陈浩 高帅强 吴天鹏 张鉴 樊怀才 周涛 杨胜来
摘要 :支撐剂回流对页岩人工裂缝导流能力的伤害不容忽视,须对实际应力加载条件下支撑剂回流进行定量表征。利用自主研发的导流能力测试系统,通过添加支撑剂回流腔体模块,实现压裂液返排过程中支撑剂回流的定量表征,在实验室尺度下开展不同应力加载方式(变围压测试和变流压测试)下的页岩人工裂缝长期导流能力对比试验。结果表明:不同应力加载方式对支撑剂破碎量和嵌入量的影响相似,但变围压测试下支撑剂回流量随围压变化维持在约4.46%,与现场支撑剂回流数据不符;变流压测试下支撑剂回流量在流压20 MPa时的支撑剂回流量为20.53%,且随着流压的降低,回流量下降,与现场支撑剂的回流变量变化规律一致;忽略支撑剂的回流会导致对裂缝导流能力伤害率的计算值偏低,不利于制定施工方案;页岩人工裂缝导流能力的准确测试,应采用与实际应力加载更符合的变流压测试方法,以便更好地体现支撑剂回流对导流能力的影响。
关键词 :页岩; 人工裂缝; 导流能力; 支撑剂回流; 铺砂
中图分类号 :TE 357 文献标志码 :A
引用格式 :陈浩,高帅强,吴天鹏,等.支撑剂回流对页岩人工裂缝导流能力影响试验[J].中国石油大学学报(自然科学版),2024,48(1):142-149.
CHEN Hao, GAO Shuaiqiang, WU Tianpeng, et al. Experiment of proppant backflow effect on shale artificial fracture conductivity[J].Journal of China University of Petroleum(Edition of Natural Science),2024,48(1):142-149.
Experiment of proppant backflow effect on shale artificial
fracture conductivity
CHEN Hao 1,2 , GAO Shuaiqiang 1,2 , WU Tianpeng 3, ZHANG Jian 3, FAN Huaicai 3, ZHOU Tao 1,2 , YANG Shenglai 1,4
(1.National Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum(Beijing), Beijing 102249, China;
2.School of Safety and Ocean Engineering, China University of Petroleum(Beijing), Beijing 102249, China;
3.Shale Gas Research Institute, PetroChina Southwest Oil & Gas Field Company, Chengdu 610021, China;
4.College of Petroleum Engineering, China University of Petroleum(Beijing), Beijing 102249, China)
Abstract : Proppant backflow is one of the key factors causing damage to the conductivity of artificial shale fractures, and a quantitative characterization of proppant backflow under actual stress loading conditions is required. In this study, an in-house developed conductivity test system was used to simulate the proppant backflow during fracturing fluid flowing back by adding a proppant backflow chamber module, and long-term conductivity comparison tests of shale artificial fractures with different stress loading methods (variable confining pressure test and variable flow pressure test) were carried out. The results show that different stress loading methods have similar effects on the amount of proppant crushed and embedded, but the change of proppant backflow rate with confining pressure is about 4.46%, which is inconsistent with the field proppant backflow data. Under the variable flow pressure test, the proppant backflow rate is 20.53% with the flow pressure 20 MPa, and the backflow rate decreases with flow pressure decrease,which is Consistent with the field proppant backflow phenomenon. In addition, ignoring the backflow of proppant will lead to a low damage rate to the fracture conductivity, which is not conducive to the formulation of construction plans. Therefore, an accurate test of the hydraulic conductivity of artificial fractures in shale should adopt the variable pressure test method, which is more consistent with the actual stress loading, in order to better reflect the influence of proppant backflow on the hydraulic conductivity.
