具p-双调和算子的非局部椭圆方程Navier边值问题的广义解

2024-05-15 11:38刘健赵增勤
吉林大学学报(理学版) 2024年2期

刘健 赵增勤

摘要: 利用變分方法和相应的临界点定理研究一类具有p-双调和算子的非局部椭圆方程Navier边值问题, 在非线性项满足超线性条件时, 得到了两个非平凡广义解的存在性定理.

关键词: 非局部椭圆方程; Navier边值问题; p-双调和算子; 变分方法; 广义解

中图分类号: O175.2文献标志码: A文章编号: 1671-5489(2024)02-0205-06

Generalized Solutions to Nonlocal Elliptic EquationsNavier Boundary Value Problems with p-Biharmonic Operators

LIU Jian1, ZHAO Zengqin2

(1. School of Statistics and Mathematics, Shandong University of Finance and Economics, Jinan 250014, China;

2. School of Mathematical Sciences, Qufu Normal University, Qufu 273165, Shandong Province, China)

Abstract: By using  variational methods and corresponding critical points theorems, we investigated a class of nonlocal elliptic equations Navier boundary value problems with p-biharmonic operators. We obtained two existence theorems for nontrivial generalized solutions  when nonlinear terms satisfied super-linear conditions.

Keywords: nonlocal elliptic equation; Navier boundary value problem; p-biharmonic operator; variational method; generalized solution

0 引 言

四阶非线性椭圆方程边值问题在微机电系统、 多相系统的相场模型、 固体表面扩散及界面动力学等领域应用广泛. Kirchhoff型椭圆方程是带有非局部项的非线性方程, 该类方程的很多定性性质可解释物理学和工程学中许多非线性模型的物理意义[1]. 为研究拉伸弦的振动, Lions[2]建立了该类方程的抽象框架. 近年来, 利用变分方法结合临界点理论, 对非线性微分方程解的存在性及解存在数量的研究得到广泛关注[3-18]. 例如: 文献[4,14]分别在一定的条件下研究了四阶脉冲弹性梁方程解的存在数量; 文献[5]在非线性项满足一定的增长性条件下, 利用变分方法结合相应的临界点定理研究了一类Kirchhoff型四阶弹性梁方程两个非平凡广义解的存在性.

受上述研究启发, 本文研究下列具有p-双调和算子的Kirchhoff型椭圆方程Navier边值问题广义解的存在性:Δ2pu+K∫Ωup/p+up/pdt(-Δpu+up-2u)=λf(x,u),/在Ω内,

参考文献

[1]KIRCHHOFF G. Vorlesungen ber Mathematische Physik: Mechanik [M].Leipzig:  Teubner, 1883: 1-234.

[2]LIONS J L. On Some Questions in Boundary Value Problems of Mathematical Physics [J]. North-Holland Mathematics Studies, 1978, 30: 284-346.

[3]BONANNO G, DI BELLA B. A Boundary Value Problem for Fourth-Order Elastic Beamequations [J]. Journal of Mathematical Analysis and Applications, 2008, 343(2): 1166-1176.

[4]DAGU G, DI BELLA B, WINKERT P. Two Positive Solutions for Nonlinear Fourth-Order Elastic Beam Equations [J/OL]. Electronic Journal of Qualitative Theory of Differential Equations, (2019-05-21)[2023-03-07]. https://doi.org/10.14232/ejqtde.2019.1.37.

[5]LIU J, YU W G. Two Solutions to Kirchhoff-Type Fourth-Order Implusive Elastic Beam Equations [J/OL]. Boundary Value Problems, (2021-03-31)[2023-03-07]. https://doi.org/10.1186/s13661-021-01515-8.

[6]LIU J, YU W G. Two Solutions to Superlinear Hamiltonian Systems with Impulsive Effects [J]. Applied Mathematics Letters, 2020, 102: 106162-1-106162-6.

[7]LIU J, ZHAO Z Q, ZHANG T Q. Multiple Solutions to Damped Hamiltonian Systems with Impulsive Effects [J]. Applied Mathematics Letters, 2019, 91(1): 173-180.

