葡萄转录因子VvERF2耐盐功能鉴定

2024-03-04 03:18代瑛姿郭宏扬杨志峰王宪璞许丽丽
中国农业科学 2024年2期
关键词:生长量转基因葡萄

代瑛姿,郭宏扬,杨志峰,王宪璞,许丽丽

葡萄转录因子VvERF2耐盐功能鉴定

代瑛姿,郭宏扬,杨志峰,王宪璞,许丽丽

石河子大学农学院/特色果蔬栽培生理与种质资源利用兵团重点实验室,新疆石河子 832003

【目的】对葡萄转录因子VvERF2进行蛋白质生物信息学分析,利用基因克隆、同源遗传转化技术,探索该转录因子在葡萄愈伤组织盐胁迫下的功能,为进一步研究AP2/ERF超家族对葡萄的作用机理提供参考。【方法】借助NCBI-Blast(https://blast.ncbi.nlm.nih.gov/Blast.cgi)等在线数据库工具对VvERF2蛋白进行生物信息学分析;以‘无核白’葡萄(L.)愈伤组织为材料,构建葡萄同源遗传转化体系,结合生长量、总糖、总酸等理化指标鉴定转基因愈伤组织表型;设定不同盐浓度梯度,通过游离脯氨酸、抗氧化酶活性等生理指标鉴定转基因愈伤组织耐盐功能。【结果】对VvERF2及一致性最高的7个直系同源蛋白序列进行生物信息学分析,发现编码240个氨基酸,与番茄、无花果氨基酸序列高度相似,蛋白同源性分别为78%和67%。8种不同物种的氨基酸残基数为240—348个,分子量为26.43—38.60 kDa,理论等电点在5.54—8.68,脂肪氨基酸指数均大于66%,均属于不稳定性蛋白;不同物种氨基酸序列理化性质存在差异较大。此外,启动子存在多种与脱落酸等激素及MYB等转录因子相关的顺式作用元件。具有组织表达特异性,在愈伤组织中表达水平最低,且受外源盐胁迫诱导显著上调(为对照组的3倍)。转基因结果表明,在葡萄愈伤组织中过量表达后,生长量、总酸、总酚含量及DPPH(1,1-二苯基-2-三硝基苯肼,1,1-Diphenyl-2- trinitrophenylhydrazine)等抗氧化活性均显著升高,不同浓度外源NaCl处理后,转基因愈伤组织总蛋白、游离脯氨酸等含量均高于野生型愈伤组织。【结论】过量表达促进葡萄愈伤组织生长量和次生代谢产物相关物如酚类物质的含量积累,从而提高葡萄耐盐性。

