马 泽,宋维峰*,徐小青,2,储 娅
(1. 西南林业大学水土保持学院,云南 昆明 650224;2. 山西省桑干河杨树丰产林实验局,山西 大同 037045)
树干液流是树木蒸腾耗水的一个重要参数,可以反映出植物生理特性和环境因素对树木水分利用的综合调节作用[1-2]。然而,树干液流受到生物因素(如树种和树形)以及环境要素(如地域、时间、气象因子和土壤含水量)的影响较大,导致关于树干液流与气象因子(例如日照、温度、湿度、气压、风速、降雨)之间关系的研究得出了不同的结论。一般而言,太阳辐射、饱和水汽压差、气温和湿度被认为是驱动树木蒸腾的主要气象因子。其中,树干液流与太阳辐射、饱和水汽压差和气温呈正相关,与湿度呈负相关[3-12]。目前对于影响树干液流的气象因子的主次顺序存在争论:买尔当·克依木等[13]研究认为太阳辐射是影响植物光合作用和蒸腾作用的主要外界因子,在其直接或间接影响下气温、湿度才发生变化;孙旭等[14]研究认为太阳辐射、饱和水汽压亏缺是影响日尺度油松蒸腾速率的主要因子;张雷等[15-16]研究认为影响树干液流的主控气象因子因区域、时间和物种不同而有差异。另外,由于研究的时间、地点、对象和方法的不同,树干液流与气象因子之间时滞长短也存在差异[17-22]。目前相关研究主要是针对单一或少数几种树种进行分析[23],如松树[3,14,24]、杉树[10]、杨树[18,20]、相思树[5]、核桃树[17]、侧柏[6]和刺槐[25]等。而不同树种的蒸腾耗水能力不一,这可能是上述研究结果不一致的原因。因此,本文选择了哈尼梯田水源区的3 种林分中的10 种乔木树种作为研究对象,以消除树种因素的限制。从生理生态层面上研究乔木树干液流与气象因子的关系,对进一步研究乔木的蒸腾作用具有重要意义。
全福庄小流域位于云南省红河州元阳县新街镇全福庄小寨(图1a),是元阳哈尼梯田的核心区域,是哈尼梯田“森林-村庄-梯田-河流”垂直景观结构[26]的典型代表,占地面积约为76.87 hm2。研究区气候属亚热带山地季风气候,干湿季分明,平均气温16.6 ℃,年平均降雨量约为1 398 mm,其中约78% 的降水发生在雨季(5 月至10 月),11 月至次年4 月为旱季,3 月至10 月为植被生长季,11 月至2 月为非生长季。年平均日照时数1 550 h,相对湿度85%,土壤以黄棕壤为主,土壤剖面较为完整,土层大约有100 cm[27]。哈尼梯田水源区森林分布主要有原始林和次生林,本文在全福庄小流域水源区选取了3 个植被类型具有代表性的试验点(图1a,表1)。
表1 树干液流速率监测样木基本参数 Table 1 Basic parameters of sample wood were monitored by SAP flow rate
图1 研究区位置及Granier 热扩散测量树干液流速率的原理[28]与现场测定Fig. 1 Schematic diagram of study area location and Granier thermal diffusion measurement of SAP flow rate
Granier 热扩散探针安装在样树树干离地面1.3 m 处,监测期间使用两块12 v 蓄电池轮流为其持续供电,每10 s 读取 1 次数据,每30 min记录1 次平均值,定期维护仪器并下载数据(图1c)。Granier 热扩散探头[28]由两根探针组成,上部探针内含有加热器和热电偶,可以恒定连续加热;下部探针只有热电偶,作为参考端(图1b)。通过测定两根探针在边材的温差值计算液流速率。当液流速率等于0 时,两根探针的温差最大,当液流速率增大,温差值减小。液流速率计算公式:
式中:Js为液流速率/(mL·cm-2·h-1);ΔTm为日尺度所记录的最大温度差值/℃;ΔT为上下探头之间瞬时的温度差值/℃。