Keywords : shale; artificial fractures; conductivity; proppant reflux; sand paving
体积压裂技术是页岩气藏开发的核心,通过高压破岩和注入支撑剂提高储层导流能力。返排和生产制度变化可能导致支撑剂破碎、嵌入和回流,影響产能 [1-2] 。目前,国内缺乏页岩人工裂缝导流测试规范,主要参考API和ISO标准 [3] ,但测试结果难以一致。研究表明,裂缝内压力变化可能导致支撑剂破碎、嵌入和回流,损害导流能力 [4-7] 。因此相关试验测试方法对于准确预测和重现实际页岩裂缝导流能力至关重要。由于相关机制认识尚不深入,修正和完善评价支撑剂特性的标准程序仍需深入研究 [8-10] 。当前研究主要集中在数学建模和数值模拟,缺乏导流能力测试方法和流程的比较研究 [11-13] 。现有导流能力试验方法主要采用变围压测试,存在一些弊端,因为这与页岩裂缝内的受力情况不完全相同。因此对于不同压力加载方式对裂缝内支撑剂破碎、嵌入和回流的影响,亟待相关研究 [14-16] 。为此,笔者研发一套页岩人工裂缝长期导流能力模拟的试验装置,模拟裂缝缝端支撑剂回流。通过导流室和回流腔的设计,实现对不同压力加载方式下支撑剂的表征。以四川盆地龙马溪组典型页岩为例,进行变围压和变流压两种测试条件下的试验,揭示支撑剂回流与导流能力之间的关系。
1 试验装置和方法
1.1 支撑剂铺砂及岩样制备
岩心取自四川盆地下志留统龙马溪组典型页岩气井。对块状岩心进行钻孔、切割、打磨,获得表面平整无凹陷的直径25 mm、长度35~50 mm柱塞状岩心(图1(a));基于巴西劈裂法,对岩心进行人工造缝(图1(b)、(c));此方法与采用玻璃板、岩板或线切割获得的岩心(图1(d))相比可更好地模拟水力压裂过程中的裂缝扩展。
通过岩心切面的长度和宽度计算铺砂质量(图1(e))。支撑剂由质量分数30%的150~212 μm粒度石英砂与70%的212~380 μm粒度陶粒组成,混合均匀后备用。基于支撑剂浓度和密度计算理论缝宽,利用硬质固定带固定岩心侧面,岩心端面用150 μm孔径的纱网封堵。最后,由于人工造缝后的岩心不再呈规则圆柱体,采用热缩膜热缩裹紧岩心(图1(g)),以含胶热缩管取代套筒(图1(h)、(i)、(j))。经测试,此方法能够均匀、有效地加载围压和轴压。制备结果如表1所示。
1.2 试验装置
主要试验设备包括恒温箱、岩心夹持及支撑剂回流模拟系统、ISCO泵、中间容器、压力采集系统、流量采集系统、回压控制系统等。图2为自主研发的岩心夹持及支撑剂回流模拟系统,可在模拟页岩人工裂缝长期导流能力的同时收集回流的支撑剂。在岩心夹持系统的出口端设计了一个多级回流腔体。腔体一侧紧靠岩样末端,一侧与回压阀连通,以控制流动压力,同时作为回流支撑剂的“井底收集装置”。
1.3 试验流程
为明确压力加载方式对支撑剂回流和人工裂缝导流能力的影响,搭建变围压和变流压两套测试平台。
(1)变围压试验方案:将流压设置为0 MPa,岩样CP-1-1、CP-1-2、CP-1-3、CP-1-4、CP-1-5对应围压分别为30、25、20、15、10 MPa,此时围压即为有效应力。按图3所示流程连接试验装置,检查装置气密性。将岩样放入岩心夹持器中。下游连通大气, 通过改变围压模拟地层有效应力变化。下游连接天平,收集返排压裂液的累积质量。测试周期为1 800 min,流速为0.5 mL/min。
(2)变流压试验方案:将围压设置为30 MPa,
