胡光明 肖涛 彭家清 李大卫 田华 王华玲 肖丽丽 程均欢 黄海雷 吴伟 钟彩虹
DOI:10.13925/j.cnki.gsxb.20240051
摘 要:【目的】探讨不同猕猴桃品种的叶片宏观形态和微观结构特征的差异,筛选抗旱性评价关键指标并进行抗旱性综合评价。【方法】采用多功能图像分析法、石蜡切片法和扫描电镜技术,选取12个猕猴桃栽培品种为材料,对叶片形态、气孔器和表皮毛微特征、解剖结构等24项指标进行观测、记录。通过方差分析明确不同品种的叶片形态和解剖结构的差异,以主成分分析筛选综合指标,运用隶属函数法进行抗旱性综合评价。【结果】不同猕猴桃品种的叶片形态、解剖结构、气孔器及表皮毛特征具有显著差异,相关性分析表明不同指标间具有显著或极显著的相关性,运用主成分分析从24个抗旱相关指标中筛选了叶片宽度、叶形指数、气孔长轴、单簇茸毛数、上表皮细胞厚度、下表皮细胞厚度、栅海比、组织结构紧密度共8项关键性指标。通过隶属函数法比较不同品种间的抗旱能力,抗旱性强弱为:徐香>金美>金霞>海沃德>金艳>金魁>金梅>东红>翠玉>金桃>桂海4号>Hort16A。使用聚类分析将12个猕猴桃品种按抗旱能力聚为5类。【结论】通过对叶片形态及显微结构的分析,评价并筛选到抗旱性相对较强的猕猴桃品种,研究结果为猕猴桃品种改良、品种选择及生产管理等提供了基础理论依据。
关键词:猕猴桃;叶片形态;解剖结构;气孔;表皮毛;抗旱性
中图分类号:S663.4 文献标志码:A 文章编号:1009-9980(2024)05-0911-18
收稿日期:2024-01-26 接受日期:2024-03-03
基金项目:国家现代农业产业技术体系(CARS-26);湖北省支持种业高质量发展资金-农业种质资源保护利用课题(HBZY2023A001-05);湖北省第四批现代农业产业技术体系专项资金(2023HBSTX4-08);农业农村部物种品种资源保护项目(2130135)
作者简介:胡光明,男,助理农艺师,硕士,主要从事猕猴桃育种和栽培生理研究。E-mail:wangyi_guangming@163.com
*通信作者 Author for correspondence. Tel:027-87510298,E-mail:zhongch@wbgcas.cn
Evaluation of drought resistance of 12 kiwifruit cultivars based on leaf morphology and microscopic characteristics
HU Guangming1, 2, XIAO Tao1, PENG Jiaqing1, LI Dawei2, TIAN Hua2, WANG Hualing1, XIAO Lili1, CHENG Junhuan1, HUANG Hailei1, WU Wei1, ZHONG Caihong2*
(1Economic Crops Research Institute of Shiyan City/Kiwifruit Germplasm Conservation Nursery in Qinba Mountain Area, Shiyan 442000, Hubei, China; 2Wuhan Botanical Garden, Chinese Academy of Sciences/Engineering Laboratory for Kiwifruit Industrial Technology, CAS/The National Actinidia Germplasm Nursery, Wuhan 430074, Hubei, China)
Abstract: 【Objective】 The Actinidia chinensis is the most domesticated species of the genus Actinidia and more than 100 commercially valuable cultivars have been developed. However, few studies have evaluated the drought resistance of different kiwifruit cultivars based on the leaf morphology and microstructure. This research aimed to evaluate the drought resistance of different kiwifruit cultivars by observing and analyzing characteristics, such as leaf morphology, anatomical structure, stomata, epidermis and trichomes. Key indicators for evaluating the drought resistance of kiwifruit cultivars and assessing their drought resistance were identified. 【Methods】We selected a total of 12 kiwifruit cultivars (belonging to A. chinensis var. chinensis and A. chinensis var. deliciosa), including Donghong, Guihai No. 4, Hort 16A, Jintao, Jinyan, Jinmei, Jinxia, Cuiyu, Jin Mei, Jinkui, Hayward and Xuxiang, as our observation samples. We employed the multifunctional image analysis method, paraffin sectioning method and scanning electron microscopy technique to observe and record the leaf morphology, anatomical structure, stomata and epidermal trichomes of 12 kiwifruit cultivars. A total of 24 traits (designated as X1-X24) were documented. Subsequently, we conducted variance analysis to compare the significant differences in the 24 traits among different cultivars. Then, using principal component analysis, we identified the key traits related to drought resistance from the original set of indicators. Finally, we employed the membership function method to comprehensively evaluate the drought resistance of different kiwifruit cultivars. 【Results】 There were significant differences in leaf morphology, anatomical structure, stomatal apparatus and the hair of the epidermis among different kiwifruit cultivars. Morphologically, the leaf was heart-shaped or oval-shaped, leaf length (X1) ranged from 10.94 cm to 17.28 cm, leaf width (X2) ranged from 11.39 cm to 16.35 cm, leaf shape index (X3) ranged from 0.93 cm to 1.06 cm, petiole length (X4) ranged from 6.87 cm to 15.91 cm, petiole diameter (X5) and leaf area (X6) ranged from 3.51 mm to 4.58 mm and from 95.03 cm2 to 208.36 cm2. For stomatal apparatus, the length (X7) ranged from 18.77 μm to 29.21 μm, the width (X8) ranged from 12.64 μm to 18.57 μm, the macroaxis (X9) ranged from 8.46 μm to 16.31 μm, and the density (X10) was between 168.70 and 339.63 per square millimeter. In the villi of lower epidermis, all cultivars had fluff, the length (X11) ranged from 249.41 μm to 324.10 μm, the pedestal density (X12) was between 9.37 and 31.83 pedestals per square millimeter, the villus density (X13) was between 54.93 and 113.95 roots per square millimeter, and the number of villis per pedestal (X14) was between 5.57 and 7.30. For sake of anatomical structures, these cultivars had similar anatomical characteristics. The structure of the leaves from the lower epidermis to the upper epidermis was composed of lower epidermal cells, sponge tissue, palisade tissue and upper epidermal cells. Calcium oxalate crystals were scattered in the mesophyll cells. The leaf veins mainly formed protrusions on the lower epidermis, which were vascular bundles, thin-walled tissues and mechanical tissues from the inside to outside. Lateral vein diameter (X15) ranged from 595.04 μm to 860.71 μm, leaf thickness (X16) ranged from 177.68 μm to 264.53 μm, thickness of upper epidermis cell (X17) ranged from 15.36 μm to 23.37 μm, the first layer of palisade tissue cell density (X18) was between 75.33 and 113.00 per square millimeter, thickness of lower epidermis cell (X19) ranged from 10.03 μm to 20.35 μm, thickness of palisade tissue (X20) ranged from 75.16 μm to 123.60 μm, thickness of spongy tissue (X21) ranged from 49.81μm to 85.68 μm, the ratio of X20 to X21 (X22) ranged from 1.19 to 2.16, tightness of leaf tissue structure (X23) ranged from 0.41 to 0.52, and looseness of leaf tissue structure (X24) ranged from 0.24 to 0.36. The coefficient of variation (CV) of the 24 traits ranged from 8.04% to 35.80%, and the correlation analysis showed that there were significant or extremely significant correlations among the different traits. Principal component analysis showed that the cumulative contribution rate of the first 7 principal components reached 93.046%, effectively retaining most of the information of the 24 indicators. Eight key drought-resistance indicators were selected, including X2 (leaf width), X3 (leaf shape index), X9 (macroaxis), X14 (number of villis per pedestal), X17 (thickness of upper epidermis cell), X19 (thickness of lower epidermis cell), X22 (thickness of palisade tissue/thickness of spongy tissue) and X23 (tightness of leaf tissue structure). Furthermore, the drought resistance of different cultivars was compared by subordinate function method. The order of drought resistance was as follows: Xuxiang > Jinmei > Jinxia > Hayward > Jinyan > Jinkui > Jin Mei > Donghong > Cuiyu > Jintao > Guihai No. 4 > Hort 16A. 【Conclusion】 The differences in leaf morphology, stomata, epidermal hair and anatomical structure of different kiwifruit cultivars were revealed. Leaf width, leaf shape index, stomatal length axis, number of villis per pedestal, thickness of upper epidermis, thickness of lower epidermis cell, thickness of palisade tissue/thickness of spongy tissue, and tightness of leaf tissue structure were selected to evaluate drought resistance. The drought-resistant cultivars such as Xuxiang, Jinmei and Jinxia were screened by the method of subordinate function analysis, which could provide reference for genetic breeding, variety selection and production management in the future.