葡萄;;盐胁迫;功能鉴定

0 引言

【研究意义】AP2/ERF(APETALA2/乙烯响应元件结合因子)是一类主要存在于植物体内的转录因子。该家族转录因子在植物形态发生、各种胁迫响应机制、激素信号转导、代谢产物调控等多种生物学过程中起着重要的调节作用。对葡萄进行体外克隆、同源遗传转化及表达蛋白功能分析,可为此类家族基因在响应外界非生物胁迫等方面的功能研究奠定理论基础。【前人研究进展】Licausi等[1]利用全基因组分析,共鉴定出149个葡萄AP2/ERF基因,命名为AP2/ERF超家族,并分为ERF(乙烯反应元件结合蛋白)、AP2(APETALA2)和RAV(与ABI3/VP相关)以及Soloists(少数未分类因子)4个亚家族,其中,ERF亚家族可进一步分为12个组,尽管组间基因数目在拟南芥和葡萄间存在一定差异,但ERF亚家族基因总数相同,此外,其余3个亚基因家族成员数目在两个物种间也高度一致。其中ERF亚家族均在ERF结构域N端有3个折叠构成的碱性亲水区,而第2个-折叠中第14和19位点V、E氨基酸为DREB亚族,A、D氨基酸为ERF亚族[2]。ERF亚家族成员在体外能够特异结合GCC盒(GCC-box)等元件,GCC-box通常存在于响应乙烯、病原菌和非生物胁迫相关基因启动子上游区域,而ERF结构域C末端易形成双亲-螺旋,可与其他转录因子相互作用进而提高下游基因表达调控效率和灵活性[3]。根据ERF转录因子与DNA作用元件互作调控的生物学过程涉及生物胁迫相关和非生物胁迫相关两大类。当葡萄遭遇逆境胁迫时,ERF亚家族转录因子可与逆境相关基因启动子顺式作用元件如GCAC(A/G)N(A/T)TCCC(A/G)ANG(C/T)、GCC-box(AGCCGCC)、DRE/CRT(A/GCCGAC)等互作调节相关基因表达[4],提高葡萄对生物胁迫或非生物胁迫的适应性。此外,ERF亚家族转录因子在植物生长发育、初生代谢及次生代谢等过程中同样发挥重要作用[5]。植物耐盐基因包括离子通道蛋白基因、植物信号转导基因、植物渗透物质合成基因和植物转录调控基因。研究表明,参与脯氨酸、甜菜碱、糖醇、黄酮类化合物等渗透保护物质代谢相关合成基因[6]、[7]、[8]、[9]、[10]、[11]等直接或间接参与植物耐盐。植物信号转导基因包括蛋白激酶类基因[12]、[13]、[14]、[15]、[16]、[17]、[18],以及参与信号感应和转导的基因[19]、[20]、[21]、[22]等也单独或协同调控植物耐盐。例如,将拟南芥导入到水稻中发现其渗透调节能力显著增强,耐盐性也显著增强[23]。此外,植物还可通过转录因子与下游基因启动子顺式作用元件或靶向蛋白相互作用,调控目标基因的表达,引起一系列应答反应,进而增强植物的抗逆能力。这类蛋白包括AP2/ERF类转录因子如DREB1A/CBF3[24]、DREB1B/ CBF1[25]、DREB2A[26]等;bZIP类转录因子如ABF2[27]、ABF3/ABF4[28]、AREB1[29]、ABP9[30]等;MYB/MYC类转录因子家族基因如[31]、[32]、[33]等;以及锌指蛋白家族基因如[34]、[35]等。【本研究切入点】葡萄基因组虽已完全测序,但葡萄AP2/ERF超家族转录因子尚未有详细的表达谱。截至目前,对葡萄AP2/ERF转录因子的研究深度较浅,处于转录因子功能研究的初步验证阶段,深入分子层面的研究极少。盐胁迫是限制我国葡萄产业的主要非生物胁迫之一,在葡萄耐盐中的功能有待深入研究。【拟解决的关键问题】对葡萄编码序列及氨基酸理化性质等进行生物信息学分析,利用同源遗传转化技术揭示调控葡萄愈伤组织外源盐胁迫响应特性并鉴定其耐盐功能。

1 材料与方法

试验于2022年在石河子大学进行。

1.1 植物材料及处理

供试材料为石河子大学农学院实验室保存的‘无核白’葡萄愈伤组织(以‘无核白’葡萄花药为外植体诱导得到的非胚性愈伤组织)[36]。野生型葡萄愈伤组织继代培养基:MS培养基(不含蔗糖和琼脂)+20 g·L-1蔗糖+8 g·L-1琼脂+0.8 g·L-1活性炭+0.59 g·L-1MES+10 mg·L-1毒莠定+2.2 mg·L-1噻苯隆;转基因葡萄愈伤组织继代培养基:在野生型葡萄愈伤组织培养基的基础上添加50 mg·L-1卡那霉素。每2周继代一次,于27℃无菌条件下暗培养,取继代10 d愈伤组织提取RNA。表型鉴定培养基:在野生型培养基的基础上添加20、50、70和100 mmol·L-1NaCl。

1.2 基因序列及系统进化树构建等生物信息学分析

从葡萄基因组网站中下载(VIT_ 16s0013g00890)氨基酸序列,以此为模板借助Blast-protein在线工具查找苹果、草莓、番茄等同源性高于90%的编码蛋白氨基酸序列,利用MEGA 7软件,采用邻接法(neighbor-joining)和最短演化长度算法(minimal evolution),构建系统进化树,bootstraptest设置为1 000。利用ProtParam进行蛋白质特性分析;利用SOPMA预测蛋白质二级结构;利用NetPhos 2.0 Server分析磷酸化位点;利用PlantCARE在线工具检索启动子顺式作用元件。

1.3 实时荧光定量PCR

利用Primer Premier 5.0软件设计实时荧光定量PCR(quantitative real-time PCR,qRT-PCR)引物,引物合成和基因测序均由上海生工生物技术有限公司完成,qRT-PCR上游和下游引物分别来自UTR区及编码区,序列信息见表1。选取葡萄肌动蛋白编码基因为内参基因,采用Roche Light-Cycler480R型PCR仪检测基因表达水平。使用2-ΔΔCT方法[37]计算基因相对表达量。