岩样FP-2-1、FP-2-2、FP-2-3、FP-2-4、FP-2-5对应流压分别为0、5、10、15、20 MPa,此时围压与流压的差值即为有效应力。试验系统中增设回压控制装置,模拟压裂返排过程中裂缝内孔隙压力的变化。测试周期同为1 800 min,流速为0.5 mL/min。
1.4 裂缝导流能力及支撑剂回流率、嵌入率和破碎率的计算方法
页岩人工裂缝的内部结构可看作是由支撑剂堆积而成的多孔介质,根据岩样上下游驱替压差、流体通过岩样的流量、流体黏度、岩样长度和岩样直径等参数,可获得人工裂缝导流能力的计算模型 [17] 为
kd f = 10QμL d Δ p . (1)
式中,k为渗透率, μm 2; d f为裂缝宽度,cm; kd f为导流能力, μm 2·cm; Q为液体通过岩心的流量, cm 3/s; μ 为测试条件下的液体黏度,mPa·s; L为岩心长度, cm; d 为岩心直径,cm;Δ p 为岩心上下游压差,MPa。
试验结束后取出岩心。结合每组试验的实际铺砂质量,计算支撑剂回流率、嵌入率和破碎率,
α=m 1/m, (2)
β=m 2/m, (3)
γ=m 3/m. (4)
式中,α为支撑剂回流率,%;β为支撑剂嵌入率,%;γ为支撑剂破碎率,%;m 1为支撑剂回流量;m 2为支撑剂嵌入量;m 3为支撑剂破碎量;m为支撑剂回流量。
1.5 试验原理
对于单个颗粒,流场中的颗粒受到压裂液流动施加的拖曳阻力、颗粒之间相互胶结的摩擦阻力以及颗粒间的挤压力 [18] 。拖曳力是流体与颗粒之间最重要的相互作用力,拖曳力公式 [19] 为
F P =C d A ρ l μ 2 l 2 .
(5)
式中,F P为颗粒受到的拖曳力,N; C d为拖曳力系数; A为颗粒表面积, mm 2; μ l为压裂液流动速度,m/s; ρ l为压裂液密度,kg/m 3。
颗粒在裂缝面相互堆积的主要原因是垂直方向上重力與浮力的合力作用,表达式为
F g= π 6 d 3 P (ρ P -ρ l )g. (6)
式中,ρ P为支撑剂密度,kg/m 3; d P为支撑剂颗粒直径,mm; g 为重力加速度,m/s 2。
裂缝闭合后颗粒之间相互挤压作用增强,颗粒之间的孔隙空间减小,黏结力增强。黏结力 [18] 表示为
F c= π 32 d P ε. (7)
式中,F c为黏结力,N; ε为黏结力系数。
当由单个颗粒拓展到多个颗粒时,需要考虑颗粒与颗粒之间、颗粒与流体之间的相互作用。在颗粒和压裂液之间的相互流动中,加速与减速都会使颗粒表面的附面层不稳定,从而使支撑剂颗粒受到一个额外阻力 [20] ,表示为
F ba = 3 2 d 2 P(π ρ l μ l ) 0.5 ∫ t′ t(t′-t) -0.5 (μ l -μ P)d t. (8)
式中,F ba 为支撑剂受到的Basset力,N; μ P为支撑剂颗粒流动速度,m/s; t为时间, s; t 0 和 t′分别为初末时间, s。
变流压试验中支撑剂颗粒与压裂液的密度和移动速度差异明显,产生横向上拖曳力与Basset力。在裂缝闭合后,流体流动导致驱替末端的支撑剂颗粒发生回流,促进了驱替末端砂拱的形成,如图4所示。然而,砂拱是极其不稳定的结构,一旦失稳,支撑剂会沿着裂缝流出,加剧回流 [13] 。
2 试验结果
2.1 变围压试验
2.1.1 不同围压下页岩人工裂缝的长期导流能力