Key words: Kiwifruit; Leaf morphology; Anatomical structure; Stomata; Epidermal hair; Drought resistance
猕猴桃因具有营养、健康、美味的特性和极高的商业价值成为享誉全球的特色水果[1-2]。世界上有超过20个国家和地区种植猕猴桃,收获面积与年产量都在持续增加,中国猕猴桃种植面积已经超过28万hm2,收获面积超过18万hm2,均占世界总面积的68%以上[3-4]。猕猴桃对干旱胁迫敏感,干旱胁迫在中国许多猕猴桃产区经常发生,是影响猕猴桃产量的主要限制因素之一[5]。因此,开展猕猴桃抗旱性相关研究,尤其是对不同猕猴桃品种的抗旱性进行评价,可以为建园前的品种合理筛选、生产中的精确化管理以及新品种培育亲本选择提供可靠的理论依据。
植物抗旱性与其形态学、解剖学和生理变化密切相关[6-7]。叶片是植物对生境条件变化反应最为敏感的器官,其结构特征最能体现环境因素的影响和植物对环境的适应性[8]。对于适应干旱环境的植物,叶片会演化形成一系列抗旱耐旱的形态解剖结构,如叶片厚而小、栅栏组织发达、维管束直径粗、叶片紧密度高和表皮毛发达等[9]。研究叶片宏观、微观结构与环境之间的关系,已成为评价植物抗逆性的一种简单而有效的方法[10-11]。宋鹏等[12]对6种卫矛属(Euonymus)植物进行叶片解剖结构与抗旱性评价,发现不同种的抗旱性从强到弱依次为卫矛>西南卫矛>疏花卫矛>欧洲卫矛>大果卫矛>矩叶卫矛;范志霞等[13]研究了成都地区10种园林灌木叶片结构与抗旱性的关系,结果表明,红花继木、鸭脚木、红叶石楠和栀子属于强抗旱树种,可用于屋顶、边坡等区域种植;郭改改等[14]综合解剖结构与生理生化特性分析了不同区域长柄扁桃抗旱性的强弱;另在许多植物中均开展过基于叶片解剖结构或表皮微特征与抗旱性关系的研究,如板栗[15-16]、苹果[17]、草莓[18]、柑橘[19]、李[20]、西瓜[21]和文冠果[22]等。但关于叶片表皮毛与抗旱性关系的研究极少,有研究表明,拧条锦鸡儿(Caragana korshinskii)叶片的毛状体是重要的表皮露水吸收结构,有助于该物种抵御干旱胁迫[23]。
商业栽培的猕猴桃品种大多数来源于中华猕猴桃(Actinidia chinensis var. chinensis)和美味猕猴桃(A. chinensis var. deliciosa)[2],目前对猕猴桃叶片解剖结构、表皮微观特征与抗旱性评价的研究报道较少,仅有零星的研究聚焦于少数猕猴桃品种,刘平平等[24]对5个猕猴桃种的皮孔、气孔器和叶片下表皮特征进行了比较,探讨了猕猴桃微观形态在分类学中的意义;刘文等[25]研究了中华猕猴桃不同性别间叶片微观结构的差异;陈健男[26]依据18个抗旱能力相关指标对4个猕猴桃品种进行了抗旱性评价等。笔者选取了12个猕猴桃品种,对它们的气孔器特征、叶表皮毛结构和解剖学特征进行了比较分析,运用主成分分析筛选抗旱相关的关键性指标,通过隶属函数法综合评价不同品种的抗旱能力,为猕猴桃品种改良、品种选择及后期管理等提供基础理论依据。
1 材料和方法
1.1 材料与试剂
供试品种分别为东红、桂海4号、Hort16A、金桃、金艳、金梅、金霞、翠玉、金美、金魁、海沃德和徐香,基本信息如表1所示。供试品种涵盖了中华猕猴桃和美味猕猴桃两大主栽类型,而且选取了新优品种和经典品种进行比较。所有材料均保存于国家猕猴桃种质资源圃(湖北武汉),管理水平趋于一致,长势相近。每个品种于不同方位的一年生枝条上取5片成熟叶,取叶位置均处于枝条基部向上数第8~10片叶,快速剪取1.0 cm×0.5 cm的叶片方块,放入事先备好的70% FAA固定液中用于石蜡切片的制作;同时剪取相同的叶片放入电镜固定液中用于观察叶片气孔器及表皮毛特征。另外每个品种选取10片成熟叶用于形态学比较。
1.2 石蜡切片制作与观察
参照范志霞等[13]的方法,略作调整,进行常规石蜡切片制作。先取1.0 cm×0.5 cm的新鲜组织用FAA固定液固定24 h以上。再经不同浓度梯度的乙醇脱水、二甲苯透明、浸蜡、包埋,然后修块和切片。采用手摇轮转式切片机切成8 μm的薄片,经脱蜡、番红-固绿染色、脱水透明后,用树胶封片。将制作完成的切片送往武汉赛维尔生物科技有限公司进行全视野数字切片扫描(whole slide imaging),扫描结果通过CaseViewer 2.4软件查看并计量叶片侧脉直径、叶片厚度、上表皮厚度、下表皮厚度、栅栏组织厚度、海绵组织厚度和第一层栅栏细胞密度等指标。以叶片的长度/宽度为叶形指数、栅栏组织厚度/叶片厚度的百分数为叶片组织紧密度、海绵组织厚度/叶片厚度的百分数为叶片组织疏松度。
1.3 扫描电镜观察
参照木巴热克·阿尤普等[8]的方法略作调整:切取0.5 cm×0.5 cm左右的新鲜叶片组织迅速投入电镜固定液室温固定2 h,再转移至4 ℃保存;固定好的样品经0.1 mol·L-1磷酸缓冲液PB(pH=7.4)漂洗3次,每次15 min;然后将组织依次转入30%、50%、70%、80%、90%、95%和100% 7个浓度(w)梯度的乙醇中脱水,每次15 min,再转入乙酸异戊酯中15 min;将样品放入临界点干燥仪内进行干燥后放入离子溅射仪样品台上喷金30 s左右;最后以SU8100扫描电子显微镜观察并拍照,用Image-J图像处理软件分别对表皮毛数目、表皮毛长度、气孔密度和气孔器大小进行计量,并将密度相关指标换算成每平方毫米的数目。
1.4 数据处理与分析
所有指标(代号X1~X24)数据经Excel 2019整理,利用SPSS 26软件和OriginPro 2020软件进行单因素方差和相关性分析,采用主成分分析法筛选典型指标并确定其权重,运用隶属函数法计算12个猕猴桃品种各典型指标的平均隶属值,以各品种的平均隶属值作为品种抗旱性度量值,进行综合排名及聚类分析[13,16]。
2 结果与分析
