干旱区气候变化及其对山地森林生态系统稳定性和水文过程影响研究进展

2024-05-01 21:37常学向赵文智田全彦
干旱区地理(汉文版) 2024年2期
关键词:干旱区土壤水分山地

常学向, 赵文智, 田全彦

(中国科学院西北生态环境资源研究院,中国生态系统研究网络临泽内陆河流域研究站,中国科学院内陆河流域生态水文重点实验室,干旱区生态安全与可持续发展重点实验室,甘肃 兰州 730000)

IPCC 报告已经肯定了人类活动造成气候变化的事实[1],而且发现在过去的几十年里地表温度大幅上升[2-3]。过去半个多世纪,中国西北干旱区气温上升速率高达0.34 ℃·(10a)-1,明显高于全球平均水平0.12 ℃·(10a)-1[1],且高海拔山地生态系统和冻原区对全球变暖的响应可能更为敏感和迅速[4]。全球气温变暖将通过影响降雨、蒸散、径流和土壤湿度等陆面水循环要素,引起水资源在时间和空间上的重新分配,对地表水资源产生重要影响[5],可能加剧水资源短缺[6-7]。因此,迫切需要稳定的水资源供给和气温升高控制在1.5 ℃以内[2,5]。而森林在调节温度和生产淡水方面、减缓和适应气候变化方面发挥着关键作用[8]。

绿洲面积仅占我国干旱区面积的4%~5%,却抚育了干旱区90%以上的人口,创造了干旱区95%以上的工农业产值[9]。水是形成绿洲的根本要素,绿洲植被依水而生,伴水而存[9]。因此,水资源的安全与稳定,是干旱区人民生存、生态安全和社会经济可持续发展的重要保障。干旱区山地是维系干旱区绿洲存在河流的发源地。干旱区山地森林分布在干旱区河川径流形成区,具有重要的涵养水源功能,有“绿色水库”之称[10]。气候变化将改变山地森林生态系统的结构、组成和功能[11-12],将深刻影响森林生态系统的稳定性和生态水文过程,进而影响河川径流形成区的地表水资源形成,威胁干旱区绿洲的安全[5-7]。气候变化如何影响山地森林生态系统稳定性?如何影响山地森林生态系统的涵养水源功能?如何减缓或弥补气候变化对山地森林生态系统涵养水源功能的影响?如何有效减轻和适应气候变化[6],维持稳定的干旱区绿洲水资源供给,保持绿洲生态环境和社会经济的可持续发展?如何实现干旱区山地绿水青山,为建设绿色“丝绸之路经济带”发挥重要生态安全屏障功能?关键在于深入掌握气候变化对干旱区山地森林生态系统稳定性和生态水文过程的影响机理[13-14],并在不同的时空尺度上理解这些过程的复杂性[6,8]。因此,系统地综述干旱区气候变化及其对干旱区山地生态系统稳定性和生态水文过程的研究进展,对促进干旱区山地生态学的研究和发展,对促进管理部门如何规划、预防气候变化的影响,都具有十分重要的科学意义。