如图5所示,不同围压条件下裂缝导流能力随时间逐渐下降,整个下降过程分为初期(0~400 min)、中期(400~1 200 min)、末期(1 200~ 1 800 min)3个阶段。围压(此时等同于有效应力)越小,波动越严重,与前人测试结果吻合 [21-23] 。即裂缝长期导流能力在时间尺度上呈现先迅速降低后趋于平缓的现象 [24-26] 。分析认为,低围压下作用在支撑剂颗粒的有效应力较低,支撑剂在裂缝内压裂液的冲击下容易移动。随围压增加,支撑剂颗粒被压实,压裂液冲刷作用下的移动更加困难。初始裂缝闭合不完全,支撑剂的局部位移和重新分布是导致导流能力波动的重要原因。
2.1.2 不同围压下裂缝内支撑剂的复杂作用
20 MPa下试验前后及不同围压条件下支撑剂状态如图6所示。由图6可知:支撑剂的嵌入主要集中在裂缝壁面的一些凹凸不平的沟槽内,试验过程中压裂液的浸润使页岩发生软化 [27] ,高围压下更容易发生嵌入 [28] (图6(a));部分支撑剂被压碎,破碎后的颗粒更加细密(图6(b));试验结束后在回流模块的底部收集到少量支撑剂,称量后回流率约为5%(图6(c));变围压下支撑剂的破碎率和嵌入率随围压增加而增加,说明支撑剂的破碎和嵌入与垂向应力关系密切,而支撑剂的回流率始终低于5%,维持在较低水平,说明变围压加载方式对支撑剂回流作用不明显(图6(d))。
2.1.3 不同围压下裂缝长期导流能力伤害程度
变围压条件下,试验(20 MPa)前后支撑剂的状态对比如图7所示,压裂液由左至右流动。试验前后支撑剂均匀分布,支撑剂铺置密度不同,表明变围压条件下支撑剂颗粒主要受垂向应力的影响,未发生明显的水平位移(图7(a))。
如图7(b)所示,不同围压条件下页岩人工裂缝的长期导流能力伤害情况可分为3个阶段:①围压较小(10~15 MPa)时,支撑剂的压实作用较弱,主要以局部位移和重新分布为主,导流能力的伤害率从76%增加至78%;②围压升高(15~25 MPa),支撑剂之间的接触更紧密,破碎后的支撑剂填充支撑剂间隙,裂缝内孔隙空间下降,流体在裂缝中的流动受阻,导致伤害率从78%迅速增至90%;③围压继续增加(25~30 MPa),裂缝内支撑剂的破碎及嵌入程度减缓,导流能力伤害率变化不大。
2.2 变流压试验
2.2.1 不同流压下页岩人工裂缝的长期导流能力
图8为不同有效应力下页岩人工裂缝导流能力随时间的变化。表现为流压越低,导流能力越小,波动幅度越小,稳定时间越短。
图9为在不同有效应力(10、20 MPa)下两种测试方法的导流能力对比结果。变流压测试的前期(0~400 min)下降幅度较大,约占总下降幅度的70%~80%;变围压测试的前期(0~400 min)下降幅度较小,约占总下降幅度的50%~70%。变流压测试裂缝导流能力下降更快,伤害更强。
尽管变流压测试和变围压测试在相同有效应力下进行,但较高的流压会导致水平向的压力波动更剧烈,尤其在测试前期,支撑剂会发生明显的位移。因此该阶段导流能力更高,波动更剧烈。随后,部分 支撑剂流出裂缝,部分束缚在裂缝凹陷内,整体的支撑剂运移逐渐放缓,导流能力缓慢下降,波动减小。
2.2.2 不同流壓下裂缝内支撑剂的复杂作用
根据图10(a)试验前后支撑剂运移情况的CT扫描结果(围压30 MPa、流压20 MPa、流动方向由左到右),发现支撑剂的运移情况较严重,试验后岩样末端存在支撑剂缺失现象。如图10(b)所示,两种测试方法下的破碎率与嵌入率存在相似性,表明支撑剂的破碎和嵌入与所受到的有效应力相关,与孔隙压力关系较弱。回流率的对比排除了破碎率与嵌入率对试验的影响。
与变围压测试完全不同的是,在低有效应力阶段支撑剂回流率差异最多可达15%,与实际矿场数据接近 [7] 。裂缝内流压降低,支撑剂运移幅度减缓,回流率下降。说明不同压力加载方式下支撑剂的回流程度是导致页岩人工裂缝导流能力差异的关键因素。
2.2.3 不同流压下裂缝长期导流能力伤害程度
