摘要:【目的】了解西南喀斯特地区不同龄组马尾松(Pinus massoniana)人工林土壤理化性质变化,综合分析地形因子、林分特征及植物多样性指标对土壤性质的影响,为退化喀斯特地区环境治理提供参考。【方法】在贵州省遵义市凤冈县,选取中龄林、近熟林和过成熟林3个龄组系列共11个马尾松人工林样地,样地按25.82 m×25.82 m方形设置,调查乔木层植物种名、高度及胸径,同时记录样地海拔、坡位、坡度及各样地主要物种组成,在每个样地的西南、西北、东北、东南、中共5个方位设置5个2 m×2 m的灌木样方,调查灌木层植物种名及株数,在每个灌木样方内设置1 m×1 m的草本样方,调查草本层植物种名和盖度,量化马尾松人工林土壤理化性质变化并分析其影响因子。【结果】不同龄组之间马尾松人工林土壤容重、孔隙度、含水量、有机碳含量、全磷含量均无显著差异(Pgt;0.05),而全氮含量在[0,20)cm土层随林龄的增长呈先升高后降低,碱解氮含量在[20,40)cm土层随林龄的增长逐步降低,速效磷含量在[0,20)cm和[20,40)cm土层随林龄的增长呈先降低后升高的趋势(Plt;0.05);马尾松人工林土壤容重、孔隙度和含水量在同一龄组[0,20)cm和[20,40)cm的两土层之间均无显著差异(Pgt;0.05),中龄林、近熟林和过成熟林的土壤有机碳含量、近熟林和过成熟林的全氮含量和碱解氮含量、过成熟林的全磷含量和速效磷含量在[0,20)cm和[20,40)cm两土层之间均有显著差异(Plt;0.05),均随土层的加深而降低;相关性分析表明,地形因子、林分特征和植物多样性指标均是影响马尾松人工林土壤物理性质和养分变化的因素,逐步回归分析显示影响土壤物理性质变化的因素主要是林分密度和植物多样性指标,而地形因子、林分特征和植物多样性均是影响土壤养分的因素。RDA分析表明林分特征解释马尾松人工林土壤理化性质变异的36.60%,植物多样性解释土壤理化性质变异的27.00%,地形因子解释土壤理化性质变异的10.30%。【结论】龄组变化对马尾松人工林土壤氮磷含量产生了显著影响,马尾松人工林的经营管理过程中应随着马尾松的生长发育适当添加氮肥和磷肥以维持马尾松人工林的生产力和可持续发展,而龄组变化对土壤物理性质没有显著影响,林分密度和树高是影响土壤理化性质变化的主要因子。
关键词:喀斯特;马尾松人工林;土壤理化性质;土壤养分;地形因子;林分特征;植物多样性
中图分类号:S718.5;S714 文献标志码:A开放科学(资源服务)标识码(OSID):
文章编号:1000-2006(2024)03-0099-09
Effects of Pinus massoniana plantation age on soil physical and chemical properties in Karst areas in southwest China
WU Yan, HUANG Qing, LIU Xun*, ZHENG Rui, CEN Jiabao, DING Bo, ZHANG Yunlin, FU Yuhong
(School of Biological Sciences, Guizhou Normal University, Key Laboratory of Ecology and Management on Forest Fire in Higher Education Institutions of Guizhou Province,Guiyang 550018, China)
Abstract:【Objective】The aim of the present study was to investigate the changes of soil physical and chemical properties of Pinus massoniana plantations of different ages in Karst areas in southwest China, as well as comprehensively analyze the effects of topographic factors, stand characteristics and plant diversity on soil properties to provide reference for environmental management in degraded Karst areas.【Method】 In the present study, 11 P. massoniana plantations at three different ages, namely, middle-aged plantation, near-mature plantation, and over-aged plantation, were selected in Fenggang County, Zunyi City, Guizhou Province. The area of the plots was 25.82 m × 25.82 m. The species name, height and diameter at breast height (DBH) of the tree layer were investigated, and the altitude, position, slope and species composition of each plot were recorded. Five 2 m × 2 m shrub quadrats were set up in the southwest, northwest, northeast, southeast and middle areas of each plot to investigate the species name and number of plants in the shrub layer. A 1 m × 1 m herb quadrat was set up in each shrub quadrat to investigate the species name and coverage of herbs. The changes of soil physical and chemical properties were quantified, and the influencing factors were analyzed.【Result】 There were no significant differences in soil bulk density, porosity, water content, organic carbon content and total phosphorus content among the different age groups of the P. massoniana plantations (Pgt;0.05). The total nitrogen content increased initially and then decreased with the increase in plantation age in the 0-20 cm soil layer, and the alkali-hydrolyzable nitrogen content decreased gradually with the increase of plantation age in the 20-40 cm soil layer. Moreover, the available phosphorus content decreased initially and then increased with the increase in plantation age in the 0-20 cm and 20-40 cm soil layers (Plt;0.05). No significant differences were found in the soil bulk density, porosity, and water content between the 0-20 cm and 20-40 cm soil layers within the same age group (Pgt;0.05). The soil organic carbon content of the three age groups, the total nitrogen content and alkali-hydrolyzable nitrogen content of the near-mature and over-aged plantations, and the total phosphorus and available phosphorus content of the over-aged plantation were significantly different between the 0-20 cm and 20-40 cm soil layers (Plt;0.05). These contents decreased with the deepening of soil layer. Correlation analysis showed that topographic factors, stand characteristics, and plant diversity were the factors affecting soil physical properties and nutrient changes in the P. massoniana plantations. Stepwise regression analysis showed that stand density and plant diversity were the main factors affecting soil physical properties, while topographic factors, stand characteristics, and plant diversity were the factors affecting soil nutrients. Redundancy analysis (RDA) showed that stand characteristics, plant diversity, and topographic factors explained 36.60%, 27.00% and 10.30% of the variation in the soil physicochemical properties, respectively.【Conclusion】The plantation age has a significant impact on the soil nitrogen and phosphorus contents of P. massoniana plantations, suggesting that nitrogen fertilizer and phosphorus fertilizer should be added appropriately with the growth and development to maintain the productivity and sustainable development of P. massoniana plantations. Changes in the plantation age has no significant effect on soil physical properties, while the stand density and tree height are the main factors affecting the soil physical and chemical properties in P. massoniana plantations.