1 西北干旱区气候变化研究

气温升高和降水量的时空分布改变是气候变化的最主要特征[1]。研究发现在中国西北干旱区气温和降水均呈增加趋势[5,15-19]。利用51 个气象站的数据,Li等[15]研究1961—2010年气候变化时发现西北干旱区山区、绿洲、荒漠区气温分别增加了0.33 ℃·(10a)-1、0.34 ℃·(10a)-1、0.36 ℃·(10a)-1,降水量分别增加了10.15 mm·(10a)-1、6.29 mm·(10a)-1、0.87 mm·(10a)-1。陈亚宁等[5]研究发现西北干旱区气温升高了0.39 ℃·(10a)-1,明显高于全球平均水平0.12 ℃·(10a)-1[1]。姚俊强等[16]基于122 个气象站点1961—2011年月降水量资料,利用线性趋势、Mann-Kendall 非参数趋势和突变检验法、Morlet 小波分析等方法研究了西北干旱区降水量空间分布及多时间尺度下的变化规律和趋势,发现近50 a来西北干旱区降水量呈增加趋势,但增湿幅度存在区域差异,其中祁连山亚区[38.67 mm·(10a)-1]增湿最明显。汪有奎等[17]利用1956—2009 年祁连山北坡定位观测、遥感监测和实地调查的气象、水文、森林、草原资料及相关文献,采用回归与对比分析相结合的方法,综合分析了祁连山北坡生态环境变化,发现1960 年以来祁连山北坡气温、降水量呈上升、增加趋势,年均气温、年降水量的年际变化率分别为0.033 ℃·(10a)-1、0.57 mm·a-1。程鹏等[18]利用1960—2017年水文、气象资料,采用相关分析、Mann-Kendall和小波分析等方法,研究发现近60 a来祁连山中部年均气温以0.39 ℃·(10a)-1的幅度上升。温煜华等[19]利用祁连山24 个气象台站1961—2017 年逐日降水资料,选用12 个极端降水指数,采用线性趋势法、Pearson相关性分析法等分析了祁连山极端降水指数的时空变化特征,发现祁连山雨日降水总量以13.86 mm·(10a)-1的速率变化。观测结果和模拟研究均显示干旱区的变暖加剧,且在过去的一个世纪里全球干旱区(1.2~1.3 ℃)的升温比湿润区(0.8~1.0 ℃)的高20%~40%[20]。然而,这些研究仅体现了气候变化和发展趋势,却缺少较高的空间分辨率的气候变化研究成果。而对于管理者来说更需要较高空间分辨率的气候变化研究成果[21],才能建立和指导适应气候变化的管理策略[22]。

2 气候变化对山地森林生态系统稳定性影响研究

从区域到全球尺度上,温度和降水是生态系统过程的主要气候驱动因素[23]。由于温度和降水的变化,已经对陆地生态系统稳定性造成重大影响,如植物的物候期变化和生长期延长[24-25]、树木生长增加[26]、高山林线向上迁移[27]、树木死亡[28]等。而森林这种在组成、结构和功能的持续变化很大程度上取决于森林种群个体对不断变化的环境驱动因素和干扰机制的反应[29]。生态系统的稳定性被定义为一个群落对抗变化的能力[30],可以用所选择表征指标的平均值及其变化之间的比率定量表述[31]。气候变化对生态系统时间稳定性的影响可以用抗逆性和恢复力来概括[32],而这些稳定性指标主要考虑气候变化对生态系统同步和延迟的影响[33]。利用年轮宽度数据和卫星图像网络数据,编制了与地中海、温带和大陆生物群落相对应的西班牙11个树种和502种森林的表征森林生长和生产力的绝对年轮宽度指数(TRWI)、归一化植被指数(NDVI)数据,Gazol等[13]研究了森林对干旱的恢复力,发现恢复力与干旱的严重程度和森林的组成结构有关。利用长期的标准化降水、蒸发指数(SPEI)数据和卫星获取的增强植被指数(EVI)数据,Huang 等[34]研究了2000—2014 年全球尺度上常绿阔叶林群落的时间稳定性、抗逆性和恢复力,发现全球EVI的抗逆性和恢复力主要受温度和辐射的影响。利用单因素方差分析和多元回归模型,Ouyang等[35]研究了树种多样性、林分结构、社会经济因素和环境条件对中国亚热带森林稳定性影响的机制,发现树种丰富度、林分结构多样性对稳定性产生正向影响,而种群密度对稳定性有负向影响;降水变率和坡度主要通过对树种丰富度的影响间接影响稳定性。由于保护工作往往在较小的地理范围内进行,因此生态系统脆弱性评估也应在更精细的空间分辨率下进行[20]。在0.05°空间分辨率下,综合暴露性、敏感性和恢复力指标,Li等[36]对全球陆地生态系统短期气候变异性的相对脆弱性进行了研究,研究发现全球脆弱性模式在很大程度上取决于暴露性,而生态系统的敏感性和恢复力可能在当地尺度上加剧或缓解外部气候压力、暴露性与敏感性之间存在较显著的负相关。但是气候变化如何影响森林结构和空间格局的变化?气候与组成和功能多样性之间的关系如何转化为森林结构复杂格局?气候变化如何影响森林生态系统的稳定性?对干旱区高寒山地森林生态系统,这些作用机理至今存在没有厘清的问题。只有厘清这些问题,才能更好的为应对气候变化提供理论基础[10],才能选择适当的缓解、适应和治理策略应对气候变化的长期和短期影响[22],才能深入认识干旱区高寒山地森林生态系统结构和功能发展演化趋势。

