. 南祁连化石沟花岗岩年代学、地
球化学特征及其构造意义[J]. 高校地质学报,2016,22(2):
242-253.[Hu Wanlong, Jia Zhilei, Wang Jinrong, et al. Geochronology
and geochemistry characteristics of the granites from
the Huashigou area, South Qilian and their tectonic significance
[J]. Geological Journal of China Universities, 2016, 22(2):
242-253.]
[67] 彭渊,马寅生,刘成林,等. 柴北缘宗务隆构造带印支期花岗
闪长岩地质特征及其构造意义[J]. 地学前缘,2016,23(2):
206-221.[Peng Yuan, Ma Yinsheng, Liu Chenglin, et al. Geological
characteristics and tectonic significance of the Indosinian
granodiorites from the Zongwulong tectonic belt in north Qaidam
[J]. Earth Science Frontiers, 2016, 23(2): 206-221.]
[68] 罗志文,张志诚,李建锋,等. 中南祁连西缘肃北三个洼塘地
区古生代两类花岗质侵入岩年代学及其地质意义[J]. 岩石学
报,2015,31(1):176-188.[Luo Zhiwen, Zhang Zhicheng, Li
Jianfeng, et al. Geochronology of two kinds of Paleozoic granitic
plutons from Sangewatang in Subei, the western margin of
central-south Qilian and their geological implications[J]. Acta
Petrologica Sinica, 2015, 31(1): 176-188.]
[69] 付长垒,闫臻,郭现轻,等. 拉脊山口蛇绿混杂岩中辉绿岩的
地球化学特征及SHRIMP锆石U-Pb 年龄[J]. 岩石学报,2014,
30(6):1695-1706.[Fu Changlei, Yan Zhen, Guo Xianqing, et
al. Geochemistry and SHRIMP zircon U-Pb age of diabases in
the Lajishankou ophiolitic mélange, South Qilian terrane[J].
Acta Petrologica Sinica, 2014, 30(6): 1695-1706.]
[70] 周宾,郑有业,许荣科,等. 青海柴达木山岩体LA-ICP-MS 锆
石U-Pb 定年及Hf 同位素特征[J]. 地质通报,2013,32(7):
1027-1034.[Zhou Bin, Zheng Youye, Xu Rongke, et al. LAICP-
MS zircon U-Pb dating and Hf isotope geochemical characteristics
of Qaidamshan intrusive body[J]. Geological Bulletin
of China, 2013, 32(7): 1027-1034.]
[71] 张照伟,李文渊,高永宝,等. 南祁连裕龙沟岩体ID-TIMS 锆
石U-Pb 年龄及其地质意义[J]. 地质通报,2012,31(2/3):455-
462.[Zhang Zhaowei, Li Wenyuan, Gao Yongbao, et al. IDTIMS
zircon U-Pb age of Yulonggou intrusive rocks in southern
Qilian Mountain and its geological significance[J]. Geological
Bulletin of China, 2012, 31(2/3): 455-462.]
[72] Cowgill E, Yin A, Harrison T M, et al. Reconstruction of the Altyn
Tagh fault based on U-Pb geochronology: Role of back
thrusts, mantle sutures, and heterogeneous crustal strength in
forming the Tibetan Plateau[J]. Journal of Geophysical Research,
2003, 108(B7): 2346.
[73] 郭安林,张国伟,强娟,等. 青藏高原东北缘印支期宗务隆造
山带[J]. 岩石学报,2009,25(1):1-12.[Guo Anlin, Zhang Guowei,
Qiang Juan, et al. Indosinian Zongwulong orogenic belt on
the northeastern margin of the Qinghai-Tibet Plateau[J]. Acta
Petrologica Sinica, 2009, 25(1): 1-12.]
[74] 张志刚,吴立新,陈金,等. 柴北缘牦牛山地区辉绿岩体锆石
U-Pb 年龄及地质意义[J]. 矿产勘查,2020,11(6):1085-1092.
[Zhang Zhigang, Wu Lixin, Chen Jin, et al. Zircon U-Pb geochronology
and geological significance of diabase rocks in Maoniushan
area of north Qaidam Basin[J]. Mineral Exploration,
2020, 11(6): 1085-1092.]