Keywords:Karst;Pinus massoniana plantation; soil physical and chemical properties; soil nutrient; topographic factors; stand characteristics; plant diversity
我国石漠化(喀斯特)现象最突出的黔、滇、桂西南三省(区),裸露和覆盖的喀斯特总面积为33.6万km2,其中以我国贵州省为中心的西南地区是世界上三大喀斯特集中分布区之一,面积约5.4×105 km2[1],成为西南地区最为严重的生态环境问题之一。通过不同的植被恢复模式在西南喀斯特地区对石漠化问题进行综合治理,截至2018年,贵州省的森林面积已达到1 037.2万hm2,森林蓄积量4.7亿m3,森林覆盖率达到了58.9%。人工林面积237.3万hm2,占森林总面积的22.9%,其中马尾松人工林造林面积达69.71万hm2, 合计约占全省乔木林地面积的1/3, 是贵州省人工林面积较大的树种之一[2]。
目前,学者们针对喀斯特地区人工林土壤研究领域积累了相关成果,有研究发现植被恢复可以有效地提升喀斯特地区土壤有机碳含量和全氮含量储量[3];吴平等[4]研究发现,不同类型人工林的土壤理化特性存在一定差异;曹洋等[5]研究发现,贵州喀斯特地区不同土壤类型养分存在明显的差异,其中地带性黄壤的土壤养分含量整体偏低;李鹏等[6]研究发现马尾松人工林林龄对土壤养分具有显著影响;同时也有学者研究发现林分密度和枯落物与土壤理化性质有显著相关关系[7-9];孙莉英等[10]研究发现,土壤总氮和有机质含量随坡位的下降而增加;李鹏飞等[11]研究发现,土壤含水量、有机质以及速效磷含量在不同植被恢复类型下差异显著。徐雪蕾等[12]研究发现林下植被与土壤养分具有显著相关关系。综上,众多学者在西南喀斯特地区,从枯落物的输入、地形因子、林分密度及林下植被等视角探究了影响人工林土壤性质变化的原因,但不同龄组马尾松人工林土壤理化性质的变化及其影响因素问题还需要进一步明晰。为此,本研究在贵州省遵义市凤冈县喀斯特区域,采用空间序列代替时间序列的方法,分析不同林龄马尾松人工林生态恢复样地土壤理化性质变化,并运用相关分析、逐步回归分析和冗余分析,综合分析马尾松人工林地形因子、林分特征以及植物多样性影响土壤性质变化的状况,为退化喀斯特地区环境治理及生态评估提供理论参考。
1 材料与方法
1.1 研究区概况
研究地位于贵州省遵义市凤冈县(107°43′12″E,27°58′12″N),是典型的喀斯特岩溶低山丘陵区,平均海拔720 m。气候类型为中亚热带湿润季风气候,年均气温15.2 ℃,无霜期270 d,年均降雨日180 d,年均降水量1 200 mm,年平均日照时数1 139 h,土壤类型以黄壤为主[13]。森林覆盖率达60.58%,森林植被主要有银杏(Ginkgo biloba)、马尾松(Pinus massoniana)、杉木(Cunninghamia lanceolata)、盐麸木(Rhus chinensis)等。
1.2 样地设置及样品采集
在研究区设置3个龄组马尾松人工林样地11个,其中,中林龄(≥10~20 a)3个、近熟林(≥20~30 a)5个、过成熟林(≥30 a)3个。样地按25.82 m×25.82 m方形设置,调查乔木层植物种名、高度及胸径,同时记录样地海拔、坡位、坡度及各样地主要物种组成(表1)。各样地乔木层主要由马尾松和杉木等物种组成,灌木层主要由蝴蝶戏珠花(Viburnum thunbergianum)、铁仔(Myrsine africana)、荚蒾(Viburnum dilatatum)、白栎(Quercus fabri)、青冈(Quercus glauca)等物种组成,草本层主要由沿阶草(Ophiopogon bodinieri)、芒(Miscanthus sinensis)、芒萁(Dicranopteris pedata)等物种组成,草本层植物盖度在10%~40%。
在西南、西北、东北、东南、中5个方位设置5个2 m×2 m的灌木样方,调查灌木层植物种名、株数及地径,在每个灌木样方内设置1 m×1 m的草本样方,调查草本层植物种名和盖度。
在样地西南、西北、东北、东南、中5个方位选取5块土地,清除土壤表面杂质;用铁锹挖1个深度为40~50 cm的土坑;用100 cm3的环刀在[0,20)cm、[20,40)cm的土层分别取样;将5个土坑同一土层的土壤混匀,称鲜质量,装袋;放在A3纸上自然风干至质量恒定,其间不断翻看土壤样品,使其均匀;自然风干后,采用四分法处理土样,粉碎后分别过孔径0.25和0.149 mm的筛,用于土壤养分含量的测定[14]。