[8]LIU J, ZHAO Z Q. Multiple Solutions for Impulsive Problems with Non-autonomous Perturbations [J]. Applied Mathematics Letters, 2017, 64: 143-149.

[9]NIETO J J, OREGAN D. Variational Approach to Impulsive Differential Equations [J]. Nonlinear Analysis: Real World Applications, 2009, 10(2): 680-690.

[10]NIETO J J. Variational Formulation of a Damped Dirichlet Impulsive Problem [J]. Applied Mathematics Letters,2010, 23(8): 940-942.

[11]SUN J T, CHEN H B, YANG L. Variational Methods to Fourth-Order Impulsive Differential Equations [J]. Journal of Applied Mathematics and Computing, 2011, 35: 323-340.

[12]刘健, 赵增勤. Cerami条件下脉冲边值问题古典解的存在性 [J]. 数学学报(中文版), 2016, 59(5): 609-622. (LIU J, ZHAO Z Q. Existence of Classical Solutions to Impulsive Boundary Value Problems under Cerami Condition [J]. Acta Mathematica Sinica (Chinese Series), 2016, 59(5): 609-622.)

[13]刘健, 赵增勤, 于文广. 具非自治微小扰动的脉冲方程三个古典解的存在性 [J]. 数学学报(中文版), 2019, 62(3): 441-448. (LIU J, ZHAO Z Q, YU W G. The existence of Triple Classical Solutions to Impulsive Problems with Small Non-autonomous Perturbations [J]. Acta Mathematica Sinica (Chinese Series), 2019, 62(3): 441-448.)

[14]刘健, 赵增勤, 于文广. 四阶脉冲弹性梁方程非平凡弱解的存在数量 [J]. 数学学报(中文版), 2021, 64(1): 99-106. (LIU J, ZHAO Z Q, YU W G. The Numbers of Nontrivial Weak Solutions to Fourth-Order Impulsive Elastic Beam Equations [J]. Acta Mathematica Sinica (Chinese Series), 2021, 64(1): 99-106.)

[15]谢嫣玲, 肖宇霞, 储昌木.  一类具有奇异项的p(x)-Kirchhoff方程解的存在性 [J]. 东北师大学报(自然科学版), 2022, 54(3): 20-24. (XIE Y L, XIAO Y X, CHU C M. Existence of Solutions of p(x)-Kirchhoff Equation with Singular and Nonlinear Terms [J]. Journal of Northeast Normal University (Natural Science Edition),  2022, 54(3): 20-24.)

[16]SANG Y B,  REN Y.  A Critical p-Biharmonic System with Negative Exponents [J].  Computers & Mathematics with Applications, 2020, 79(5): 1335-1361.

[17]LIU J,  ZHAO Z Q.  Leray-Lions Type p(x)-Biharmonic Equations Involving Hardy Potentials [J].  Applied Mathmatics Letters, 2024, 149: 108907-1-108907-6.

[18]BOUREANU M M,  VLEZ-STANTIAGO A. Applied Higher-Order Elliptic Problems with Nonstandard Growth Structure [J].  Applied Mathmatics Letters, 2022, 123: 107603-1-107603-7.

[19]MAWHIN J, WILLEM M. Critical Point Theory and Hamiltonian Systems [M]. New York: Springer Verlag, 1989: 1-292.

[20]BONANNO G, IANNIZZOTTO A, MARRAS M. Two Positive Solutions for Superlinear Neumann Problems with a Complete Sturm-Liouville Operator [J]. Journal of Convex Analysis, 2018, 25(2): 421-434.

[21]BONANNO G. Relations between the Mountain Pass Theorem and Local Minima [J]. Advances in Nonlinear Analysis, 2012, 1(3): 205-220.

(責任编辑: 赵立芹)

收稿日期: 2023-06-12.

第一作者简介: 刘 健(1980—), 男, 汉族, 博士, 教授, 从事非线性泛函分析及偏微分方程的研究, E-mail: liujianmath@163.com.

基金项目: 国家自然科学基金(批准号: 11571197)和山东省自然科学基金(批准号: ZR2021MA070).