2020 年8 月至2021 年9 月,采用 Granier热扩散探针技术对哈尼梯田水源区次生常绿阔叶林、次生落叶阔叶林、原生常绿阔叶林的测验样树(表1)进行树干液流速率测定。在保证所有实验设备正常工作的前提下,选择供研究的同步异常数据。本文根据树干液流速率呈现“昼高夜低”的单峰或双峰曲线的特点,先找出每棵样树在所有观测期间正常的最高峰值,再把非峰值时出现的高于此值的间断性跳跃数据作为每棵样树的异常数据。在同一观测时间,所有监测样树都出现了“异常数据”的树干液流异常数据才最终作为同步异常数据,所有监测样树都满足了相应条件的数据作为同步数据。
在试验区林外空旷地安装一台WertherHawk-232 自动气象站(WertherHawk,美国)记录气象条件,自计频率为5 min,测定指标包括空气气温(Ta)/℃、空气相对湿度(RH)/%、风速(SP)/(m·s-1)、大气压(P)/kPa、降雨量(Pn)/mm 和太阳辐射(Rn)/(W·m-2),饱和水汽压差(VPD)/kPa[29]通过计算求得,计算公式如下:
使用Origin 2018 和photoshop 2022 软件对数据进行计算和绘图;使用SPSS 25.0 进行各树种树干液流与气象因子的Pearson 相关性分析,p<0.01 表示极显著相关,p< 0.05 表示显著相关;采用错位相关法分析各月树干液流与气象因子的Pearson 相关系数;使用Excel 2010 筛选功能找出增幅超过100%的77 个上升同步数据和增幅小于-50%的63 个下降同步数据。
通过分析监测期间树干液流,2021 年3 月至9 月次生落叶林和原生常绿阔叶林的树干液流数据中发现7 个同步异常数据(图2)。在试验点2 次生落叶阔叶林树干液流速率监测中,样树液2-桤木2、液2-喜树3、液2-喜树4 最大的正常峰值分别为47.25 mL·cm-2·h-1、13.33 mL·cm-2·h-1和32.9 mL·cm-2·h-1,非峰值时间出现高于最大正常峰值的同步异常数据有3 条,它们分别出现在3 月20 日11:00,8 月18 日13:30,8 月28 日11:00(图2a)。次生落叶阔叶林中发现的这3 条同步异常数据,在不同树种(桤木或喜树)、不同径级、不同树形,相同环境条件下都表现出极为明显的时间同步性。在试验点3 原生常绿阔叶林中,样树液3-云南樟1、液3-西南红山茶2、液3-猴樟2 最大的正常峰值分别为 12.48 mL·cm-2·h-1、7.14 mL·cm-2·h-1和8.36 mL·cm-2·h-1,每棵监测样树非峰值时间出现高于最大正常峰值的数量和出现时间不同。能够满足同步异常条件的数据有4 条,分别出现在5 月25 日13:00、6 月29 日13:30、7月4日11:30和7月14日12:00(图2b)。原生常绿阔叶林中找出的这4 条同步异常数据,也表现出明显的同步一致性。利用这7 个同步异常数据分析该地区树干液流与气象因素的关系,可以消除树种因素对其的影响,反映一个或多个气象因素引起的树干液流的变化。
图2 次生落叶阔叶林和原生常绿阔叶林出现的7 个同步异常数据Fig. 2 Seven synchronous anomalies in secondary deciduous broad-leaved forest and primary evergreen broad-leaved forest
为了探究引起树干液流同步异常的气象原因,图3 罗列出了7 条同步异常数据出现日对应的太阳辐射、气温、湿度、饱和水汽压差等主要气象因子从6:00 至18:00 的变化和增幅。7 月14 日12:00 当太阳辐射快速升高到达最大值时,气温也随之快速升高,湿度快速减少,饱和水汽压差变化幅度最大,所以树干液流在此时出现了同步异常数据。5 月25 日13:00 当太阳辐射值接近最大值时,气温也接近最高值,湿度接近最小值,饱和水汽压差接近最大值,此时样树树干液流出现了同步异常数据。3 月20 日、8 月28 日11:00 当太阳辐射快速升高到达第一次最大值时,尽管气温没有快速升高,湿度没有快速减少,树干液流在此时出现了同步异常数据。6 月29 日、8 月18 日13:00 太阳辐射值到达最大值后快速下降,但是气温、湿度和饱和水汽压差变化不大,同步异常数据出现在30 min 后的13:30。