1.3 实验方法
土壤容重及孔隙度采用环刀法测定[15],土壤含水量用风干土进行计算。计算公式分别如下:
式中:SBD为土壤容重,g/cm3;SWC为土壤含水量,%;SP为土壤孔隙度,%;M为风干土样质量,g;M1为石头质量,g;M2为土壤鲜质量,g;V为环刀容积,cm3;V1为石头容积,cm3;ρ为土壤密度,2.65 g/cm3[16]。
参照文献[17]进行以下指标的测定:有机碳含量采用重铬酸钾外加热法测定;碱解氮含量采用碱解扩散法测定;全氮含量采用半微量开氏法测定;全磷含量采用 HClO4-H2SO4法测定;速效磷含量采用碳酸氢钠提取-钼锑抗比色法测定。每样品重复3次。
1.4 数据处理
根据野外调查数据,分别计算乔木层和灌木层植物的Margalef丰富度指数、Simpson 优势度指数、Shannon物种多样性指数和Pielou均匀度指数[18],计算公式如下:
(1)Shannon 多样性指数(H):
(2)Simpson优势度指数(D):
(3)Margalef丰富度指数(D′):
(4)Pielou 均匀度指数(J′H):
式中:Pi为第i物种的重要值;Ni为第i物种的个体数;N为所有物种的个体总数;S为物种数;Hmax为最大的物种多样性指数。
运用 Excel 2010 进行数据整理和作图,运用 SPSS 18.0软件进行单因素方差分析、相关性分析和逐步回归分析(显著性水平为0.05),并用Canoco 5软件进行冗余分析。
2 结果与分析
2.1 龄组变化对马尾松人工林土壤物理性质的影响
由分析结果(表2)可知,不同龄组之间马尾松人工林土壤容重、孔隙度和含水量在[0,20)cm和[20,40)cm土层上均无显著差异(Pgt;0.05)。其中,土壤容重在[0,20)cm和[20,40)cm土层的变化规律均为近熟林gt;中龄林gt;过成熟林,土壤孔隙度为过成熟林gt;中龄林gt;近熟林,土壤含水量为中龄林gt;过成熟林gt;近熟林。
土壤容重、孔隙度和含水量在同一龄组[0,20)cm和[20,40)cm两土层之间无显著差异(Pgt;0.05)。其中土壤容重在中龄林和过成熟林中两土层的变化规律均为[0,20)cm的小于[20,40)cm,在近熟林中为[0,20)cm的大于[20,40)cm,土壤孔隙度和含水量在中龄林和过成熟林中两土层的变化规律均为[0,20)cm的大于[20,40)cm,在近熟林中为[0,20)cm的小于[20,40)cm(表2)。
2.2 龄组变化对马尾松人工林土壤养分含量的影响
由分析结果(图1)可知,不同龄组间马尾松人工林土壤全氮含量在[0,20)cm土层上的变化规律为近熟林gt;过成熟林gt;中龄林,且近熟林全氮含量与中龄林之间差异显著(Plt;0.05)。土壤碱解氮含量在[20,40)cm土层上的变化规律为中龄林gt;近熟林gt;过成熟林,且中龄林土壤碱解氮含量与过成熟林之间差异显著(Plt;0.05)。土壤速效磷含量在[0,20)cm和[20,40)cm土层上随龄组的增长呈先降低后升高的趋势,其含量的变化规律均为中龄林gt;过成熟林gt;近熟林,且[0,20)cm土层中龄林、过成熟林土壤速效磷含量与近熟林之间差异显著(Plt;0.05);而不同龄组之间马尾松人工林土壤有机碳含量在[0,20)cm和[20,40)cm土层上均无显著差异(Pgt;0.05)。
马尾松中龄林、近熟林和过成熟林的[0,20)cm土层土壤有机碳含量均显著高于[20,40)cm(Plt;0.05);马尾松近熟林和过成熟林的[0,20)cm土层土壤全氮含量和碱解氮含量均显著高于[20,40)cm(Plt;0.05);马尾松过成熟林的[0,20)cm土层土壤全磷含量和速效磷含量均显著高于[20,40)cm(Plt;0.05)(图1)。
2.3 马尾松人工林土壤理化性质影响因子相关性分析
土壤养分特征与影响因子的 Pearson 相关性分析(表3)表明,土壤容重与海拔、郁闭度、灌木层Shannon多样性指数(H2)及灌木层 Pielou 均匀度指数(J2)呈显著(Plt;0.05)或极显著(Plt;0.01)负相关,与灌木层 Simpson优势度指数(D2)呈显著正相关(Plt;0.05)。土壤孔隙度与海拔、郁闭度、灌木层 Shannon多样性指数(H2)以及灌木层Pielou均匀度指数(J2)呈显著(Plt;0.05)或极显著(Plt;0.01)正相关,与灌木层 Simpson优势度指数(D2)呈显著负相关(Plt;0.05)。