非线性三阶时滞微分方程的振动性

2024-04-04 14:06赵玉萍

摘要:利用Riccati变换、不等式技巧和分析性质,研究了一类三阶非线性时滞微分方程解的振动性和渐近性,获得了该类方程振动的充分条件,最后用例子作了验证.

关键词:时滞微分方程;Riccati变换;振动性;渐近性;正解

中图分类号:O 175.7文献标志码:A文章编号:1001-988Ⅹ(2024)02-0021-05

Oscillation criteria for third order nonlinear delay differential equations

ZHAO Yu-ping

Abstract:By using Riccati transformation,inequality techniques and analytical properties,the oscillation criteria and asymptotic behavior of solutions for a class of third order nonlinear delay differential equations are studied,the sufficient conditions for the oscillation of the equations are established.Finally,an example is used to verify it.

Key words:delay differential equation;Riccati transformation;oscillation criteria;asymptotic property;positive solution

0 引言

近年来,高阶非线性微分方程的振动性问题被广泛应用在生物学、天体物理、人工智能和流体力学等高新技术领域,方程振动性的研究受到了很大关注,取得了许多重要结果[1-12].

参考文献:

[1]DˇZURINA J,JADLOVSK′A I.Oscillation of third-order differential equations with noncanonical operators[J].Appl Math Comput,2018,336(1):394.

[2]YAO Jian-li,ZHANG Xiao-ping,YU Jian-bao.Oscillation of third-order nonlinear delay differential equations[J].Ann Appl Math,2020,36(4):416.

[3]林文贤.一类具阻尼项的三阶非线性中立型泛函微分方程的振动性[J].中山大学学报(自然科学版),2016,55(6):5.

[4]曾云輝,罗李平,汪志红,等.一类具阻尼项的三阶非线性中立型泛函微分方程的振动性和渐近性[J].振动与冲击,2021,32(2):22.

[5]仉志余,宋菲菲,俞元洪.显含阻尼项的三阶非线性中立型Emden-Fowler微分方程的振动性和渐近性[J].应用数学,2020,33(3):12.

[6]贾对红.具有连续分布时滞的三阶中立型微分方程的振动性[J].太原师范学院学报(自然科学版),2021,20(2):17.

[7]刘一龙.时间尺度上三阶Emden-Fowler动力方程的振动准则[J].浙江大学学报(理学版),2014,41(3):7.

[8]汪皎月.三阶中立型微分方程的振动准则[J].西南大学学报(自然科学版),2014,33(36):67.

[9]AKTA M F,TIRVAKI A,ZAFER A.Oscillation criteria for third-order nonlinear functional differential equations[J].Journal of Taiyuan Normal University,2020,23(7):756.

[10]YANG Lu,XU Zeng.Oscillation of certain third-order quasilinear neutral differential equations[J].Mathematica Slovaca,2014,64(1):85.

[11]LI Weng-xia.Oscillation results of Philos-type for third-order half linear neutral damped differential equations[J].Journal of Anhui University(Natural Science Edition),2016,33(5):89.

[12]高承华,吕莉.边界条件含有特征参数的二阶离散Sturm-Liouville问题的谱[J].西北师范大学学报(自然科学版),2019,55(6):1.

(责任编辑 马宇鸿)

收稿日期:2023-08-10;修改稿收到日期:2023-09-18

基金项目:国家自然科学基金资助项目(12161071);青海省科技厅资助项目(2023-ZJ-949Q)

作者简介:赵玉萍(1975—),女,青海西宁人,教授,硕士.主要研究方向为微分方程振动性.E-mail:234880202@qq.com