3 气候变化对生态系统水文过程影响

陆地生态系统稳定性的变化必将改变水平衡和植物水分过程[37]、改变陆面水循环要素,如土壤水分、蒸散量[38],生态系统的水循环加速[39],从而影响林区的产水量[40]。对于森林生态系统,其水文过程主要包括冠层截留、穿透降水、蒸散、林下地被层和土壤水分储存以及产流等几方面[41]。但影响冠层截留和穿透降水的主要因素有植物类型、结构和分布格局[42]、冠层饱和点、冠层覆盖度[43]、穿透系数和平均冠层蒸发速率以及降雨分布[44],而林区产水量主要受土壤水分、蒸散量的制约[38-39]。因此,该项内容主要选择气候变化对生态系统的土壤水分、蒸散过程、根系吸收水分的影响以及耦合模型研究4个方面展开论述。

3.1 气候变化对生态系统土壤水分影响研究

土壤水分是链接气候、植物和水文过程的主要变量[45]。气候变化(特别是降水的变化)主导着土壤水分动态变化,而植物的多样性又促进了土壤水分的异质性[46]。Fatichi等[46]选择6个不同气候条件和植被盖度、3种类型土壤性质的典型山坡,利用机械生态水文模型Tethys-Chloris 研究了生物和非生物环境对土壤水分时空变异的影响,发现湿润气候条件下非生物环境的影响远远超过了生物环境的影响,但在地中海气候条件下生物环境对土壤水分时空变异的影响更显著。Liu 等[47]利用小波分析分析了多年观测美国俄克拉荷马州的斯蒂尔沃特西南部草地、林地及侵入种区的土壤水分动态,研究了降水变化与土壤水分波动的一致性。Gonzalez-Ollauri等[48]提出了一种新的试验方法和数值计算框架,研究了夏季生长在苏格兰斜坡上的桐叶槭(Acer pseudoplatanusL.)的树木结构特征对树干茎流量及土壤水分动态的影响。然而,对干旱区高寒山地森林生态系统,气候-植被-土壤水分在样地、坡面、流域等不同时空尺度上是如何相互作用的?土壤水分的时空变化是如何驱动的?仍然缺乏综合性的定量结果。由于许多水文过程是土壤水分的非线性函数,只有深入了解土壤水分时空变化,才能在较大尺度上呈现这些过程[49]。