土壤含水量与海拔、林分密度以及灌木层 Pielou均匀度指数(J2)呈显著(Plt;0.05)或极显著(Plt;0.01)正相关。土壤有机碳含量与坡度及林分密度呈显著(Plt;0.05)或极显著(Plt;0.01)负相关,与胸径呈极显著正相关(Plt;0.01)。土壤全氮含量与坡度、林分密度以及灌木层 Pielou均匀度指数(J2)呈显著(Plt;0.05)或极显著(Plt;0.01)负相关,与胸径呈极显著正相关(Plt;0.01)。土壤碱解氮含量与坡度、郁闭度以及林分密度呈显著(Plt;0.05)或极显著(Plt;0.01)负相关,与胸径呈极显著正相关(Plt;0.01)。土壤全磷含量与郁闭度、林分密度、乔木层 Margalef丰富度指数(S1)、灌木层 Shannon多样性指数(H2)、灌木层 Pielou均匀度指数(J2)以及灌木层Margalef丰富度指数(S2)呈显著(Plt;0.05)或极显著(Plt;0.01)正相关,与胸径、树高、乔木层 Pielou均匀度指数(J1)以及灌木层 Simpson优势度指数(D2)呈显著(Plt;0.05)或极显著(Plt;0.01)负相关。土壤速效磷含量与海拔、郁闭度、乔木层 Simpson 优势度指数(D1)以及灌木层 Simpson优势度指数(D2)呈显著(Plt;0.05)或极显著(Plt;0.01)正相关,与乔木层Shannon多样性指数(H1)、乔木层 Margalef丰富度指数(S1)以及灌木层 Margalef丰富度指数(S2)呈显著(Plt;0.05)或极显著(Plt;0.01)负相关。
2.4 马尾松人工林土壤理化性质影响因子逐步回归分析
由分析结果(表4)可知,灌木层Pielou均匀度指数(S1)、郁闭度、胸径、灌木层Margalef丰富度指数(S2)和乔木层Mavgalef丰富度指数(S1)共同解释了土壤容重和孔隙度78.1%的变异。胸径、灌木层Simpson优势度指数(D2)和灌木层Margalef丰富度指数(S2)共同解释了土壤含水量63.8%的变异。胸径、树高和坡度共同解释了土壤有机碳含量34.1%的变异。以树高、胸径、灌木层Margalef丰富度指数(S2)、郁闭度和坡度为主的因子共同解释土壤全氮含量75.3%的变异。胸径、林分密度、海拔、乔木层Simpson优势度指数(D1)、郁闭度、灌木层Margalef丰富度指数(S2)以及灌木层Simpson优势度指数(D2)共同解释了土壤碱解氮含量66.3%的变异。郁闭度、灌木层Simpson优势度指数(D2)、乔木层Mavgalef丰富度指数(S1)、坡度、灌木层Margalef丰富度指数(S2)和胸径共同解释了土壤全磷含量88.9%的变异。S1则解释了土壤速效磷含量11.2%的变异。
2.5 马尾松人工林土壤理化性质影响因子冗余分析
马尾松人工林土壤理化性质与影响因子的二维排序图见图2,以土壤容重、孔隙度、含水量、有机碳含量、全氮含量、碱解氮含量、全磷含量及速效磷含量8个理化性质为响应变量,地形因子、林分特征及植物多样性3种类型影响因子为解释变量进行冗余分析(RDA),图中蓝色箭头代表土壤理化性质,红色箭头代表影响因子。结果显示,第1轴和第2轴共解释了马尾松人工林土壤理化性质总变异的57.38%,第1轴的解释率为32.44%,第2轴的解释率为24.94%。其中树高(F=12.5,P=0.002)、林分密度(F=8.9,P=0.002)、D2(F=8.3,P=0.002)、S2(F=11.3,P=0.002)、胸径(F=6.6,P=0.002)、郁闭度(F=7.7,P=0.002)、乔木层Pielou均匀度指数(J1)(F=9.5,P=0.002)、海拔(F=10.5,P=0.002)、坡度(F=7.9,P=0.002)、S1(F=5.9,P=0.002)和J2(F=4.6,P=0.004)是影响土壤理化性质的显著影响因子,其解释率分别为11.30%、11.30%、8.80%、8.10%、7.70%、6.30%、5.40%、5.20%、5.10%、2.70%和2.00%。因此,林分特征解释马尾松人工林土壤理化性质变异的36.60%,植物多样性解释土壤理化性质变异的27.00%,地形因子解释土壤理化性质变异的10.30%。
3 讨 论
土壤养分是表征土壤肥力状况的重要指标,同时也影响植物的生长发育和土壤微生物的活动[19-20]。本研究发现,龄组对马尾松人工林土壤全氮、碱解氮和速效磷含量影响显著。氮是生物生长所必需的大量元素,而中龄林由于林木生长迅速,对于氮含量需求较大,从土壤中吸收大量的养分,从而导致土壤中氮的积累较少[21-22],到近熟林阶段,林分结构复杂,物种多样性增加,林下枯落物和微生物相对丰富,为林木生长提供充足的营养物质,使得氮含量持续上升[23],当人工林到达成熟期时,养分循环周期长、凋落物归还速率慢,从而导致土壤养分含量降低[24]。土壤速效养分的供应直接影响植物的生长,从中林龄到近熟林,树木生长和植物群落的形成需要消耗大量土壤养分[25-26],从而导致土壤速效养分含量降低,随着林龄的增长,地表的枯落物和植物残体增多,从而使土壤的养分得到补充[27]。
