任明慧,崔 岱
南京医科大学第一附属医院内分泌科,江苏 南京 210029
甲状腺激素(thyroid hormone,TH),即3,5,3′-三碘甲状腺原氨酸(triiodothyronine,T3)及其前体甲状腺素(thyroxine,T4)在体内经过脱碘、脱羧、脱氨基和或进一步修饰可产生甲状腺激素代谢物,这些代谢物及其中间体主要在肝、肾、脑等组织中生成[1-2],随后进入血液循环,使用质谱分析法可在血清中测得低纳摩尔浓度的代谢物[3]。近来研究发现这些代谢物具有生物学活性,参与调节人体内重要的生理和病理途径。甲状腺激素代谢物对葡萄糖和脂类代谢的作用已有报道,最新研究发现其在神经修复、心肌保护和抗肿瘤方面也有重要作用。本文就目前研究较为广泛的几种甲状腺激素代谢物的生理作用及其潜在的临床应用进行综述。
Tetrac是T4的生理代谢产物,来源于T4的脱羧和脱氨基,这一过程主要发生在肝脏[2]。人血清Tetrac 的生理浓度约为30~363 pmol/L[4]。研究发现,TH 以质膜整合素αvβ3 受体依赖的方式促进肿瘤增殖和血管生成[5],然而作为TH的衍生物,Tetrac被发现可与TH竞争结合肿瘤细胞和血管内皮细胞表面广泛表达的质膜整合素αvβ3受体,抑制肿瘤增殖和血管生成,从而减轻肿瘤负荷[6]。Tetrac还可偶联聚乳酸-乙醇酸形成纳米粒子(nano-diamino-tetrac,NDAT),NDAT可与整合素αvβ3受体结合,通过调整NDAT 的分解速率,可以控制Tetrac 的给药速率,同时NDAT 不易进入细胞核,可以减少Tetrac 低效拟甲状腺激素作用。在非小细胞肺癌细胞模型中,NDAT可有效抑制癌细胞的增殖[7]。NDAT还可与抗癌药物联合治疗,增强抗癌药物疗效。在人口腔癌细胞模型中,NDAT可抑制促炎基因的表达,增强白藜芦醇抗增殖特性[8]。此外,在胰腺癌和非小细胞肺癌裸鼠移植瘤模型中,NDAT 具有剂量依赖性的肿瘤靶向辐射增敏作用[9]。最近报道了一种三唑修饰的Tetrac与聚乙二醇偶联形成的新型化合物P-bi-TAT,这种新型化合物对整合素αvβ3的结合亲和力比Tetrac 增加了400 倍以上,具有更高的生物活性[10]。在胰腺癌小鼠模型中,P-bi-TAT 可有效抑制肿瘤增殖,缩小肿瘤体积,增加肿瘤的化疗敏感性,有望成为治疗胰腺癌的临床药物[11]。
Triac 是T3 的生理代谢产物,可由T3 脱羧和脱氨基产生或由Tetrac脱碘产生[12]。Triac的潜在临床应用是治疗单羧酸转运体8(monocarboxylate transporter 8,MCT8)缺乏症。MCT8缺乏症也称为Allan-Herndon-Dudley 综合征,是由MCT8 失活突变所致。MCT8 失活突变可导致依赖MCT8 摄取甲状腺激素的组织(如大脑)因缺乏甲状腺激素,而处于甲状腺功能减退状态。大脑甲状腺功能减退会导致严重的精神运动障碍[13]。MCT8 缺乏患者血清TH 水平显著异常,表现为T3 升高、T4 降低、促甲状腺激素(thyroid stimulating hormone,TSH)正常或轻度升高。血清高T3 水平导致不依赖MCT8 摄取甲状腺激素的周围组织出现甲状腺功能亢进的症状,表现为体重降低、心率增快、肌肉量减少[14]。MCT8缺乏症尚无有效治疗方法,近来研究发现不依赖MCT8进入靶细胞的T3模拟物Triac可以部分改善该缺乏症患者的异常。一项Ⅱ期临床研究显示,使用Triac治疗12 个月后,MCT8 缺乏症儿童和成人患者血清T3 浓度均大幅降低,周围组织甲状腺毒症的主要症状得到改善[15]。在后续长达6年的随访过程中,Triac治疗带来的临床和生化改善持续存在[16]。因此,Triac可能是一种合理的治疗策略,可改善MCT8缺乏症患者周围性甲状腺毒症的不良影响。关于Triac是否可改善MCT8 缺乏症患者神经发育缺陷,目前有一项Ⅱ期临床试验,旨在观察24 个月的Triac 治疗是否可改善MCT8 缺乏症的男性青少年患者(年龄≤30 月)神经发育的缺陷(NCT02396459)。