2.1 不同品种叶片形态特征比较
12个品种的叶片形态特征如图1和表2所示,不同品种之间存在明显差异。叶片长度(X1)介于10.94~17.28 cm之间,叶片宽度(X2)介于11.39~16.35 cm之间,叶片面积(X6)介于95.03~208.36 cm2之间,3项指标在不同品种中均为徐香最大,金美次之,翠玉最小,且徐香的叶片长度与叶面积极显著高于其他品种;叶形指数(X3)介于0.93~1.06之间,徐香和金魁最大,二者显著大于除东红、金美和金艳外的其他品种,Hort16A最小;叶柄长度(X4)介于6.87~15.91 cm之间,金梅极显著大于其他品种,桂海4号最小;叶柄直径(X5)介于3.51~4.58 mm之间,金梅最大,金美次之,金桃最小。在12个品种的形态学特征中,变异系数(CV)最大的是叶柄长度,其次是叶面积,最小的是叶形指数,分别为31.89%、28.53%和9.91%。
2.2 不同品种叶片气孔器与表皮毛特征比较
不同品种叶片气孔器与表皮毛均分布于叶片下表皮,特征如图2、图3和表3所示,12个品种的气孔器与表皮毛特征存在显著或极显著差异。不同品种气孔器长度(X7)的平均值为23.35 μm,海沃德为29.21 μm,极显著高于其他品种,桂海4号为18.77 μm,显著低于其他品种;气孔器宽度(X8)的平均值为16.29 μm,金霞、徐香、海沃德和金桃分别为18.57、18.16、18.09和17.35 μm,均显著高于其他品种(金美除外),桂海4号为12.64 μm,极显著低于其他品种;气孔长轴(X9)的平均值为12.20 μm,海沃德为16.31 μm,显著高于其他品种,桂海4号的气孔长轴为8.46 μm,显著低于除金梅外的其他品种;气孔密度(X10)的平均值为238.04个·mm-2,东红和Hort16A分别为339.63和346.50个·mm-2,极显著高于其他品种,金霞、海沃德和金艳的气孔密度分别为168.70、171.43和185.97个·mm-2,极显著低于其他品种。
12个品种下表皮部分细胞均发育成乳状突起,其上簇生多条单细胞非腺毛,表皮毛的长度及密度均存在显著差异。茸毛长度(X11)的平均值为324.10 μm,金霞和海沃德分别为414.02和399.79 μm,显著高于其他品种,翠玉和金桃分别为249.41和256.36 μm,极显著低于其他品种;茸毛簇密度(X12)的平均值为18.33簇·mm-2,桂海4号为31.83簇·mm-2,极显著高于其他品种,金魁和徐香分别为9.37和9.53簇·mm-2,极显著低于其他品种;茸毛根密度(X13)的平均值为113.95根·mm-2,桂海4号为216.10根·mm-2,极显著高于其他品种,金魁为54.93根·mm-2,极显著低于其他品种;单簇茸毛数(X14)的平均值为6.47根,各品种间的差异较小。
2.3 不同品种叶片内部解剖结构比较
不同猕猴桃品种叶片解剖结构如图4所示,他们具有相似的解剖特征,叶片从下表皮到上表皮的结构依次为下表皮细胞、海绵组织、栅栏组织和上表皮细胞,叶肉细胞中零散分布有草酸钙结晶;叶脉主要在下表皮形成突起,由内到外依次是维管束、薄壁组织和机械组织。对12个品种叶片解剖相关的10个特征进行统计分析,发现不同品种间存在显著差异。从表4可以看出,侧脉直径(X15)的平均值为761.19 μm,较大的依次为金梅(860.71 μm)、海沃德(846.08 μm)、金魁(837.69 μm)和金美(814.55 μm),均极显著大于除Hort16A外的其他品种,金桃(595.04 μm)极显著小于其他品种;叶片厚度(X16)的平均值为221.92 μm,其中金美(264.53 μm)极显著厚于其他品种,Hort16A(177.68 μm)和金桃(182.03 μm)极显著薄于其他品种;上表皮细胞厚度(X17)的平均值为19.01 μm,其中徐香(23.37 μm)极显著厚于其他品种,桂海4号(15.36 μm)、东红(16.62 μm)和金艳(16.93 μm)均显著薄于其他品种;第一层栅栏细胞密度(X18)的平均值为86.25个·mm-2,其中桂海4号(113.00个·mm-2)极显著高于其他品种,最低的为徐香(75.33个·mm-2),极显著低于部分品种;下表皮细胞厚度(X19)的平均值为14.40 μm,其中徐香(20.35 μm)极显著厚于其他品种,桂海4号(10.03 μm)和Hort16A(10.66 μm)显著薄于其他品种;栅栏组织厚度(X20)的平均值为98.80 μm,其中金霞(123.60 μm)和金美(121.87 μm)极显著厚于其他品种,Hort16A(75.16 μm)极显著薄于其他品种;海绵组织厚度(X21)的平均值为63.95 μm,其中东红(85.68 μm)极显著厚于其他品种,桂海4号(49.81 μm)极显著薄于其他品种;栅海比(X22)的平均值为1.58,其中金霞(2.16)极显著高于其他品种,Hort16A(1.19)和东红(1.20)极显著低于其他品种;组织结构紧密度(X23)的平均值为0.45,其中金霞(0.52)极显著高于其他品种,东红(0.41)和海沃德(0.41)显著低于部分品种;组织结构疏松度(X24)的平均值为0.29,其中Hort16A(0.36)极显著高于其他品种,金霞(0.24)和徐香(0.24)显著低于部分品种。
2.4 指标相关性与主成分分析
上述统计分析结果表明,24项指标的变异系数(CV)介于8.04%~35.80%之间,说明不同猕猴桃品种叶片在叶片形态、气孔器和表皮毛特征、叶片内部解剖结构等方面的特征指标存在较大差异,可进一步用于抗旱性分析。皮尔逊相关系数(Pearson correlation coefficient)表明,不同指标间大部分表现出显著或极显著的相关性(图5)。鉴于各指标间密切相关且分别对抗旱性有一定的影响,全部用于抗旱性评价则不利于揭示类型特征,也容易产生认知上的偏差[13]。为了筛选出可以代表品种抗旱性的关键性指标,借助主成分分析法对24项指标进一步筛选,依据特征值≥1的原则抽取主成分,据各主成分中每个指标载荷量的大小并结合相关性分析筛选出贡献较大的关键性指标。