对比图11所示的两种压力加载方式,发现变流压测试下的导流能力伤害率更高。由于支撑剂回流的原因,低有效应力下的变流压的伤害率比变围压约高10%。该结果表明基于等效有效应力简化的变围压测试方法明显高估了页岩人工裂缝的导流能力,也在一定程度上解释了常规室内试验在模拟页岩人工裂缝长期导流能力方面过于乐观,从而解释了实际页岩气井压后产能不佳的问题。
人工裂缝导流能力的损害主要源于裂缝中支撑剂的破碎、嵌入和回流。所设计的两种测试方法在支撑剂的破碎和嵌入方面的模拟结果较为相近,但在支撑剂回流的模拟方法存在显著差异。特别是在低有效应力阶段,变流压方法下支撑剂回流现象严重,导致导流能力伤害更为严重。
在现场压裂施工中除了考虑储层物性、压裂液破胶时间和压裂液对地层的伤害等因素外,还需重视支撑剂回流、破碎和嵌入等现象 [29] 。在返排施工初期,若采用小油嘴进行压裂液的返排,支撑剂的破碎和嵌入较弱,裂缝压实程度低,导致支撑剂回流现象显著,影响压裂后效果。采用大油嘴进行压裂液返排时,支撑剂容易破碎和嵌入,裂缝在返排前期被压实,支撑剂组成的多孔介质的孔隙度和渗透率下降,导致导流能力减弱。因此在施工中,选择初始油嘴尺寸和压裂液返排的生产制度时需要考虑支撑剂状态的影响,以确保更好地保持压裂后效果。
3 结 论
(1) 裂缝闭合后支撑剂启动速度与压力加载方式相关。在不同围压(10~30 MPa)加载下5组支撑剂回流率均低于5%。相同有效应力条件下,变流压测试的支撑剂回流率随有效应力增加而减少,在有效应力10 MPa时,与变围压测试相比回流率相差超过15%。在评价页岩铺砂人工裂缝导流能力时采用传统基于等效有效应力的变围压测试方法会忽略支撑剂回流现象。
(2)相同有效应力下,变流压测试的导流能力伤害率比变围压测试高,最高可达10%。
(3)不同压力加载方式下支撑剂回流和导流能力的差异与裂缝内流体压力、流体性质的差异以及流固两相流动相互作用相关。变流压测试中的高孔隙压力导致裂缝内支撑剂颗粒与压裂液的流动不稳定,加剧了支撑剂的运移。
参考文献 :
[1] FREDD C N, MCCONNELL S B, BONEY C L,et al. Experimental study of fracture conductivity for water-fracturing and conventional fracturing applications[J]. SPE Journal, 2001,6(3):288-298.
[2] DUENCKEL R, CONWAY M W W, ELDRED B,et al. Proppant diagenesis—integrated analyses provide new insights into origin, occurrence, and implications for proppant performance[J]. SPE Production & Operations. 2012,27(2):131-144.
[3] KAUFMAN P B, ANDERSON R W, PARKER M A, et al. Introducing new API/ISO procedures for proppant testing[R]. SPE 110697-MS, 2007.
[4] BLAIR K. Modifying fracture conductivity testing procedures [D]. Montana: University of Montana, 2015.