此外,研究发现Triac在治疗地中海贫血中亦有一定作用,其可有效诱导ζ-珠蛋白表达,这种胚胎球蛋白合成的重新激活可能会减轻α-地中海贫血或镰状细胞病的症状,未来可能成为严重α-地中海贫血或镰状细胞病患者的一种新的治疗选择[17]。
rT3是T4在3型碘甲状腺原氨酸去碘酶作用下脱碘产生,其血清浓度约为T3的1/10[18]。目前研究发现rT3在神经发育及促进肿瘤生长等方面有一定作用。第一,尽管T3 和T4 是影响大脑发育的主要甲状腺激素,但有研究发现,rT3在大脑神经发育方面也有积极影响,rT3 以整合素αvβ3 受体依赖的方式增强小脑浦肯野细胞的树突分枝形成和神经元的神经突生长[19]。第二,rT3 可结合整合素αvβ3 受体,促进人乳腺癌和胶质母细胞瘤细胞的体外增殖,可能是支持肿瘤生长的宿主因子[20]。第三,有研究表明,在新生儿出生第1 周获取的干血斑样本中rT3水平降低和T3/rT3比值增高可作为检测出生时MCT8缺乏的生物标志物,这为MCT8缺乏症的早期检测提供了希望[21]。
3,5-T2可由T3在3型碘甲状腺原氨酸去碘酶作用下脱碘产生,在人类血液或肝脏中可检测到[22]。人血清游离3,5-T2浓度较低,其水平升高与多种甲状腺疾病相关,尤其是甲状腺癌,人血清游离3,5-T2/游离T4对甲状腺癌患者与健康人群有高区分力,可作为临床甲状腺癌“非侵入性”诊断的潜在生物标志物[23]。此外,研究发现3,5-T2给药可减少肥胖沙鼠模型的内脏脂肪组织,逆转肝脏脂肪变性,预防胰岛素抵抗,减轻高血糖和血脂异常,可能有助于改善肥胖和2 型糖尿病的病理过程[24]。另外,动物研究显示3,5-T2可改善心脏自主神经控制,提升心率变异性,减少心律失常的发生[25]。
然而,这些积极作用能否在人体内实现,仍存在争议。有研究表明,在啮齿动物模型中,3,5-T2可剂量依赖性地抑制下丘脑-垂体-甲状腺轴功能,表现为血清TSH浓度的降低[26]。因此,未来需要更多的研究以全面评估3,5-T2 的治疗价值与潜在的不良影响。
3-T1AM 于2004 年被首次报道,是一种内源性甲状腺激素衍生物,可由3,5-T2先在鸟氨酸脱羧酶催化作用下脱羧生成3,5-二碘甲状腺胺,再由3 型脱碘酶催化脱碘产生[27]。尽管目前尚未在人体内开展相关研究,但在动物模型中的研究结果引起了人们对其治疗前景的关注。目前关于T1AM的研究主要聚焦于以下几个方面:第一,T1AM可改善脂质代谢异常,在小鼠脂肪细胞中,T1AM被脂肪细胞摄取后,定位于线粒体内,可减少脂质积累,促进脂肪分解[28];在自发性肥胖小鼠模型中,腹腔内注射T1AM 可降低血浆总胆固醇,改善血脂异常[29]。因此,T1AM 未来有望用于肥胖的治疗。第二,T1AM具有心脏保护作用,可抑制心肌缺血再灌注诱导的细胞凋亡,减少梗死面积[30]。T1AM 具有与甲状腺激素相反的作用,可诱导心脏的负性肌力和负性变时效应,同时可降低心肌细胞内的温度,有助于减少细胞能量需求和保存能量代谢,可作为心肌在不利条件下的适应性代偿机制[31]。第三,T1AM 也显示了积极的神经保护作用。在脊髓钳夹小鼠模型中,T1AM可降低脊髓神经元凋亡速率,减少继发性脊髓损伤,促进脊髓损伤小鼠后肢运动功能恢复[32]。有研究表明,T1AM能够抑制促炎因子的释放,减轻小胶质细胞介导的炎症反应,减少氧化应激,为缓解神经退行性疾病如阿尔茨海默病提供新的治疗策略[33]。
综上所述,甲状腺激素代谢物的生理作用及潜在临床价值日益受到关注。甲状腺激素代谢物在肥胖、血脂异常、肿瘤、神经系统疾病和心脏保护方面有着广泛的应用前景,但其在人体中的作用依然有很多问题亟待研究,如这些代谢物的生物合成途径尚未完全阐明;代谢物发挥治疗作用一般需给予超生理剂量,长期使用是否安全;甲状腺激素代谢物是否可以替代现有药物更好地治疗相关疾病等。未来,随着对甲状腺激素代谢物研究的不断深入,期待在相关领域取得更多研究结果以指导其临床应用。