主成分分析结果(表5)表明,前7个主成分的累积贡献率达到93.046%,较好保留了24项指标的大部分信息,因此提取前7个主成分。各主成分因子载荷值有极大差异,绝对载荷值越高的指标说明其对主成分的贡献越大,其典型性越强。第1主成分的方差贡献率为35.720%,其中下表皮细胞厚度(X19)、第一层栅栏细胞密度(X18)、茸毛根密度(X13)和簇密度(X12)的载荷值较大,主要反映了叶片组织结构特征及表皮毛密度特征;第2主成分的方差贡献率为17.333%,其中栅海比(X22)、组织结构紧密度(X23)和组织结构疏松度(X24)载荷值较大,主要反映了叶片组织结构特征;第3主成分的方差贡献率为13.607%,其中叶片宽度(X2)、叶柄直径(X5)和叶面积(X6)的载荷值较大,主要反映了叶片的形态特征;第4主成分的方差贡献率为10.369%,其中上表皮细胞厚度(X17)和叶片厚度(X16)的载荷值较大,反映了叶片的组织结构特征;第5主成分的方差贡献率为6.294%,其中气孔器长(X7)和气孔长轴(X9)的载荷值较大,主要反映了气孔器长度特征;第6主成分的方差贡献率为5.293%,其中叶形指数(X3)和茸毛长度(X11)的载荷值较大,主要反映了叶片形态和表皮毛长度特征;第7主成分的方差贡献率为4.431%,其中单簇茸毛数(X14)载荷值最大,主要与表皮毛密度相关。
进一步对不同品种进行主成分因子分析,以第1主成分和第2主成分进行二维排序,散点图结果如图6所示,在主成分1和主成分2排序下,12个品种可以分为3个类群,第Ⅰ类群包含东红和Hort16A等2个品种,第Ⅱ类群包含金美、金梅、徐香、金魁和海沃德5个品种,第Ⅲ类群包含金桃、翠玉、金艳、桂海4号和金霞5个品种。
2.5 不同猕猴桃品种抗旱性综合评价
根据7个主成分的得分系数与方差贡献率的占比求得各个指标的权重,求得抗旱性综合得分值F的表达式系数[16]。F=0.099X1+0.103X2+0.026X3+0.023X4+0.117X5+0.099X6+0.07X7+0.049X8+0.059X9+0.083X10+0.103X11-0.011X12-0.005X13+0.033X14+0.095X15+0.074X16+0.009X17-0.029X18+0.080X19+0.084X20-0.021X21+0.084X22+0.036X23-0.093X24,该表达式中,指标前数值绝对值表示该指标所占权重,值为正数,说明该指标与F呈正相关,即与抗旱性呈正相关,指标前数值为负数说明该指标与F值呈负相关,即与抗旱性呈负相关。根据主成分分析结果,选择主成分下载荷值绝对值大于0.9或排名第一的指标作为抗旱性平均关键指标,最后选择X2(叶片宽度)、X3(叶形指数)、X9(气孔长轴)、X14(单簇茸毛数)、X17(上表皮细胞厚度)、X19(下表皮细胞厚度)、X22(栅海比)、X23(组织结构紧密度)共8项指标参与抗旱性评价,所选指标与抗旱性均呈正相关。
隶属函数法是目前应用最广的多指标评价方法[13],参照张俊环等[27]的方法将8项关键性指标带入隶属函数,求取隶属函数平均值作为猕猴桃品种抗旱性度量值,值越大则抗旱性越强。通过对12个猕猴桃品种各项指标综合评价得出,结果如表6所示,抗旱性强弱为:徐香>金美>金霞>海沃德>金艳>金魁>金梅>东红>翠玉>金桃>桂海4号>Hort16A。将隶属函数值均值标准化后进行聚类分析[12],如图7所示,在欧氏距离等于5处可将12个品种分成5类,对应不同的抗旱等级,第Ⅰ类由徐香组成,其抗旱性度量值大于0.80,抗旱性极强;第Ⅱ类由金美、金霞和海沃德组成,其抗旱性度量值介于0.50~0.80之间,抗旱性强;第Ⅲ类由金艳、金魁、金梅和东红组成,抗旱性度量值介于0.39~0.50之间,抗旱性中等;第Ⅳ类由金桃和翠玉组成,抗旱性度量值介于0.30~0.39之间,抗旱性弱;第Ⅴ类由桂海4号和Hort16A组成,抗旱性度量值低于0.30,抗旱性最弱。
3 讨 论
3.1 不同猕猴桃品种的抗旱性
植物在适应自然环境的过程中,会逐渐演化形成比较稳定的外部形态和内部结构[28]。叶片是植物进行光合作用、气体交换及蒸腾作用的主要器官,也是对环境变化较为敏感的器官,叶片形态和解剖结构特征的变化能较好地反映出植物对干旱等逆境的适应性[29]。植物的抗旱性是一个复杂的综合性状,用单一或过多的指标均难以确切地反映各品种抗旱性强弱[16]。笔者在本研究中对12个猕猴桃品种的叶片形态特征、气孔器特征、表皮毛特征和解剖结构特征进行比较,发现24个特征值在不同品种间具有显著差异,变异系数介于8.04%~35.80%之间。通过相关性系数和主成分分析筛选8项关键性指标,结合隶属函数法评价了12个猕猴桃品种的抗旱性,隶属函数均值排名及聚类分析表明美味猕猴桃品种的抗旱性总体上强于中华猕猴桃品种。在美味猕猴桃中,抗旱能力由强到弱依次为徐香、金美、海沃德和金魁,在中华猕猴桃中,抗旱能力由强到弱依次为金霞、金艳、金梅、东红、翠玉、金桃、桂海4号和Hort16A。这些品种为经过严格筛选培育出具有较强抗逆能力的优良品种,均能适应一定的干旱胁迫,如徐香[30]、海沃德[31]、金霞[32]、金梅[33]和翠玉[34]等在田间均有出色的抗旱能力,本研究结果仅反映了品种间抗旱性的相对强弱。
降水量是影响干旱胁迫的主要因素[35-36]。自然条件下,中华猕猴桃大多分布在中国年降水量1000~2000 mm、相对湿度75%~85%、气候湿热的东南地区,美味猕猴桃多分布在中国年降水量600~1600 mm、相对湿度60%~85%、气候相对干燥的西北地区[37],并在雪峰山脉、巫山山脉及幕阜山脉一带重叠分布[38-39]。本研究结果佐证了美味猕猴桃因长期适应降雨量较少、空气湿度较低的环境而更耐干旱的论点,与姚春潮等[40]的观点一致。竺元琦[41]以电导率作为抗性指标对不同猕猴桃品种的抗旱性进行比较,发现在高温高湿胁迫后,中华猕猴桃比美味猕猴桃具有更强的抗高温能力,与钟彩虹[37]所述中华猕猴桃更耐热的观点相同,但在高温干旱胁迫后,二者的抗逆能力没有显著性差异,表明美味猕猴桃相对于高热胁迫更适应干旱胁迫。