研究发现,马尾松人工林土壤有机碳、全氮、碱解氮、全磷及速效磷含量均随土层深度的增加而降低。土壤养分主要来源于枯落物的归还[28],这些枯落物首先在表层富集,表层土通气性较好,微生物活动较活跃,其分解枯落物后元素积累在土壤表层[29-30],从而导致表层土壤养分相对下层较高,随着土层深度的增加,微生物活动减弱[31],而下层土经过了成土的过程,枯枝落叶及动植物残体在该层的分布逐渐减少,其养分含量也随之减少。
影响马尾松人工林土壤氮素变化的主要因子是林分特征,影响土壤磷素变化的主要因子是林分特征和植物多样性,且林分特征、植物多样性及地形因子均是影响土壤理化性质的影响因子。林分密度决定植物光合作用水平,合理的林分密度保证了植株间的生长空间,提高林地养分水平和生产力,改善林分的养分状况和土壤结构[32-33]。同时林分郁闭度会通过光照强度来影响林下植被的生长发育,从而影响土壤养分状况[34]。林分特征的改变会引起凋落物数量和质量、土壤结构等变化,从而影响土壤理化性质[35]。植物群落的多样性指数、均匀度指数和丰富度指数均与土壤养分显著相关,植被和土壤系统是不可分割的整体,植物群落的改变也会改变其赖以生存的土壤环境[36]。坡度和海拔等环境因子也是影响土壤发育的重要因素。其中海拔与人为干扰强度有关[37-38],坡度通过影响区域降雨入渗时间及地表径流等方式影响土壤养分特征。
参考文献(reference):
[1]薛建辉,周之栋,吴永波.喀斯特石漠化山地退化土壤生态修复研究进展[J].南京林业大学学报(自然科学版),2022,46(6):135-145.XUE J H, ZHOU Z D,WU Y B.Research progress on ecological restoration of degraded soil in Karst rocky desertification mountain [J].J Nanjing For Univ (Nat Sci Ed),2022,46 (6):135-145.DOI:10.12302/j.issn.1000-2006.202207040.
[2]蔡磊,杨健,王六平,等.贵州省主要人工林近自然经营技术研究[J].林业实用技术,2013(9):62-64.CAI L,YANG J, WANG L P, et al.Study on close-to-nature management technology of main plantations in Guizhou Province [J].For Prac Tech, 2013 (9):62-64.DOI:10.13456/j.cnki.lykt.2013.09.042.
[3]伍方骥,刘娜,胡培雷,等.典型喀斯特洼地植被恢复过程中土壤碳氮储量动态及其对极端内涝灾害的响应[J].中国生态农业学报(中英文),2020,28(3):429-437. WU F J,LIU N,HU P L,et al.Dynamics of soil carbon and nitrogen storage and its response to extreme waterlogging disasters during vegetation restoration in typical Karst depressions [J]. Chi J Eco Agr, 2020,28 (3): 429-437.DOI:10.13930/j.cnki.cjea.190711.
[4]吴平,薛建辉.典型喀斯特地区3种人工林对土壤理化和微生物特性的影响[J].南京林业大学学报(自然科学版),2015,39(5):67-72.WU P,XUE J H.Effects of three different plantations on soil physicochemical and microbial characteristics in Karst region[J].J Nanjing For Univ (Nat Sci Ed),2015,39(5):67-72.DOI:10.3969/j.issn.1000-2006.2015.05.011.