表1 qRT-PCR引物序列

1.4 基因克隆及载体构建

利用多酚植物总RNA抽提纯化试剂盒(康为世纪生物科技有限公司,江苏)提取‘无核白’葡萄愈伤组织mRNA,并分别借助Nano Drop 2000分光光度计(Thermo Scientific,美国)和1.5%琼脂糖凝胶电泳检测总mRNA质量。以总mRNA为模板,利用Prime Script TM RT reagent Kit试剂盒(TaKaRa,大连)反转录获得cDNA第一链(全长克隆,上游引物:ATGAAGGAAACCACCATGGGTGAGA;下游引物:TTACACGACCAATAATTGCTCGCC),并将其稀释至200 ng·μL-1,-20 ℃保存备用。基因全长扩增采用Phusion高保真DNA聚合酶(ThermoFisher,上海),扩增体系为:Phusion酶0.5 μL、10×Phusion Buffer 5 μL、上下游引物各2 μL、cDNA 2 μL、dd H2O 38.5 μL。PCR反应程序:98 ℃变性10 s;56 ℃退火15 s,72 ℃延伸45 s,35个循环;72 ℃延伸 10 min;4 ℃保存。PCR产物采用试剂盒法(D2500-1,索莱宝,北京)纯化回收。使用pEASY-Blunt Cloning Kit试剂盒(全式金,北京)将纯化后的PCR产物连接到pEASY-Blunt载体上,反应体系为10 μL:pEASY-Blunt Vector 1 μL、胶回收产物4 μL,20—25 ℃连接5 min。连接产物转化大肠杆菌DH5α感受态,挑取阳性克隆进行测序鉴定。

1.5 农杆菌介导法转化葡萄愈伤组织

将构建到CaMV 35S启动子驱动的pBI121-载体上,利用热激法转化农杆菌LBA 4404。将含有的农杆菌分别接种于5 mL含利福平和卡那霉素的液体LB培养基中,振荡培养(28 ℃,200 r/min)10 h至OD600=0.5—0.6,然后将菌液转移至50 mL含有相同抗生素的LB培养基中振荡培养(28 ℃、200 r/min)5 h至OD600=0.5—0.6,5 500 r/min离心10 min,收集菌体,用10 mL重悬缓冲液(MS,5%蔗糖,0.03% Silwet L-77)悬浮菌体,重复2次,用悬浮缓冲液稀释至OD600=0. 6。取继代生长15 d的葡萄愈伤组织约0.5 g至悬浮液中浸泡30 min,其中每5 min摇晃1次,结束后将愈伤组织放到无菌干燥滤纸上吸干水分放到共培养基中(MS培养基),2 d后将愈伤组织转移至筛选培养基中(MS培养基+抗生素),每20 d更换1次培养基,直至从致死愈伤组织中长出新的愈伤组织。

1.6 转基因愈伤组织阳性鉴定

利用CTAB法提取转基因和野生型葡萄愈伤组织基因组DNA,分别以两种DNA为模板,以CaMV 35S序列中TGAGACTTTTCAACAAAGGGTAAT为上游引物,以基因编码序列中TTACACGACCAATA ATTGCTCGCC为下游引物扩增目的PCR产物。目的条带为1 086 bp,以1%琼脂糖凝胶电泳检测,条带正确即为阳性转化细胞系。

1.7 NaCl处理愈伤组织

以继代培养10 d且状态正常的葡萄愈伤组织为试材,接种到含特定NaCl浓度的愈伤组织培养基中,观察特定时间下愈伤组织状态,测定理化指标和相关基因表达水平。

1.8 生理生化指标测定方法

采用蒽酮比色法测定总糖含量[38];可滴定酸测定参照国家标准《水果、蔬菜制品可滴定酸度的测定》GB12293—1990,愈伤组织提取液用0.1 mol·L-1NaOH溶液进行电位滴定,以pH 8.10为滴定终点,重复5次,结果以mg·g-1酒石酸表示。用福林-酚(没食子以酸为标准参数)分光光度法测定总酚含量[39];参考KataliniĆ等[40]、RE等[41]采用DPPH法测定自由基清除活性,以没食子酸为等量物质,将起始DPPH浓度的50%记为EC50,样品清除自由基能力单位记为1/EC50。对于ABTS和FRAP测定,样品清除自由基活性能力表示为等量Trolox抗氧化剂能力,参照Sun等[42]的方法。