3.2 不同指标与抗旱性综合评价
单一的评价指标难以准确反映不同种质的抗旱性,不同作物或同一作物不同品种具有不同的抗旱机制,同一作物或品种往往存在多种协同抗旱机制[42-43]。叶片的形态特征与植物的抗旱性息息相关,赵秀明[44]认为叶片小是抗旱的重要表型之一,可以减少蒸腾面积,在本研究中,叶面积较小可能为翠玉、桂海4号和金霞等品种的主要抗旱性特征之一。叶片表皮毛对植物抗旱具有重要意义,表皮毛发达可避免太阳直射,减少蒸腾作用过程中水分的散失[9],锦鸡儿属的部分植物表皮毛状体与猕猴桃类似,此类表皮毛是干旱区植物适应干旱环境的重要特征[45],另有研究表明,叶片表皮毛具有吸附、收集大气中水分的作用,用于植株保温、保湿,可作为植物在干旱环境中获取水分的适应性策略[23,46],猕猴桃不同品种叶片毛被的差异可能是其关键的抗旱性机制之一。王仁才等[47]对抗旱性强弱不同的美味猕猴桃品系的研究结果表明,抗旱性强的品系叶片表皮毛的簇数和单簇茸毛数较多,茸毛密度大,本研究中桂海4号具有最大的根密度和簇密度,东红具有最多的单簇茸毛数,这些特征为他们的抗旱适应提供了重要保障。气孔器是植株与外界交换气体及水分的通路,在碳同化、呼吸、蒸腾作用等方面具有重要意义,气孔密度大,有利于散热,气孔器较小可减少蒸腾失水[13],陈健男[26]对4个猕猴桃品种(系)的研究表明,气孔密度与品种(系)抗旱性呈正相关,本研究中Hort16A和东红的气孔密度较大,表现出较强的抗旱性特征。叶片的组织结构与抗旱性密切相关[48-49],较高的栅海比和组织结构紧密度对植物增强抗旱性极为重要[50-51],本研究中金霞的栅海比和组织结构紧密度均最高,表现出极强的抗旱特征。
对于抗旱性评价,选择不同指标及不同评价方法往往会得到不同的结果,单一的指标更难以代表复杂的抗旱因素,通过主成分筛选关键性指标,结合隶属函数平均法是一种相对可靠的方法,已经在植物抗旱性评价中得到了广泛应用[16,27,52]。植物抗旱性具有复杂的机制,除本研究已统计的相关指标外,仍有许多与抗旱性相关的特征未被关注,如在叶片组织中发现的草酸钙晶体,在缓解逆境胁迫方面可能发挥了重要作用[53]。
4 结 论
笔者在本研究中揭示了12个猕猴桃品种叶片形态和显微结构的差异,24个指标在不同品种间具有显著性差异,从中筛选到叶片宽度、叶形指数、气孔长轴、单簇茸毛数、上表皮细胞厚度、下表皮细胞厚度、栅海比和组织结构紧密度共8项典型指标参与抗旱性评价。通过隶属函数法分析得出徐香、金美、金霞和海沃德等品种的抗旱性较强,金霞为中华猕猴桃中较抗旱的品种,而徐香、金美和海沃德为美味猕猴桃中较抗旱的品种,是较干旱地区种植猕猴桃的首选品种。金美猕猴桃是近两年新选育的品种,正处于推广初期,研究结论为今后猕猴桃品种选择、遗传改良以及生产上的经营管理提供了借鉴依据。
参考文献 References:
[1] RICHARDSON D P,ANSELL J,DRUMMOND L N. The nutritional and health attributes of kiwifruit:A review[J]. European Journal of Nutrition,2018,57(8):2659-2676.
[2] 胡光明,黎纯斌,杨斌,王周倩,申素云,李作洲,钟彩虹. 宜昌市72份野生中华猕猴桃果实性状多样性分析与综合评价[J]. 果树学报,2022,39(9):1540-1552.
HU Guangming,LI Chunbin,YANG Bin,WANG Zhouqian,SHEN Suyun,LI Zuozhou,ZHONG Caihong. Analysis and comprehensive evaluation of fruit trait diversity of 72 Actinidia chinensis accessions in Yichang[J]. Journal of Fruit Science,2022,39(9):1540-1552.
[3] 钟彩虹,黄文俊,李大卫,张琼,李黎. 世界猕猴桃产业发展及鲜果贸易动态分析[J]. 中国果树,2021(7):101-108.
ZHONG Caihong,HUANG Wenjun,LI Dawei,ZHANG Qiong,LI Li. Dynamic analysis of global kiwifruit industry development and fresh fruit trade[J]. China Fruits,2021(7):101-108.
[4] ZHONG C H,HUANG W J,WANG Z P,LI L,LI D W,ZHANG Q,ZHAO T T,ZHANG P. The breeding progress and development status of the kiwifruit industry in China[J]. Acta Horticulturae,2022,1332:445-454.
[5] BAO W W,ZHANG X C,ZHANG A L,ZHAO L,WANG Q C,LIU Z D. Validation of micrografting to evaluate drought tolerance in micrografts of kiwifruits (Actinidia spp.)[J]. Plant Cell,Tissue and Organ Culture,2020,140(2):291-300.