7 月4 日11:00 太阳辐射快速升高,气温也随之快速升高,湿度快速减少,饱和水汽压差快速变大,同步异常数据出现在太阳辐射增幅最大后30 min 的11:30。如图3a,5 月25 日、7 月14 日同步异常数据出现在全日太阳辐射最大的点上,3 月20 日、8 月28 日同步异常数据出现在太阳辐射快速升高到达第一次最大的点上,6 月29 日、8 月18 日同步异常数据出现在太阳辐射最大后的30 min,7 月4 日同步异常数据出现在太阳辐射增幅最大后30 min。如图3b,5 月25 日、6 月29 日和8 月18 日异常数据出现在气温接近最高的中午13:00 至13:30,7 月14 日异常数据出现在气温增幅最大的点上,3 月20 日、7 月4 日和8 月28 日异常数据出现在气温增幅最大前的30~60 min。如图3c,7 月14 日异常数据出现在湿度变化幅度最大的点上,8 月18 日同步异常数据出现在湿度最小的30 min 前,3 月20 日、7 月4 日和8 月28 日同步异常数据出现在湿度变化幅度最大的30~60 min 前。如图3d,5 月25 日异常数据出现在饱和水汽压差值接近最大值的点上,7 月14 日异常数据出现在饱和水汽压差变化幅度最大的点上,6 月29 日和8 月18 日同步异常数据出现在饱和水汽压差最大的30 min 前,3 月20 日、7 月4 日和8 月28 日同步异常数据出现在饱和水汽压差变化幅度最大的30~60 min 前。从以上分析可以看出,气象因子的瞬时大变化是产生同步异常数据的原因,而且太阳辐射是产生同步异常树干液流的直接驱动力,同步异常数据容易出现在太阳辐射最大或增幅最大后的0~30 min,气温、湿度和饱和水汽压差最大或者增幅最大前0~60 min,而且气温、湿度和饱和水汽压差三者表现出高度的一致性。
图3 同步异常树干液流与气象因子关系分析Fig. 3 Relationship analysis diagram of synchronous abnormal SAP flow and meteorological factors
根据7 个同步异常数据,气象因子的瞬时变化会改变树干液流速率。本文进一步分析了次生落叶林和原生常绿阔叶林在监测期内每日6:00 至18:00 树干液流的增幅情况,如表2 所示。不同树种的液流变化幅度不同,但大部分液流增幅都在-50%~50% 之间, 约占78% , 增幅大于100%的约占9%,增幅小于-50%的约占7%。树干液流增幅超过100%和低于-50%可能是由于某些气象因素的突变,导致树干液流的起伏。本文从这些数据中找出增幅超过100%的77 个同步数据作为液流快速上升的代表,增幅小于-50%的63 个同步数据作为液流快速下降的代表。
表2 样树树干液流变化幅度最大值和频次 Table 2 Table of frequency and maximum values of trunk sap flow variation of sample trees
对试验区2020 年8 月至2021 年9 月的太阳辐射、气温、湿度和饱和水汽压差进行1 h 为尺度监测,分析饱和水汽压差增幅时,发现了典型的“9 点现象”,如图4a 所示。饱和水汽压差90%增幅最大出现在9:00 am,其余10% 的第二大82%也出现在9:00 am,所以饱和水汽压差最大增幅几乎出现在每天9:00 am,本文将这一现象称为“9 点现象”。由于研究地点经纬度的原因,太阳辐射、气温和湿度等增幅出现典型的自然现象,太阳辐射增幅最大的时间出现在6:00 am,气温增幅最大出现在9:00 am,湿度增幅最大出现在 5:00 pm。液流上升增幅超过100%的77 个同步数据多数发生在9:00 至15:00,而且9:00 至10:00 和14:00 至15:00 两个高发期,如图4b 所示。液流下降增幅超过50% 的63 个同步数据多数发生在9:00 至18:00,而且9:00 至10:00 和15:00 至18:00 两个高发期,如图4c 所示。
