新型催化剂实现高效全分解水制氢
近日,中国科学院大连化学物理研究所研究员章福祥团队在宽光谱捕光催化剂全分解水制氢研究方向取得新进展。团队发现金属载体强相互作用可显著促进Ir/BiVO4光催化剂体系的界面电荷分离和水氧化性能,进而建立了高效的Z机制全分解水制氢体系,其室温下制氢表观量子效率达到16.9%。相关成果发表在《焦耳》上。
利用悬浮粉末光催化剂全分解水制氢虽然被认为是最廉价、最易规模化应用的太阳能光化学转化途径之一,但是其制氢效率一直受到光生电荷分离效率低的制约。
在该研究中,团队通过高温氢还原处理获得具有SMSI作用的Ir/BiVO4光催化剂,发现金属载体强相互作用可显著促进其界面电荷分离。此外,团队通过原位光诱导实现负载Ir物种在BiVO4晶面定向转化成Ir和IrO2双助催化剂,进一步提高其表面催化和电荷分离能力,使得BiVO4产氧性能提升75倍以上。在此基础上,团队通过耦合TaON基产氢光催化剂,建立了Z机制可见光催化全分解水制氢新体系。
该研究不仅将金属载体强相互作用的应用从传统的热催化拓展至光催化领域,而且为促进光生电荷分离提供了新思路,有望为构筑高效光催化新体系奠定科学基础。
“超级光盘”诞生
2月21日,中国科学院上海光学精密机械研究所对外宣布存储容量是普通光盘上万倍、普通硬盘上百倍的“超级光盘”诞生。据计算,十几张“超级光盘”就可以存储下整个国家图书馆的数据量。“超级光盘”是上海光机所与上海理工大学等科研单位紧密合作、在超大容量超分辨三维光存储研究中取得的突破性进展。2月22日,国际学术期刊《自然》(Nature)杂志发表了相关研究成果。
经过长达7年坚持不懈的攻坚克难,“超级光盘”研究团队利用国际首创的双光束调控聚集诱导发光超分辨光存储技术,实验上首次在信息写入和读出均突破光学衍射极限的限制,实现了点尺寸为54纳米、道间距为70纳米的超分辨数据存储,并完成了100层的多层记录,单盘等效容量达千万亿字节量级。经老化加速测试,光盘介质寿命大于40年。
“拉索”确认首个超级宇宙线起源天体
日前,由中国科学院高能物理研究所牵头的高海拔宇宙线观测站“拉索”国际合作组宣布,在银河系北部天区天鹅座恒星形成区发现了一个巨型超高能伽马射线泡状结构,历史上首次找到能量高于1亿亿电子伏特的宇宙线的起源天体。这是迄今为止人们能够确认的第一个超级宇宙线源。该成果于北京时间2月26日以封面文章的形式在《科学通报》上正式发表。
此次“拉索”发现的巨型超高能伽马射线泡状结构,内有多个能量超过1千万亿电子伏特的光子。团队成员、中国科学院高能物理研究所副研究员李骢说:“一般来说,产生能量為2千万亿电子伏特的伽马光子,需要能量至少高10倍的宇宙线粒子。因此,这表明泡状结构内部存在超级宇宙线加速器,源源不断地产生能量至少达到2亿亿电子伏特的高能宇宙线粒子,并注入到星际空间。”研究表明,位于泡状结构中心附近的大质量恒星星团是超级宇宙线源最可能的对应天体。
萤火虫成虫发光器发育的关键机制被揭开
近日,华中农业大学植物科学技术学院教授付新华团队揭示了萤火虫成虫发光器发育的关键机制,为发光昆虫的发光及闪光控制研究提供了新的思路。相关论文近日发表在国际学术期刊《自然·通讯》上。
付新华介绍,萤火虫发光是一种生物化学反应,由其腹部特有的发光器发出。萤火虫的发光器分为幼虫形态和成虫形态的发光器。其中,萤火虫幼虫具有一对位于倒数第二腹节的球形或半球形的发光器,可在黑暗中发出无规律的闪光,用以警戒天敌。而萤火虫成虫的发光器则是在蛹期独立发育,在短短5至7天的蛹期,成虫发光器从无到有,快速发育成熟并具备发光功能。
研发团队利用比较基因组学、比较转录组学及基因干扰等技术,对水栖萤火虫雷氏萤蛹的早、中、晚期的发光器进行了研究。研究发现了两个关键的hox转录因子AlAbd-B和AlUnc-4,两者通过相互作用,启动并调控荧光素酶蛋白的表达。沉默其中任何一个转录因子,都会造成萤火虫不能发光。
付新华介绍,研究发现,在萤火虫成虫发光器的发育过程中,荧光素酶蛋白在细胞质中的大量表达是一个关键因素。另外一个关键因素是需要调控过氧化物酶体的跨膜转运蛋白将细胞质中的荧光素酶蛋白转运进过氧化物酶体,只有在过氧化物酶体中,萤火虫发光的这种生物化学反应才能正常进行。研究证实了AlAbd-B和AlUnc-4正是调控过氧化物酶体的跨膜转运蛋白对荧光素酶蛋白进行转运的两个转录因子。
付新华表示,萤火虫成虫发光器的形状和闪光频率是萤火虫生物多样性的基础,弄清萤火虫成虫发光器的发育机制,有助于进一步深入了解萤火虫生物多样性的形成机制。
我国学者发现骨质疏松会加剧认知功能衰退
南京大学医学院附属鼓楼医院科研团队发现,骨质疏松会加剧认知功能衰退,为临床上治疗阿尔茨海默病等神经退行性疾病提供了新思路。相关论文近期在线发表于国际学术期刊《自然·代谢》上。
该研究发现骨细胞源性Sclerostin可以通过血脑屏障抑制Wnt/β-catenin通路,加重衰老和阿尔茨海默病进展过程中的认知能力下降。该成果不仅揭示了骨脑轴代谢紊乱在阿尔茨海默病等疾病过程中认知功能损伤的机制,也丰富了器官之间相互调控的理论基础,为临床治疗阿尔茨海默病等神经退行性疾病提供新的思路。
具有高抗疲劳性能的3D打印钛合金研制成功
近期,中国科学院金属研究所研究员张哲峰团队制备出具有高抗疲劳性能的3D打印钛合金材料。2月29日,该项研究成果发表在《自然》杂志上。
研究人员发现,理想状态下3D打印技术直接制备出的钛合金组织本身应具有天然的超高疲劳性能,而打印过程中产生的气孔等缺陷掩盖了其自身组织抗疲劳的优点,导致3D打印材料疲劳性能大幅降低。然而,目前消除气孔的工艺往往伴随组织粗化,而细化组织的处理又会带来气孔复现,可谓进退两难。
TC4钛合金(Ti-6Al-4V)是一种应用广泛的钛合金。研究人员在对其进行试验时发现,高温下3D打印态组织的晶界迁移及气孔长大与相转变过程表现出不同步的特性。这意味着,存在一个宝贵的热处理工艺窗口,既可实现板条组织细化,又能有效抑制气孔复现。为此,研究人员发明了缺陷与组织分步调控的新工艺,最终制备出几乎无气孔的新型钛合金,其在典型条件下的疲劳强度增幅高达106%。
这项成果更新了人们以往对3D打印材料疲劳性能不高的固有认识,有望促进3D打印材料在航空航天等领域的进一步应用。