[6] DA CUNHA CRUZ Y,SCARPA A L M,PEREIRA M P,DE CASTRO E M,PEREIRA F J. Growth of Typha domingensis as related to leaf physiological and anatomical modifications under drought conditions[J]. Acta Physiologiae Plantarum,2019,41(5):64.
[7] BHUSAL N,LEE M S,LEE H,ADHIKARI A,HAN A R,HAN A,KIM H S. Evaluation of morphological,physiological,and biochemical traits for assessing drought resistance in eleven tree species[J]. The Science of the Total Environment,2021,779:146466.
[8] 木巴热克·阿尤普,艾沙江·买买提,郭春苗,徐叶挺,买买提依明·阿有甫,龚鹏,杨波. 基于叶片显微及亚显微结构的新疆扁桃10个主栽品种抗旱性综合评价[J]. 果树学报,2019,36(3):347-358.
Mubareke·Ayoupu,Aishajiang·Maimaiti,GUO Chunmiao,XU Yeting,Maimaitiyiming·Ayoufu,GONG Peng,YANG Bo. Comprehensive evaluation of drought resistance of 10 main cultivars of almond (Amygdalus communis L.) in Xinjiang by means of leaf microstructure and ultrastructure[J]. Journal of Fruit Science,2019,36(3):347-358.
[9] 闵小莹,熊康宁,申小云,杭红涛,池永宽,张仕豪. 喀斯特石漠化地区植物对干旱胁迫的适应性研究进展[J]. 世界林业研究,2020,33(3):7-12.
MIN Xiaoying,XIONG Kangning,SHEN Xiaoyun,HANG Hongtao,CHI Yongkuan,ZHANG Shihao. Research progress of plant adaptability to drought stress in Karst rocky desertification area[J]. World Forestry Research,2020,33(3):7-12.
[10] 陈雪峰,景晨娟,赵习平,武晓红. 植物叶片组织结构在抗逆研究中的应用进展[J]. 河北农业科学,2018,22(3):50-53.
CHEN Xuefeng,JING Chenjuan,ZHAO Xiping,WU Xiaohong. Advances in application of plant leaf tissue structure in the research of stress tolerance[J]. Journal of Hebei Agricultural Sciences,2018,22(3):50-53.
[11] 岑湘涛,沈伟,牛俊乐,吴伟兰. 基于植物叶片解剖结构的抗逆性评价研究进展[J]. 北方园艺,2021(18):140-147.
CEN Xiangtao,SHEN Wei,NIU Junle,WU Weilan. Research progress of stress resistance evaluation based on the anatomy of plant leaves[J]. Northern Horticulture,2021(18):140-147.
[12] 宋鹏,丁彦芬,朱贵珍,李涵,王亚楠. 6种卫矛属植物叶片解剖结构与抗旱性评价[J]. 河南农业大学学报,2019,53(4):574-580.
SONG Peng,DING Yanfen,ZHU Guizhen,LI Han,WANG Yanan. Evaluation of leaf anatomical structure and drought resistance evaluation of six species of Euonymus[J]. Journal of Henan Agricultural University,2019,53(4):574-580.
[13] 范志霞,陈越悦,付荷玲. 成都地区10种园林灌木叶片结构与抗旱性关系研究[J]. 植物科学学报,2019,37(1):70-78.
FAN Zhixia,CHEN Yueyue,FU Heling. Study on drought resistance and leaf structure in 10 species of garden shrubs in Chengdu[J]. Plant Science Journal,2019,37(1):70-78.
[14] 郭改改,封斌,麻保林,井赵斌,张应龙,郭春会. 不同区域长柄扁桃抗旱性的研究[J]. 植物科学学报,2013,31(4):360-369.
GUO Gaigai,FENG Bin,MA Baolin,JING Zhaobin,ZHANG Yinglong,GUO Chunhui. Studies on drought resistance of different regional Amygdalus pedunculata Pall.[J]. Plant Science Journal,2013,31(4):360-369.
[15] 郭素娟,武燕奇. 板栗叶片解剖结构特征及其与抗旱性的关系[J]. 西北农林科技大学学报(自然科学版),2018,46(9):51-59.
GUO Sujuan,WU Yanqi. Leaf anatomical structure characteristics and drought resistance of Chinese chestnut[J]. Journal of Northwest A & F University (Natural Science Edition),2018,46(9):51-59.
[16] 郭燕,张树航,李颖,张馨方,王广鹏. 基于叶片解剖结构的京津冀主栽板栗品种抗旱性评价[J]. 核农学报,2021,35(8):1771-1782.
GUO Yan,ZHANG Shuhang,LI Ying,ZHANG Xinfang,WANG Guangpeng. Drought resistance evaluation based on leaf anatomical structure of major chestnut cultivars in Beijing-Tianjin-Hebei region[J]. Journal of Nuclear Agricultural Sciences,2021,35(8):1771-1782.
[17] 王延秀,贾旭梅,石晓昀,朱燕芳,胡亚,郭爱霞. 三种苹果砧木应对干旱胁迫的超微及解剖结构响应特性[J]. 植物生理学报,2018,54(4):594-606.
WANG Yanxiu,JIA Xumei,SHI Xiaoyun,ZHU Yanfang,HU Ya,GUO Aixia. The response characteristics of the ultrastructure and anatomical structure of three apple rootstocks under drought stress[J]. Plant Physiology Journal,2018,54(4):594-606.
[18] 刘倩文,邱安然,谢翔,刘瑞,王唯先,武春霞. 5种草莓叶片解剖结构与抗旱性的关系[J]. 天津农业科学,2019,25(7):18-22.
LIU Qianwen,QIU Anran,XIE Xiang,LIU Rui,WANG Weixian,WU Chunxia. Relationships between blade anatomical structure and drought resistances of five strawberry varieties[J]. Tianjin Agricultural Sciences,2019,25(7):18-22.
[19] 钟灶发,张利娟,高思思,彭婷. 干旱胁迫下4种柑橘砧木叶片细胞学特征及抗旱性比较[J]. 园艺学报,2021,48(8):1579-1588.
ZHONG Zaofa,ZHANG Lijuan,GAO Sisi,PENG Ting. Leaf cytological characteristics and resistance comparison of four citrus rootstocks under drought stress[J]. Acta Horticulturae Sinica,2021,48(8):1579-1588.
[20] 景晨娟,陈雪峰,王端,季文章,武晓红. 三个李子品种叶片结构差异及其抗旱性分析[J]. 北方园艺,2021(15):27-34.
JING Chenjuan,CHEN Xuefeng,WANG Duan,JI Wenzhang,WU Xiaohong. Analysis of leaf structure differences and relationships between the anatomical structure and drought resistances of three plums cultivars[J]. Northern Horticulture,2021(15):27-34.