图4 饱和水汽压差和同步数据各时间段分布Fig. 4 Distribution of saturated water vapour differential pressure and synchronous data by time period
在气象数据中找到增幅超过100%的77 个和减幅超过50% 的63 个同步数据发生时间对应的时间点,每个点对太阳辐射、气温、饱和水汽压差、湿度、风速、大气压、降雨等气象因子进行前后各2 h 的分析,如果在分析时间内某个或多个气象因子发生了突变,将它们作为影响原因进行统计。如图5a 所示,太阳辐射、气温和降雨是产生上升同步数据的原因,太阳辐射的突然增加是液流增幅超过100%的直接原因,77 条数据中有70 条的首要原因是太阳辐射的突然增加。但是影响树干液流快速上升的气象因子不是单一的,太阳辐射单一因子影响上升同步数据的只有7 条,43 条是由于太阳辐射的突然增加而导致气温的快速升高,19 条是由于短时间内降雨后太阳辐射突然增加。如图5b 所示,降雨、太阳辐射和气温是产生下降同步数据的原因,降雨是液流降幅超过50%的直接原因,63 条数据中有56 条的首要原因是降雨,7 条是由于太阳辐射的快速减少。但是影响树干液流快速下降的气象因子也不是单一的,降雨单一因子影响下降同步数据的只有9 条,36 条是由于降雨而太阳辐射快速变化,11 条是由于降雨而导致气温快速变化。以上分析可知,太阳辐射的突然增加是产生液流上升同步数据的原因,而降雨则是产生液流下降同步数据的原因,但是影响液流同步上升或下降的气象因子不是单一的,多数情况下是由于太阳辐射、降雨等主要因子发生变化,导致其它一个或多个因子变化,从而影响树干液流的变化。
图5 影响同步树干液流的气象原因分析Fig. 5 Analysis of the meteorological causes affecting synchronous trunk sap flow
3 种林分类型优势树种正常液流速均呈“昼高夜低”日变化规律,随着每天日出和气温上升,液流上午启动,中午达到峰值后开始下降(单峰曲线),而部分树种液流又返回另一峰值(双峰曲线),每天下午六七点钟几乎为零,很少有其他时刻出现超过峰值的异常数据。相同树种各月树干液流速率的变化趋势非常相似,不同树种各月液流速峰值大小不同,有的树种不同径级树干液流速差异较大,而有的差异却较小。在典型晴天条件下,不同时期不同树种液流启动和停止时间也不相同,但同一树种的变化规律却非常相似,所有树种液流启动并到达峰值的时间从3 月春季开始逐渐提前,至夏季最早后,到秋季、冬季再逐渐推迟,相同树种在相同时期液流速率大小呈晴天>阴天>雨天的规律。树干液流与树种、树形、环境因子和气象因子密切相关,对各月份气象因子和不同树种的树干液流速率进行了Pearson 相关性分析,如表3 所示。结果表明研究区各树种生长季树干液流与太阳辐射、气温、饱和水汽压差、湿度极显著相关,与风速和大气压在多数月份呈显著或极显著相关,与降雨量相关性不强。树干液流速率与太阳辐射、气温、饱和水汽压差和风速呈正相关,而与湿度和大气压呈负相关。同一树种不同月份由于环境原因与各气象因子的相关强弱不同[30],例如喜树3 月、7 月、8 月、9 月树干液流与太阳辐射的相关系数分别为0.69、0.75、0.84 和0.77;不同树种同一月份由于树种原因与气象因子的相关强弱也不同,例如云南樟、西南红山茶、猴樟、桤木、喜树7 月树干液流与饱和水汽压差的相关系数分别为0.66、0.60、0.25、0.44 和0.71。影响树干液流的气象因子主要是太阳辐射、饱和水汽压差、气温和湿度,但是与气象因子的相关性大小由不同树种决定。这与王小菲[5,31]、于占辉[6]、张璇[9]、涂洁和万艳芳[32]研究结论一致。
表3 各树种生长季树干液流速率与各气象因子的Pearson 相关系数分析 Table 3 Pearson correlation coefficient between SAP flow rate of tree species and meteorological factors in growing season