[5]曹洋,徐娇,谢冬冬.基于文献计量的贵州喀斯特地区土壤养分特征研究[J].绿色科技,2020(12):7-10,19.CAO Y,XU J,XIE D D.Characteristics of soil nutrients based on bibliometrics in Karst area of Guizhou[J].J Green Sci Technol,2020(12):7-10,19.DOI:10.16663/j.cnki.lskj.2020.12.002.
[6]李鹏,零天旺,杨章旗,等.马尾松人工林林龄对土壤和叶片养分含量的影响[J].西北林学院学报,2022,37(5):9-16.LI P,LING T W,YANG Z Q,et al.Responses of soil and leaf nutrients to different stand ages in Pinus massoniana plantation[J].J Northwest For Univ,2022,37(5):9-16.DOI: 10.3969/j.issn.1001-7461.2022.05.02.
[7]戎宇.喀斯特山地人工林凋落物对土壤肥力影响研究[D].南京:南京林业大学,2011.RONG Y.Study on effects of litter on the soil fertility properties of different plantation plantations in Karst mount region[D].Nanjing:Nanjing Forestry University,2011.
[8]李鹏,陈璇,杨章旗,等.不同密度马尾松人工林枯落物输入对土壤理化性质的影响[J].水土保持学报,2022,36(2):368-377.LI P,CHEN X,YANG Z Q,et al.Effects of litter input on soil physical and chemical properties of Pinus massoniana plantations with different densities[J].J Soil Water Conserv,2022,36(2):368-377.DOI: 10.13870/j.cnki.stbcxb.2022.02.047.
[9]舒韦维,卢立华,李华,等.林分密度对杉木人工林林下植被和土壤性质的影响[J].生态学报,2021,41(11):4521-4530.SHU W W,LU L H,LI H,et al.Effects of stand density on understory vegetation and soil properties of Cunninghamia lanceolata plantation[J].Acta Ecol Sin,2021,41(11):4521-4530.DOI: 10.5846/stxb201909231988.
[10]孙莉英,栗清亚,裴亮,等.地形因子对土壤理化性质和植物种类的影响[J].灌溉排水学报,2020,39(7):120-127.SUN L Y,LI Q Y,PEI L,et al.Effects of topographic factors on soil physical and chemical properties and plant species[J].J Irrigation Drainage,2020,39(7):120-127.DOI:10.13522/j.cnki.ggps.2020119.
[11]李鹏飞,张兴昌,郝明德,等.植被恢复对黄土高原矿区重构土壤理化性质、酶活性以及真菌群落的影响[J].水土保持通报,2019,39(5):1-7.LI P F,ZHANG X C,HAO M D,et al.Effects of vegetation restoration on soil physicochemical properties,enzyme activities,and fungal community of reconstructed soil in a mining area on loess plateau[J].Bull Soil Water Conserv,2019,39(5):1-7.DOI:10.13961/j.cnki.stbctb.2019.05.001.
[12]徐雪蕾,孙玉军,周华,等.间伐强度对杉木人工林林下植被和土壤性质的影响[J].林业科学,2019,55(3):1-12.XU X L,SUN Y J,ZHOU H,et al.Effects of thinning intensity on understory growth and soil properties in Chinese fir plantation[J].Sci Silvae Sin,2019,55(3):1-12.DOI:10.11707/j.1001-7488.20190301.
[13]李歆玉,徐林,符裕红,等.喀斯特地区不同龄组马尾松人工林腐殖质化学计量特征研究[J].安徽农学通报,2022,28(10):81-83.LI X Y,XU L,FU Y H,et al.Stoichiometric characteristics of humus in different age groups of Pinus massoniana plantation in Karst area[J].Anhui Agric Sci Bull,2022,28(10):81-83.DOI:10.16377/j.cnki.issn1007-7731.2022.10.023.
[14]雷丽群,卢立华,农友,等.不同林龄马尾松人工林土壤碳氮磷生态化学计量特征[J].林业科学研究,2017,30(6):954-960.LEI L Q,LU L H,NONG Y,et al.Stoichiometry characterization of soil C,N and P of Pinus massoniana plantations at different age stages[J].For Res,2017,30(6):954-960.DOI:10.13275/j.cnki.lykxyj.2017.06.010.
[15]刘小娥,苏世平,李毅.兰州市南北两山典型灌丛土壤理化性质[J].草业学报,2021,30(6):28-39.LIU X E,SU S P,LI Y.Soil physical and chemical properties under four typical shrubs found on the northern and southern mountains of Lanzhou City,northwest China[J].Acta Prataculturae Sin,2021,30(6):28-39.DOI:10.11686/cyxb2020349.