[21] 陈菁菁,孙小妹,纪海波,陈亮,刘斌,陈年来. 西瓜品种叶部特征与抗旱性的关系[J]. 中国瓜菜,2015,28(5):8-13.
CHEN Jingjing,SUN Xiaomei,JI Haibo,CHEN Liang,LIU Bin,CHEN Nianlai. The relationship between leaf characteristics and drought resistance of watermelon cultivars[J]. China Cucurbits and Vegetables,2015,28(5):8-13.
[22] 马小芬,王兴芳,李强,贺晓. 不同种源地文冠果叶片解剖结构比较及抗旱性分析[J]. 干旱区资源与环境,2013,27(6):92-96.
MA Xiaofen,WANG Xingfang,LI Qiang,HE Xiao. The analysis of drought resistance and the comparison of anatomical structures of the leave of Xanthoceras sorbifolia Bunge introduced from different regions[J]. Journal of Arid Land Resources and Environment,2013,27(6):92-96.
[23] WASEEM M,NIE Z F,YAO G Q,HASAN M,XIANG Y,FANG X W. Dew absorption by leaf trichomes in Caragana korshinskii:An alternative water acquisition strategy for withstanding drought in arid environments[J]. Physiologia Plantarum,2021,172(2):528-539.
[24] 刘平平,熊雅兰,韦宇静,莫权辉,王发明,叶开玉. 五个猕猴桃种的皮孔、气孔器和叶片下表皮微观特征[J]. 广西植物,2021,41(1):157-166.
LIU Pingping,XIONG Yalan,WEI Yujing,MO Quanhui,WANG Faming,YE Kaiyu. Microscopic characteristics of lenticel,stomatal apparatus and lower epidermis of leaf from five kiwifruit species[J]. Guihaia,2021,41(1):157-166.
[25] 刘文,杨妙贤,梁红. 中华猕猴桃不同性别叶片的形态学和解剖学观察[J]. 仲恺农业工程学院学报,2011,24(4):5-11.
LIU Wen,YANG Miaoxian,LIANG Hong. Observations on morphology and anatomy of leaves of male and female Actinidia chinensis plants[J]. Journal of Zhongkai University of Agriculture and Engineering,2011,24(4):5-11.
[26] 陈健男. 猕猴桃果实香气成分及其抗旱性、砧木耐涝性评价[D]. 杨凌:西北农林科技大学,2018.
CHEN Jiannan. The aromatic constituents and drought resistance and evaluation of rootstocks flooding tolerance in kiwi fruit[D]. Yangling:Northwest A & F University,2018.
[27] 张俊环,张美玲,杨丽,姜凤超,于文剑,王玉柱,孙浩元. 基于叶片显微结构综合评价杏不同品种(系)的抗旱性[J]. 果树学报,2023,40(11):2381-2390.
ZHANG Junhuan,ZHANG Meiling,YANG Li,JIANG Fengchao,YU Wenjian,WANG Yuzhu,SUN Haoyuan. Comprehensive evaluation of drought resistance of different apricot cultivars (lines) based on leaf microstructure[J]. Journal of Fruit Science,2023,40(11):2381-2390.
[28] 刘培卫,张玉秀,杨云,陈波. 六种沉香属植物叶片解剖结构研究[J]. 广西植物,2017,37(5):565-571.
LIU Peiwei,ZHANG Yuxiu,YANG Yun,CHEN Bo. Leaf anatomical structure of six Aquilaria species[J]. Guihaia,2017,37(5):565-571.
[29] 孙梅,田昆,张贇,王行,管东旭,岳海涛. 植物叶片功能性状及其环境适应研究[J]. 植物科学学报,2017,35(6):940-949.
SUN Mei,TIAN Kun,ZHANG Yun,WANG Hang,GUAN Dongxu,YUE Haitao. Research on leaf functional traits and their environmental adaptation[J]. Plant Science Journal,2017,35(6):940-949.
[30] 李崇高. ‘徐香猕猴桃在闽西北的引种适应性及栽培技术要点[J]. 东南园艺,2019,7(5):32-34.
LI Chonggao. Introduction adaptation and key points of cultivation techniques of a kiwifruit cultivar ‘Xuxiang in the Northwest of Fujian Province[J]. Southeast Horticulture,2019,7(5):32-34.
[31] 钟彩虹,陈美艳. 猕猴桃生产精细管理十二个月[M]. 北京:中国农业出版社,2020.
ZHONG Caihong,CHEN Meiyan. Twelve months of fine management of kiwifruit production[M]. Beijing:China Agriculture Press,2020.
[32] 张忠慧,黄仁煌,王圣梅,姜正旺,黄宏文,武显维. 中华猕猴桃优良新品种金霞的选育研究[J]. 中国果树,2006(5):11-12.
ZHANG Zhonghui,HUANG Renhuang,WANG Shengmei,JIANG Zhengwang,HUANG Hongwen,WU Xianwei. Study on Breeding of Jinxia,an excellent new cultivar of Actinidia chinensis[J]. China Fruits,2006(5):11-12.
[33] ZHONG C,WANG S,HAN F,LI D,JIANG Z,GONG J,HUANG H. Jinmei,a new yellow-fleshed kiwifruit cultivar with medium maturity and long storage[J]. Acta Horticulturae,2018,1218:61-66.
[34] 钟彩虹,王中炎,卜范文,蔡金术. 优质耐贮中华猕猴桃新品种翠玉[J]. 中国果树,2002(5):2-4.
ZHONG Caihong,WANG Zhongyan,BU Fanwen,CAI Jinshu. ‘Cuiyu,a new kiwifruit cultivar of Actinidia chinensis with high quality and storage resistance[J]. China Fruits,2002(5):2-4.
[35] 王铭涵,丁玎,张晨禹,高羲之,陈建姣,唐瀚,沈程文. 干旱胁迫对茶树幼苗生长及叶绿素荧光特性的影响[J]. 茶叶科学,2020,40(4):478-491.
WANG Minghan,DING Ding,ZHANG Chenyu,GAO Xizhi,CHEN Jianjiao,TANG Han,SHEN Chengwen. Effects of drought stress on growth and chlorophyll fluorescence characteristics of tea seedlings[J]. Journal of Tea Science,2020,40(4):478-491.
[36] 逯玉兰,李广,韩俊英,燕振刚,董莉霞. 降水量和气温变化对定西地区旱地春小麦产量的影响[J]. 湖南农业大学学报(自然科学版),2021,47(3):268-273.
LU Yulan,LI Guang,HAN Junying,YAN Zhengang,DONG Lixia. Effect of precipitation and temperature changes on dryland spring wheat yield in Dingxi area[J]. Journal of Hunan Agricultural University (Natural Sciences),2021,47(3):268-273.
[37] 钟彩虹. 猕猴桃栽培理论与生产技术[M]. 北京:科学出版社,2020.
ZHONG Caihong. Cultivation theory and production technology of kiwifruit[M]. Beijing:Science Press,2020.