通常,由于气象因子相对稳定,在非峰值时间很少出现超过峰值的异常数据,但某个或多个气象因子发生瞬态性的大变化,树干液流瞬态响应。根据上文的分析,产生7 个同步异常的主要原因是太阳辐射发生了瞬时的大变化,在11:00 至13:30接近中午最热期间太阳辐射的快速异常是产生同步异常数据的直接原因,所以太阳辐射是影响同步异常树干液流的直接驱动力。太阳辐射又直接或者间接影响了气温和湿度[13],气温和湿度又决定了饱和水汽压差,所以影响树干液流的太阳辐射、饱和水汽压差、气温和湿度四个气象因子中,太阳辐射是主要原因,饱和水汽压差、气温和湿度是次要原因。
树干液流与气象因子具有一定的时滞效应,本文以喜树、西南红山茶、刺栲为例,采用错位相关法分析各月树干液流与气象因子的Pearson 相关系数,分析2020 年8 月至2021 年2 月3 种树各月树干液流和气象因子的时滞效应。如图6 所示,原生常绿阔叶林不同树种的树干液流滞后太阳辐射90~240 min,提前气温60~120 min,提前湿度90~120 min,提前于饱和水汽压差0~120 min。这与其他学者[24,33-36]的研究结果基本一致,树干液流滞后于太阳辐射,提前于气温、饱和水汽压差、湿度和风速,但是滞后和提前时间不同,可能是地域、时间、物种和环境等原因造成时滞时间不同[21,33,37-40]。党宏忠等[20]研究得出新疆杨在不同年份同一时期的气象因子与树干液流的时滞时间都不一样,马长明等[8]研究得出不同健康状况的北京杨的时滞时间也不一样。本文由同步异常数据分析可知,所有监测树种的树干液流滞后太阳辐射0~30 min,提前于饱和水汽压差、气温和湿度0~60 min。这一结果与马长明[8]、武鹏飞[18]、涂洁[41]等研究结果非常接近。用同步异常数据分析得出的太阳辐射、饱和水汽压差、气温和湿度滞后或提前时间远小于正常数据。一般情况下,因为不同树种内部结构和生理特性不一样、地域和时间不一样,气象因子无法100%满足的所有树种树干液流发生同步异常,所以会出现时滞时间远大于异常数据。但是本文的7 个同步异常数据是满足了所有外部条件,已经突破了树种的限制,纯粹反映了气象因子与乔木树木生理生态特性的关系和时滞时间。马长明等[8]研究得出健康和亚健康北京杨单株液流速率滞后于太阳辐射30 min,提前于空气温度、湿度、饱和水汽压差60 min;而不健康单株液流速率则滞后于太阳辐射60 min,与空气温度、湿度、饱和水汽压差同步。他们的结论也从另外一个角度证明了本文的结果,如果满足所有条件,树木的树干液流将滞后太阳辐射0~30 min,提前于饱和水汽压差、气温和湿度0~60 min,如果不能100%满足条件,滞后时间或提前时间将更大。
图6 喜树、西南红山茶和刺栲3 种树种树干液流与气象因子时滞效应分析Fig. 6 Analysis of SAP flow and time delay effects of meteorological factors in three species of native evergreen broad-leaved forest and secondary deciduous broad-leaved forest
本文通过对哈尼梯田水源区3 种林分中10 种乔木树种树干液流与气象因子的关系分析中发现,如果考虑树种因素,影响树干液流的气象因子主要是太阳辐射、饱和水汽压差、气温和湿度,与太阳辐射、气温、饱和水汽压差呈正相关,而与湿度呈负相关,相关性大小由不同树种决定。如果消除树种因素限制,太阳辐射、气温和降雨是影响乔木生理生态树干液流的主要气象因子,其中太阳辐射是影响乔木树干液流的主要原因。在正常气候天气下,原生常绿阔叶林不同树种的树干液流滞后太阳辐射90~240 min,提前气温60~120 min,提前湿度90~120 min,提前于饱和水汽压差0~120 min;在满足发生同步异常数据的气候条件下,树干液流滞后太阳辐射0~30 min,提前于饱和水汽压差、气温和湿度0~60 min,滞后或提前时间远小于正常气候条件下各树种的时滞时间。本研究为乔木树干液流与气象因子的关系和时滞时间提供了科学依据,对天气突变等原因影响乔木蒸腾有重要意义。