3.2 气候变化对蒸散过程影响研究

由于气候变化,致使植被生长期延长、生理和物候发生变化,从而也改变了蒸散过程[41],因此蒸散量的变化及其潜在机制的研究引起了广泛的兴趣[50]。Zhang 等[39]基于遥感数据,研究了1982—2013 年全球的蒸散量,发现全球蒸散量、降水量分别以0.88 mm·a-1、0.66 mm·a-1趋势增加,但增温过高可能会加速土壤水分蒸发,形成干旱趋势。Palmquist 等[51]利用基于过程的土壤水分模型SOILWAT 研究了温度增加和降水变化对美国西部三齿蒿(Artemisia tridentata)生态系统日尺度的水量平衡方程中各要素的影响,发现尽管冬季和春季降水量增加了7%,但由于蒸散量增加了6%,致使春末和夏季的土壤水分减少了。Nouri等[52]定量研究了17个干旱区潜在蒸散量的变化趋势和气象因子对潜在蒸散量变化趋势的作用和敏感性,发现潜在蒸散量在冬季、春季、夏季、秋季和全年分别有70.6%、64.7%、70.6%、76.5%和70.0%的增加趋势。da Costa等[53]对亚马逊热带雨林15 a的研究发现由于降雨量只有正常年份降雨量的一半,致使树木大量死亡,导致森林蒸腾量减少了30%。Ning 等[54]对中国干旱到湿润气候区、森林覆盖率超过10%的44个流域的研究发现,2006—2015年由于森林覆盖率显著增加致使森林的蒸散量增加明显;与1976—1985年比较,68.0%的集水区平均森林覆盖率增加了4.5%,而其平均蒸散量则增加了8.2%。Wang等[55]同步监测了蒸腾量、潜在蒸散量、叶面积指数和0~60 cm土层的有效土壤水分,研究了中国西北部六盘山落叶松人工林2016 年和2018 年生长季的蒸腾量,并建立了日尺度的蒸腾量模型。Yang 等[56]利用Budyko 框架定量分析了降水量、潜在蒸散量和植被变化对祁连山区地面蒸散量的影响,发现1982—2015年祁连山区的地面蒸散量、降水量、潜在蒸散量和NDVI均呈显著增加趋势,增幅分别为1.52 mm·a-1、3.18 mm·a-1、0.89 mm·a-1和4.0×10-4a-1。然而,对于干旱区高寒山地森林生态系统,气候和稳定性变化如何改变蒸散过程?影响的内在机理是什么?尚不清楚。只有识别不同因素对蒸腾过程的影响机理,才能促进有效的水资源管理,提高气候变化影响的评估质量[57]。

3.3 根系吸收水分研究

根系吸收水分在土壤水分的时空演变中发挥着重要作用[58]。植物根系吸收土壤水分,然后通过植物蒸腾和土面蒸发进入大气,从而使土壤、植物、大气成为一个连续系统,清楚认识植物根系吸水模式将为理解土壤水分时空变化驱动因素、气候变化对植被水文过程的影响奠定基础。通过时空替代方法,在陕西省延安市天河流域,Song 等[59]研究了林龄为6 a、9 a、12 a、18 a 和21 a 的雨养苹果(Malus pumila Mill)园土壤水分和根系分布,结果发现21 a林龄的成熟苹果园浅层(<2 m)土壤水分减小了,而深层(>2 m)土壤水分比浅层的高;随着树龄的增加,细根(直径<2 mm)向纵深延伸的趋势明显。Zhang 等[60]利用探地雷达和根钻法调查了中国科尔沁沙地东南部不同林龄(10 a、20 a、30 a、40 a、50 a)樟子松(Pinus sylvestrisvar.mongolica)人工固沙林根系的空间分布特征,并建议应根据树的根系所占的面积来确定樟子松人工林林分密度,以避免因水分竞争而造成樟子松人工林的退化或死亡。Manoli等[61]利用一个考虑土壤水分动态、根系吸水、植物蒸腾和叶水平光合作用的3D 土壤-植物模型研究了多种树的根系对水的竞争利用。Yang 等[62]监测了澳大利亚南澳洲弗林德斯大学校园内木叶树(Allocasuarina verticillata)的树干液流、水势和根际土壤水势等指标,建立了木叶树树木的根系吸水模型。近年来,许多学者为了更好地描述根系吸水情况,以Richards方程为基础,在根系吸水模型中引入了水分胁迫指数ω和临界水分胁迫指数ωc[63]。Bouda 等[64]利用陆面模型(LSM)预测土壤水分动态,并融入根系结构参数到LSM 模型,以提高LSM 的精度。然而,对于干旱区高寒山地森林生态系统的地上植被冠层-根系结构-土壤水分之间存在何种协同匹配关系?受那些因素影响?对这些作用机制还存在认识不足的问题[50,59]。