[5] MICHAEL C V. Examining our assumptions-have over simplifications jeopardized our ability to design optimal fracturing treatments[R]. SPE 119143-MS, 2009.
[6] SCHUBARTH S K, SPIVEY J P, HUCKABEE P T. Using reservoir modeling to evaluate stimulation effectiveness in multilayered “tight” gas reservoirs: a case history in the pinedale anticline area[R]. SPE 100574-MS, 2006.
[7] LIANG F, SAYED M, AL-MUNTASHERI G, et al. Overview of existing proppant technologies and challenges[R]. SPE 172763-MS, 2015.
[8] SYUHADA R A, MOHD Z R, FITRAHA B N, et al. Recent progress on proppant laboratory testing method: characterization, conductivity, transportation, and erosivity[J]. Journal of Petroleum Science and Engineering, 2021,205:108871.
[9] YUE Hong, CHANG Honggang, FAN Yu, et al.Construction and prospect of China' s shale gas technical standard system[J]. Natural Gas Industry B, 2020,7(6):664-670.
[10] SANTOS L, TALEGHANIA D, LI Guoqiang. Expandable proppants to moderate production drop in hydraulically fractured wells[J]. Journal of Petroleum Science and Engineering, 2018,55:182-190.
[11] 郭天魁,宮远志,刘晓强,等.复杂复杂裂缝中支撑剂运移铺置规律数值模拟[J].中国石油大学学报(自然科学版),2022,46(3):89-95.
GUO Tiankui, GONG Yuanzhi, LIU Xiaoqiang, et al. Numerical simulation of proppant migration and distribution in complex fractures[J]. Journal of China University of Petroleum (Edition of Natural Science), 2022,46(3):89-95.
[12] 朱海燕,沈佳栋,周汉国.支撑裂缝导流能力的数值模拟[J].石油学报,2018,39(12):1410-1420.
ZHU Haiyan, SHEN Jiadong, ZHOU Hanguo. Numerical simulation on propped fracture conductivity[J]. Acta Petrolei Sinica, 2018,39(12):1410-1420.
[13] 朱海燕,刘英君,王向阳,等.考虑支撑剂颗粒破碎的页岩分支裂缝导流能力[J].中国石油大学学报(自然科学版),2022,46(1):72-79.
ZHU Haiyan, LIU Yingjun, WANG Xiangyang, et al. Modeling on conductivity of branched fractures of shale gas reservoir considering proppant fragmentation[J]. Journal of China University of Petroleum (Edition of Natural Science), 2022,46(1):72-79.
[14] 陈浩,周涛,樊怀才,等.页岩储层人工裂缝岩样制备方法及应力敏感性[J].石油学报,2020,41(9):1117-1126.
CHEN Hao, ZHOU Tao, FAN Huaicai, et al. Preparation method and stress sensitivity of core samples with hydraulic fractures in shale reservoir[J].Acta Petrolei Sinica, 2020,41(9):1117-1126.
[15] 陈浩.填充有支撑剂的柱塞状岩样及其制备方法和应用:ZL201910829314.5[P].2021-03-09.
[16] 陈浩.岩心组件、测量系统及测量方法 :ZL202011073097.0[P].2021-11-23.
[17] 谢斌,任岚,贾久波,等.火山岩体积压裂的自支撑裂缝导流能力实验评价[J].大庆石油地质与开发,2020,39(6):77-84.
XIE Bin, REN Lan, JIA Jiubo, et al. Experimental evaluation of self-supproting fracture conductivity for the volume fracturing in volcanic rocks[J]. Petroleum Geology and Oilfield Development in Daqing, 2020,39(6):77-84.
[18] RAKI S, MOGHANLOO R G. Proppant transport in complex fracture networks-a review[J]. Journal of Petroleum Science and Engineering, 2019,182:106199.
[19] 王才,李治平,赖枫鹏,等.压裂直井压后返排油嘴直径优选方法[J].科学技术与工程,2014,14(14):44-48.
