一类分数阶q-差分方程广义反周期边值问题

2024-05-15 17:43孟鑫国佳
吉林大学学报(理学版) 2024年2期
关键词:导数

孟鑫 国佳

摘要: 考虑一类非线性Caputo型分数阶q-差分方程的广义反周期边值问题, 用Banach不动点定理给出该广义反周期边值问题解的存在唯一性结果, 并给出一个应用实例.

关键词: Caputo分数阶q-导数; 分数阶q-差分方程; 广义反周期邊值问题; Banach不动点定理

中图分类号: O175.8文献标志码: A文章编号: 1671-5489(2024)02-0237-06

Generalized Anti-periodic Boundary Value Problem fora Class of  Fractional q-Difference Equations

MENG Xin1, GUO Jia2

(1. College of Mathematics and Computer, Jilin Normal University, Siping 136000, Jilin Province, China;2. Library of Jilin Normal University, Siping 136000, Jilin Province, China)

Abstract: We considered the generalized anti-periodic boundary value problem for a class of nonlinear Caputo fractional q-difference equations, gave the existence and uniqueness results of solutions for the generalized anti-periodic boundary value problem  by using the Banach fixed point theorem, and  gave an application example.

Keywords: Caputo fractional q-derivative; fractional q-difference equation; generalized anti-periodic boundary value problem; Banach fixed point theorem

0 引 言

分数阶q-差分理论[1-2]是分数阶差分体系中的一种特殊形式, 它具有分数阶微积分和离散数学二者的优点, 因而有更丰富的理论意义和应用价值. 目前, 分数阶q-差分方程的研究主要侧重于Caputo分数阶q-导数和Riemann-Liouville分数阶q-导数两方面. 文献[3]应用锥上不动点定理研究了二阶q-差分方程边值问题正解的存在性; 文献[4-5]应用Banach不动点定理和Krasnoselskii不动点定理给出了带有非局部Riemann-Liouville分数阶q-积分边值条件的Riemann-Liouville分数阶q-差分边值问题解的存在性结果; 文献[6-7]应用Banach不动点定理和Covitz-Nadler不动点定理研究了边值条件含积分的非线性Caputo分数阶q-差分方程以及q-差分包含边值问解的存在性. 由于反周期问题在许多物理过程的数学模型中应用广泛, 所以反周期边值问题是一类重要的边值问题. 关于非线性分数阶q-差分方程反周期边值问题的研究已取得了一些进展, 文献[8-10]利用基本的不动点定理研究了一类带有反周期非线性Caputo分数阶q-差分方程边值问题, 得到了边值问题解的存在性和唯一性的充分条件; 文献[11-12]利用Banach不动点定理和Leary-Schauder非线性抉择研究了一类带有反周期边值条件的非线性分数阶脉冲q-差分方程的边值问题, 给出了该边值问题解的存在性和唯一性结果.

参考文献

[1]AL-SALAM W A. Some Fractional q-Integrals and q-Derivatives [J]. Proceedings of the Edinburgh Mathematical Society, 1966, 15(2): 135-140.

[2]AGARWAL R P. Certain Fractional q-Integrals and q-Derivatives [J]. Proceedings of Cambridge Philosophical Society, 1969, 66: 365-370.

[3]EL-SHAHED M, HASSAN H A. Positive Solutions of q-Difference Equation [J]. Proceedings of the American Mathematical Society, 2010, 138(5): 1733-1738.

[4]WANG J F, YU C L, GUO Y P. Solvability for Nonlinear Fractional q-Difference Equations with Nonlocal Conditions [J]. International Journal of Modelling, Identification and Control, 2018, 30(4): 303-309.

[5]AHMAD B, NIETO J J, ALSAEDI A, et al. Existence of Solutions for Nonlinear Fractional q-Difference Integral Equations with Two Fractional Orders and Nonlocal Four-Point Boundary Conditions [J]. Journal of the Franklin Institute, 2014, 351(5): 2890-2909.

[6]YANG W G. Existence Results for Nonlinear Fractional q-Difference Equations with Nonlocal Riemann-Liouville q-Integral Boundary Conditions [J]. Filomat, 2016, 30(9): 2521-2533.

[7]SAMEI M E, RANJBAR G K, HEDAYATI V. Existence of Solutions for a Class of Caputo Fractional q-Difference Inclusion on Multifunctions by Computational Results [J]. Kragujevac Journal of Mathematics, 2021, 45(4): 543-570.

[8]YANG W G. Anti-periodic Boundary Value Problems in Volving Nonlinear Fractional q-Difference Equations [J]. Malaya Journal of Matematik, 2013, 4(1): 107-114.

[9]孫明哲, 侯成敏. 一类反周期分数阶q-差分边值问题解的存在性 [J]. 吉林大学学报(理学版), 2014, 52(6): 1215-1218. (SUN M Z, HOU C M. Existence of Solutions for a Class of Anti-periodic Boundary Value Problems with Fractional q-Difference Equations [J]. Journal of Jilin University (Science Edition), 2014, 52(6): 1215-1218.)

[10]LI X H, HAN Z L, SUN S R. Anti-periodic Boundary Value Problems for Fractional q-Difference Equations [J]. Journal of Applied Mathematics and Computing, 2016, 50(1/2): 243-257.

[11]PATHAK R P, SOMVANSHI P S. On Existence Result of Impulsive Antiperiodic Boundary Value Problem of Fractional Order q∈(1,2) [J]. Acta Ciencia Indica, 2015, 41(4): 331-346.

[12]ZUO M Y, HAO X A. Existence Results for Impulsive Fractional q-Difference Equation with Antiperiodic Boundary Conditions [J/OL]. Journal of Function Spaces, (2018-10-09)[2023-03-28]. https://doi.org/10.1155/2018/3798342/.

[13]KAC V, CHEUNG P. Quantum Calculus [M]. New York: Springer, 2002: 1-112.

(责任编辑: 赵立芹)

收稿日期: 2023-05-19.

第一作者简介: 孟 鑫(1980—), 男, 汉族, 博士, 副教授, 从事微分方程与动力系统的研究, E-mail: mengxin0419@126.com.

基金项目: 国家自然科学基金(批准号: 10971084).

猜你喜欢
导数
导数与不等式“三剑客”
“观察”激活创新 “构造”突破阻碍(一)——以导数中的构造为例
导数创新题型透视
导数考向分析
解导数题的几种构造妙招
十种解法妙解2020年高考导数压轴题
指对同构法巧妙处理导数题
探讨导数在高中数学解题中的有效应用
关于导数解法
导数在函数中的应用