[16]寇江涛,师尚礼,王琦,等.垄沟集雨对紫花苜蓿草地土壤水分、容重和孔隙度的影响[J].中国生态农业学报,2011,19(6):1336-1342.KOU J T,SHI S L,WANG Q,et al.Effect of ridge/furrow rain harvesting on soil moisture,bulk density and porosity in Medicago sativa field[J].Chin J Eco Agric,2011,19(6):1336-1342.DOI:10.3724/SP.J.1011.2011.01336.
[17]鲍士旦.土壤农化分析[M].3版.北京:中国农业出版社,2000.BAO S D.Soil and agricultural chemistry analysis[M].3rd ed.Beijing:China Agriculture Press,2000.
[18]张洋洋,周清慧,许骄阳,等.林龄对马尾松人工林林下植物与土壤种子库多样性的影响[J].生态环境学报,2021,30(11):2121-2129.ZHANG Y Y,ZHOU Q H,XU J Y,et al.Effects of plantation ages on the diversity of understory plants and soil seed bank of Pinus massoniana plantations[J].Ecol Environ Sci,2021,30(11):2121-2129.DOI: 10.16258/j.cnki.1674-5906.2021.11.002.
[19]崔宁洁,张丹桔,刘洋,等.不同林龄马尾松人工林林下植物多样性与土壤理化性质[J].生态学杂志,2014,33(10):2610-2617.CUI N J,ZHANG D J,LIU Y,et al.Plant diversity and soil physicochemical properties under different aged Pinus massoniana plantations[J].Chin J Ecol,2014,33(10):2610-2617.DOI:10.13292/j.1000-4890.2014.0221.
[20]许慧,BUI V T, 范洪旺,等.城市和郊区麻栎林土壤有机碳组分及管理指数变化特征[J].江苏农业学报,2022,38(2): 369-376. XU H,BUI V T,FAN H W,et al.Variation characteristics of soil organic carbon composition and management index of Quercus acutissima forests in urban and suburban areas[J].Jiangsu J Agri Sci. 2022,38(2): 369-376. DOI:10.3969/j.issn.1000-4440.2022.02.010.
[21]杨志训,秦连岗.不同林龄马尾松人工林表层土壤养分特征分析[J].林业资源管理,2014(3):101-104,121.YANG Z X,QIN L G.Soil nutrient characteristics in different aged Pinus massoniana plantations[J].For Resour Manag,2014(3):101-104,121.DOI:10.13466/j.cnki.lyzygl.2014.03.022.
[22]马天舒,丁伟林,肖复明,等.不同年龄阶段陈山红心杉人工林土壤理化性质[J].中南林业科技大学学报,2020,40(12):114-124.MA T S,DING W L,XIAO F M,et al.The soil physical and chemical properties in different stand ages of Chenshan red-heart Chinese fir[J].J Central South Univ For amp; Technol,2020,40(12):114-124.DOI:10.14067/j.cnki.1673-923x.2020.12.014.
[23]盘金文,郭其强,孙学广,等.不同林龄马尾松人工林碳、氮、磷、钾养分含量及其生态化学计量特征[J].植物营养与肥料学报,2020,26(4):746-756.PAN J W,GUO Q Q,SUN X G, et al.Contents and stoichiometric characteristics of C,N,P and K under different stand ages of Pinus massoniana plantations[J].Plant Nutr Fertil Sci,2020,26(4):746-756.DOI:10.11674/zwyf.19272.
[24]罗明霞,胡宗达,刘兴良,等.川西亚高山不同林龄粗枝云杉人工林土壤微生物生物量及酶活性[J].生态学报,2021,41(14):5632-5642.LUO M X,HU Z D,LIU X L,et al. Characteristics of soil microbial biomass carbon,nitrogen and enzyme activities in Picea asperata plantations with different ages in subalpine of western Sichuan,China[J].Acta Ecol Sin,2021,41(14):5632-5642.DOI:10.5846/stxb202008192158.
[25]张沛健,徐建民,卢万鸿,等.雷州半岛不同林龄尾细桉人工林植物多样性和土壤理化性质分析[J].中南林业科技大学学报,2021,41(9):96-105.ZHANG P J,XU J M,LU W H,et al.Plant diversity and soil physicochemical properties under different aged Eucalyptus urophylla × Eucalyptus tereticornis plantations in Leizhou Peninsula[J].J Central South Univ For amp; Technol,2021,41(9):96-105.DOI:10.14067/j.cnki.1673-923x.2021.09.011.
[26]卢妮妮,高志雄,张鹏,等.杉木纯林土壤性质与林下植被的通径分析[J].东北林业大学学报,2015,43(7):73-77.LU N N,GAO Z X,ZHANG P,et al.Path analysis between soil properties and undergrowth vegetation in pure Chinese fir plantation[J].J Northeast For Univ,2015,43(7):73-77.DOI:10.13759/j.cnki.dlxb.20150703.026.
[27]李永强,赵萌莉,韩国栋,等.不同年限草原撂荒地土壤理化特性研究[J].中国草地学报,2012,34(3):61-64,69.LI Y Q,ZHAO M L,HAN G D,et al.Studies on soil physical and chemical properties of abandoned land[J].Chin J Grassland,2012,34(3):61-64,69.DOI:10.3969/j.issn.1673-5021.2012.03.010.