3.4 气候变化和生态水文过程相互作用与反馈的耦合模型

气候和生态水文过程的研究首先通过对各要素、多尺度的观测,以收集和描述不同尺度的气候、生态水文过程各要素的状态信息,从而获得地表过程一些基本规律的科学认识[65]。但要更准确地预测和定量研究气候变化对生态水文过程的影响,开展流域参数和气候对水文响应的定量研究,就需要建立气候、水文和生态过程相互作用与反馈的耦合模型。Gao等[66]利用分布式生态水文模型模拟了黑河流域上游水文过程和植被动态,分析了流域水平衡特征及其与植被的关系,发现实际蒸散量的空间分布模式主要受降水量和气温影响,同时植被的分布模式也增加了实际蒸散量的空间变化。Paschalis等[67]为了在时空尺度上揭示水文、植物生理过程,利用生态水文模型定量研究了美国德克萨斯州斯托克顿堡灌木林和草地生态系统水通量与植物生产力,揭示了土壤水分的空间分布以及植物生产力、大气水通量和气象要素的动态变化。Tang等[68]利用R-RHESSys水文-生态模型研究了美国内华达州东部半干旱、干旱山区Cleve Creek 流域降水量变化与植物动态对流域水平衡的影响规律。Li 等[58]研究了祁连山东部青海省大通县森林保护区的青海云杉树干液流与环境因子之间的相互作用关系,并比较了BP 神经网络和多元回归模型在该研究中的性能,阐明了时滞效应和不同土壤水分条件在树干液流响应机制中的重要作用。Montaldo等[69]基于Montaldo 生态水文模型,耦合LSM 和植被动态模型(VDM),利用15 a 的气象、树木蒸腾量和土壤水分的长期数据,研究了地中海撒丁岛典型生态系统的水力再分配、根际水分平衡和岩质亚层水分平衡。以上研究均是在单一尺度上开展的模型模拟研究,但要充分地确定气候变化对生态水文过程的反应,就需要将叶片尺度的生理、树的地上和地下的反应、根系动态和土壤水分、林分的响应和物理水文学结合起来的模型[70]。而这种复杂的模型又很难在较大空间尺度上进行参数化和校准,这就需要在不同的时空尺度上建立气候、水文和生态过程相互作用与反馈的耦合模型。

4 展望

越来越多的证据表明,气候变化通过影响土壤水分、蒸发、蒸腾和径流在控制水循环中起着重要作用[37-40]。但干旱区高寒山地(如祁连山)生态系统是气候变化响应较为敏感和迅速的地区,气候变化对干旱区山地生态系统生态水文过程影响机制的研究才刚刚起步,尚未得到充分的定量研究结果。在干旱区高海拔山地,生态水文过程的研究主要集中在土壤水分动态[71]、冠层结构与截留率的关系[72]、植物蒸腾及其影响因素[73-74]及降水变化对林地产水量的影响[75],而气候变化对生态系统稳定性的影响研究也只开展了气候变化对植被物候[24,76]、林线[27]、青海云杉径向生长[77]、陆地初级生产力[23,78]和陆地蒸散量变化[57]、冠层位置对青海云杉气候-生长关系[79]以及高山植物群落[80]的影响,尚未开展气候变化对森林生态系统稳定性和生态水文过程影响的综合性研究。

展望未来,在气候变化研究方面,干旱区山地要评估优于1 km空间分辨率的气候变化趋势,才能更好的为管理者提供应对气候变化的理论基础,选择适当的缓解、适应和治理策略应对气候变化的长期和短期影响;在气候变化与森林生态系统稳定性和生态水文过程相互作用方面,要从样地、坡面、流域及个体、群落、生态系统等多个尺度,植被-大气、根系-土壤、土壤-大气多界面开展跨土壤学、水文学、生态学等多学科交叉研究,利用通量观测、树干液流技术、雷达技术、野外模拟实验、遥感和模型模拟等方法,阐明气候变化对干旱区山地森林生态系统稳定性及水文过程的影响机制,预测未来气候和森林生态系统生态水文过程变化趋势,以促进干旱区山地生态学的发展,为管理部门适应和缓解气候变化的影响奠定理论基础。

猜你喜欢
干旱区土壤水分山地
山地草甸
黑龙江半干旱区饲用谷子高产栽培技术
干旱区生态修复的实践——以古尔班通古特沙漠为例
穿越火线之山地作战
山地之旅
山地之美——雨补鲁
西藏高原土壤水分遥感监测方法研究
气候变化背景下西北干旱区旱涝的变化规律
干旱区影响水面蒸发的气象因素多元回归分析
不同覆盖措施对枣园土壤水分和温度的影响