[38] 黄韦. 中华猕猴桃/美味猕猴桃复合体自然居群倍性变异格局的研究[D]. 武汉:华中农业大学,2009.
HUANG Wei. Studies on ploidy variance pattern of natural populations in Actinidia chinensis var. chinensis/Actinidia chinensis var. deliciosa complex[D]. Wuhan:Huazhong Agricultural University,2009.
[39] WANG Z,ZHONG C H,LI D W,YAN C L,YAO X H,LI Z Z. Cytotype distribution and chloroplast phylogeography of the Actinidia chinensis complex[J]. BMC Plant Biology,2021,21(1):325.
[40] 姚春潮,李建军,刘占德. 猕猴桃高效栽培与病虫害防治彩色图谱[M]. 北京:中国农业出版社,2021.
YAO Chunchao,LI Jianjun,LIU Zhande. Color atlas of kiwifruit high efficiency cultivation and pest control[M]. Beijing:China Agriculture Press,2021.
[41] 竺元琦. 猕猴桃高温干旱抗性研究[J]. 湖北林业科技,1999,28(4):14-15.
ZHU Yuanqi. Study on resistance of kiwifruit to high temperature and drought[J]. Hubei Forestry Science and Technology,1999,28(4):14-15.
[42] 厉广辉,张昆,刘风珍,刘丹丹,万勇善. 不同抗旱性花生品种的叶片形态及生理特性[J]. 中国农业科学,2014,47(4):644-654.
LI Guanghui,ZHANG Kun,LIU Fengzhen,LIU Dandan,WAN Yongshan. Morphological and physiological traits of leaf in different drought resistant peanut cultivars[J]. Scientia Agricultura Sinica,2014,47(4):644-654.
[43] 张海燕,解备涛,姜常松,冯向阳,张巧,董顺旭,汪宝卿,张立明,秦桢,段文学. 不同抗旱性甘薯品种叶片生理性状差异及抗旱指标筛选[J]. 作物学报,2022,48(2):518-528.
ZHANG Haiyan,XIE Beitao,JIANG Changsong,FENG Xiangyang,ZHANG Qiao,DONG Shunxu,WANG Baoqing,ZHANG Liming,QIN Zhen,DUAN Wenxue. Screening of leaf physiological characteristics and drought-tolerant indexes of sweetpotato cultivars with drought resistance[J]. Acta Agronomica Sinica,2022,48(2):518-528.
[44] 赵秀明. 新引进苹果矮化砧木的抗旱性研究[D]. 杨凌:西北农林科技大学,2012.
ZHAO Xiuming. Study on the drought resistence of newly introduced apple dwarf rootstocks[D]. Yangling:Northwest A & F University,2012.
[45] 刘艳霞,马亚丽,兰海燕. 植物非腺毛形态发生及其功能研究进展[J]. 植物生理学报,2018,54(10):1527-1534.
LIU Yanxia,MA Yali,LAN Haiyan. Advances in morphology and function of plant non-glandular trichomes[J]. Plant Physiology Journal,2018,54(10):1527-1534.
[46] NING P B,WANG J H,ZHOU Y L,GAO L F,WANG J,GONG C M. Adaptional evolution of trichome in Caragana korshinskii to natural drought stress on the Loess Plateau,China[J]. Ecology and Evolution,2016,6(11):3786-3795.
[47] 王仁才,陈梦龙,李顺望,熊兴耀. 猕猴桃良种选育及栽培技术的研究:Ⅴ. 美味猕猴桃品种抗旱性研究[J]. 湖南农学院学报,1991,17(1):42-48.
WANG Rencai,CHEN Menglong,LI Shunwang,XIONG Xingyao. Studies of selection and culture techniques of Actinidia:Ⅴ. Drought adaptability of Actinidia[J]. Journal of Hunan Agricultural University (Natural Sciences),1991,17(1):42-48.
[48] LU M,CHEN M M,SONG J Y,WANG Y,PAN Y H,WANG C Y,PANG J Y,FAN J F,ZHANG Y. Anatomy and transcriptome analysis in leaves revealed how nitrogen (N) availability influence drought acclimation of Populus[J]. Trees,2019,33(4):1003-1014.
[49] 王树森,孟凡旭,赵波,闫洁,程冀文,马迎梅,郭宇,何英志,铁英,张波. 大青山阳坡五种灌木叶片解剖结构及其抗旱性研究[J]. 中国农业科技导报,2020,22(1):38-44.
WANG Shusen,MENG Fanxu,ZHAO Bo,YAN Jie,CHENG Jiwen,MA Yingmei,GUO Yu,HE Yingzhi,TIE Ying,ZHANG Bo. Leaf anatomic structure of five shrubs and its effects on drought tolerance in sunny slope of Daqing Mountain[J]. Journal of Agricultural Science and Technology,2020,22(1):38-44.
[50] 任媛媛,刘艳萍,王念,罗晓雅,翟晓巧. 9种屋顶绿化阔叶植物叶片解剖结构与抗旱性的关系[J]. 南京林业大学学报(自然科学版),2014,38(4):64-68.
REN Yuanyuan,LIU Yanping,WANG Nian,LUO Xiaoya,ZHAI Xiaoqiao. The relationship between leaf anatomic structure and drought resistance of nine broadleaf plants[J]. Journal of Nanjing Forestry University (Natural Sciences Edition),2014,38(4):64-68.
[51] 李嘉诚,罗达,史彦江,宋锋惠. 平欧杂种榛叶片解剖结构的抗旱性研究[J]. 西北植物学报,2019,39(3):462-471.
LI Jiacheng,LUO Da,SHI Yanjiang,SONG Fenghui. Study on drought resistance of leaf anatomical structure of Corylus heterophylla × Corylus avellana[J]. Acta Botanica Boreali-Occidentalia Sinica,2019,39(3):462-471.
[52] 田小霞,许明爽,郑明利,魏浩,谷艳蓉,毛培春. 黄花草木樨苗期抗旱性鉴定及抗旱指标筛选[J]. 干旱区资源与环境,2021,35(10):120-127.
TIAN Xiaoxia,XU Mingshuang,ZHENG Mingli,WEI Hao,GU Yanrong,MAO Peichun. Drought resistance identification and drought resistance indices screening for Melilotus officinalis resources at seedling stage[J]. Journal of Arid Land Resources and Environment,2021,35(10):120-127.
[53] 朱广龙,马茵,韩蕾,霍张丽,魏学智. 植物晶体的形态结构、生物功能及形成机制研究进展[J]. 生态学报,2014,34(22):6429-6439.
ZHU Guanglong,MA Yin,HAN Lei,HUO Zhangli,WEI Xuezhi. Current status of research on morphological structure,biological function and formation mechanism of plant crystals[J]. Acta Ecologica Sinica,2014,34(22):6429-6439.