[28]秦晓佳,丁贵杰.不同林龄马尾松人工林土壤有机碳特征及其与养分的关系[J].浙江林业科技,2012,32(2):12-17.QIN X J,DING G J.Characteristics of soil organic carbon and its relationship with nutrients in different aged Pinus massoniana plantation stands[J].J Zhejiang For Sci Technol,2012,32(2):12-17.DOI:10.3969/j.issn.1001-3776.2012.02.003.
[29]高孝威,苏和,白艳,等.不同林龄华北落叶松人工林林下植被与土壤理化特性变化特征[J].内蒙古林业科技,2021,47(2):10-14.GAO X W,SU H,BAI Y,et al.Variation characteristics of understory vegetation and soil physicochemical property of different plantation-aged Larix principis-rupprechtii plantation[J].Inn Mong For Sci Technol,2021,47(2):10-14.DOI:10.3969/j.issn.1007-4066.2021.02.003.
[30]肖欣,王雄涛,欧阳勋志.马尾松人工林土壤有机碳特征及其与凋落物质量的关系[J].南京林业大学学报(自然科学版),2015,39(6):105-111.XIAO X,WANG X T,OUYANG X Z.The characteristic of soil organic carbon and relationship with litter quality in Pinus massoniana plantation[J].J Nanjing For Univ (Nat Sci Ed),2015,39(6):105-111.DOI:10.3969/j.issn.1000-2006.2015.06.019.
[31]袁星明,朱宁华,郭耆,等.南亚热带不同人工林对土壤理化性质的影响及土壤质量评价[J].林业科学研究,2022,35(3):112-122.YUAN X M,ZHU N H,GUO Q,et al.Effects of different plantations on soil physical and chemical properties and soil quality evaluation in south subtropical zone[J].For Res,2022,35(3):112-122.DOI:10.13275/j.cnki.lykxyj.2022.03.013.
[32]姜丽芳.不同林分密度对杨树人工林生长及土壤理化性质的影响[J].安徽林业科技,2022,48(2):27-29.JIANG L F.Effects of stand densities on the growth and soil physicochemical properties of poplar plantations[J].Anhui For Sci Technol,2022,48(2):27-29.DOI:10.3969/j.issn.2095-0152.2022.02.006.
[33]向玫.不同林分密度对云杉人工林生长及土壤理化性质的影响[J].安徽林业科技,2022,48(1):25-27.XIANG M.Effects of stand densities on the growth and soil physicochemical properties of Picea asperata plantations[J].Anhui For Sci Technol,2022,48(1):25-27.DOI:10.3969/j.issn.2095-0152.2022.01.007.
[34]郭弘婷,纪小芳,汪成,等.我国人工林林下灌木层植物多样性空间变异及影响要素[J].南京林业大学学报(自然科学版),2022,46(4): 144-152. GUO H T,JI X F,WANG C,et al. Spatial variability and influencing factors of plant diversity in shrub layer under artificial forest in China [J]. J Nanjing Fores Univ (Nat Sci Ed),2022,46 (4): 144-152.DOI:10.12302/j.issn.1000-2006.202103014.
[35]龚益广,徐明锋,谢正生,等.杉木混交林的土壤生态化学计量及其林分结构影响因子研究[J].林业与环境科学,2022,38(1):18-27.GONG Y G,XU M F,XIE Z S,et al.Soil ecological stoichiometry in Cunninghamia lanceolata mixed plantations and influencing factors of stand structure[J].Guangdong For Sci Technol,2022,38(1):18-27.DOI:10.3969/j.issn.1006-4427.2022.01.003.
[36]黄瑞春,朱宁华,党鹏,等.石漠化地区不同人工林林下植物多样性及土壤理化性质[J].湖南林业科技,2021,48(4):10-17.HUANG R C,ZHU N H,DANG P,et al.The understory plant diversity and soil physical and chemical properties of different plantations in rocky desertification area[J].Hunan For Sci Technol,2021,48(4):10-17.DOI:10.3969/j.issn.1003-5710.2021.04.002.
[37]杨家慧,谭伟,冯艳.马尾松人工林土壤养分空间分布特征及其与地形因子的相关性分析[J].西南林业大学学报(自然科学),2020,40(4):23-29.YANG J H,TAN W,FENG Y.Spatial distribution characteristics of soil nutrients and the correlation with topographic factors in Pinus massoniana plantation[J].J Southwest For Univ (Nat Sci),2020,40(4):23-29.DOI:10.11929/j.swfu.201908021.
[38]董悦,张永清,刘彩彩.晋中市土壤养分空间分布与影响因子的相关性[J].生态学报,2018,38(23):8621-8629.DONG Y,ZHANG Y Q,LIU C C.Study on soil nutrient spatial patterns and their driving factors in Jinzhong[J].Acta Ecol Sin,2018,38(23):8621-8629.DOI:10.5846/stxb201801220169.
(责任编辑 王国栋)