WANG Cai, LI Zhiping, LAI Fengpeng, et al. Method to optimize choke sizes during back flow[J]. Science Technology and Engineering, 2014,14(14):44-48.
[20] 刘小兵,程良骏.Basset力对颗粒运动的影响[J].四川工业学院学报,1996(2):55-63.
LIU Xiaobing, CHENG Liangjun. Effects of Basset history force on the motion in a flow field[J]. Journal of Sichuan Institute of Technology, 1996(2):55-63.
[21] 李力,王润宇,曾嵘,等.考虑压力溶解的酸压裂缝长期导流能力模拟方法[J].石油钻采工艺,2020,42(4):425-431.
LI Li, WANG Runyu, ZENG Rong, et al. A simulation method for long-term flow conductivity of acid-fracturing-induced fracture considering pressure dissolution[J]. Oil Drilling & Production Technology, 2020,42(4):425-431.
[22] 王雷,文恒,張士诚,等.有效闭合应力对支撑剂回流影响实验研究[J].新疆石油天然气,2020,16(4):54-58,7.
WANG Lei, WEN Heng, ZHANG Shicheng, et al. Experimental research on proppant backflow influenced by effective closure pressure[J].Xinjiang Oil and Gas, 2020,16(4):54-58,7.
[23] 袁征,黄杰,袁文奎,等.压裂裂缝长期导流能力衰退规律实验研究[J].非常规油气,2022,9(3):78-82,102.
YUAN Zheng, HUANG Jie, YUAN Wenkui, et al. Experimental study on long term conductivity decline of hydraulic fracturing fracture[J]. Unconventional Oil & Gas, 2022,9(3):78-82,102.
[24] 汪宏博,张震.支撑剂长期导流能力实验研究[J].石油化工应用,2019,38(10):70-72.
WANG Hongbo, ZHANG Zhen. Experimental research on long-term conductivity of different supports[J]. Petrochemical Application, 2019,38(10):70-72.
[25] WEN Qingzhi, ZHANG Shicheng, WANG Lei, et al. The effect of proppant embedment upon the long-term conductivity of fractures[J]. Journal of Petroleum Science and Engineering, 2006,55(3/4):221-227.
[26] 王雷,张士诚,张文宗,等.复合压裂不同粒径支撑剂组合长期导流能力实验研究[J].天然气工业,2005,25(9):64-66.
WANG Lei, ZHANG Shicheng, ZHANG Wenzong, et al. Conductivity of the proppant combination with different grain sizes in complex fracturing[J]. Natural Gas Industry, 2005,25(9):64-66.
[27] 翟鸿宇,常旭,朱维,等.基于水力压裂实验的龙马溪组页岩各向异性特征研究[J].中国科学:地球科学,2021,51(3):380-397.
ZHAI Hongyu, CHANG Xu, ZHU Wei, et al. Study on anisotropy of Longmaxi shale using hydraulic fracturing experiment[J]. Science China Earth Sciences, 2021,51(3):380-397.
[28] 姜浒,陈勉,张广清,等.碳酸盐岩储层加砂酸压支撑裂缝短期导流能力试验[J].中国石油大学学报(自然科学版),2009,33(4):89-92.
JIANG Hu, CHEN Mian, ZHANG Guangqing, et al. Experiment on short-term conductivity of sand-adding acid-fracturing propping fractures in carbonate reservoir[J]. Journal of China University of Petroleum (Edition of Natural Science), 2009,33(4):89-92.
[29] 赵金洲,尹庆,李勇明.中国页岩气藏压裂的关键科学问题[J].中国科学:物理学 力学 天文学, 2017,47(11):19-32.
ZHAO Jinzhou, YIN Qing, LI Yongming. Key scientic issues of hydraulic fracturing in Chinese shale gas reservoir[J]. Sci Sin-Phys Mech Astron, 2017,47(11):19-32.
(编辑 李志芬)