1.9 数据分析

每项试验均设置3个生物学重复并取其平均值,利用SPSS 21. 0软件进行差异显著性分析。

2 结果

2.1 VvERF2组织表达特异性及外源NaCl影响

以前期盐胁迫转录组数据为基础,分析在各组织器官及外源100 mmol·L-1NaCl胁迫下的表达水平(图1)。结果显示,该基因在葡萄根、茎、叶及果实中表达水平无显著差异,可能与取材样品发育时期有关,但均显著高于未经NaCl处理的愈伤组织,100 mmol·L-1NaCl处理愈伤组织后,该基因表达极显著上调,相对表达量是对照组的3倍。

CT:无NaCl处理愈伤组织。采用Fisher’s LSD法进行单因素方差分析和多重比较。**代表差异达极显著水平(P < 0.01)。下同

2.2 VvERF2生物信息学分析

利用NCBI在线工具Blast-protein,以葡萄XP_002279585.2蛋白序列为模板,搜索苹果、梨、桃、草莓、无花果、番茄、拟南芥7个物种中相似度最高的蛋白序列,构建氨基酸序列进化树(图2),分析蛋白质理化性质(表2)。葡萄VvERF2与番茄SlERF1、无花果FcDREB氨基酸序列高度相似,序列一致性分别为78%和67%。8种同源蛋白质氨基酸残基数在240—348,分子量介于26.43—38.60 kDa,理论等电点为5.54—8.68,脂肪氨基酸的指数均大于66%,均属于不稳定性蛋白,蛋白质理化性质种间差异较大。葡萄VvERF2蛋白质理论分子式为C1166H1836N340O347S8,N-末端为甲硫氨酸,正电荷残基总数(精氨酸+赖氨酸)为32个,负电荷残基总数(天冬氨酸+谷氨酸)为32个。二级结构预测(图3-A)表明,VvERF2蛋白质含22.08%-螺旋,11.25%延伸链,7.92%-转角,58.75%无规则卷曲,其中无规则卷曲所占比例最高,可作为酶催化位点或功能蛋白质特异性结合位点。此外,磷酸化位点预测(图3-B)表明,VvERF2含23个磷酸化修饰位点,丝氨酸、苏氨酸和酪氨酸磷酸化位点数分别为16个、6个和1个。

此外,启动子(起始密码子ATG上游1 500 bp)顺式作用元件预测(表3)表明,启动子区含多个激素及转录因子相关作用元件,包括2个响应脱落酸的ABRE作用元件,4个响应茉莉酸甲酯的作用元件CGTCA;同时,正/负链中也存在多个MYB和MYC等转录因子作用元件。

图2 不同物种ERF2编码蛋白进化树分析

A:VvERF2蛋白质二级结构预测(窗宽:17,相似度阈值:8,状态数:4),横坐标代表氨基酸序列,纵坐标表示每个二级结构的发生概率;B:VvERF2蛋白质磷酸化位点预测,横坐标代表氨基酸序列,纵坐标表示预测的磷酸化位点

表2 8种植物ERF2蛋白质理化性质分析

表3 VvERF2启动子顺式作用元件预测

2.3 VvERF2克隆及遗传转化体系构建

从葡萄愈伤组织中克隆(GenBank: XP_002279585.2),构建植物双元表达载体pBI121(CaMV 35S启动子)重组子。基因检索结果显示,编码区含有一个长度为720 bp的完整开放阅读框,编码240个氨基酸。克隆得到的核苷酸大小与检索结果基本一致(图4-A),且编码序列与NCBI发布序列基本一致。

A:VvERF2的克隆结果,M表示Marker 2K;B:转基因细胞系(包括erf2-1、2、3)和野生型细胞系(wt)VvERF2相对表达量;C:阳性遗传转化细胞系PCR产物鉴定,1—5为野生型细胞系(wt)PCR扩增结果,6—10为erf2遗传转化细胞系PCR扩增结果。采用Fisher’s LSD法进行单因素方差分析和多重比较。下同

采用农杆菌介导法进行同源遗传转化,经筛选后获得阳性稳定转化细胞系。PCR鉴定结果显示,转基因愈伤组织成功扩增得到目的产物(理论目标产物大小为1 086 bp);qRT-PCR结果显示(图4-B),转基因愈伤组织erf2-1、erf2-2、erf2-3的基因表达水平分别是野生型愈伤组织的8.46、8.50、8.78倍,表明在愈伤组织中成功表达,而野生型无对应条带(图4-C)。

2.4 过表达VvERF2提高葡萄愈伤组织耐盐性

2.4.1对葡萄愈伤组织生长量的影响 分别将野生型(wt)与转基因葡萄愈伤组织(erf2-1、erf2-2、erf2-3)接种在继代培养基(0 mmol∙L-1NaCl)中,观察愈伤组织形态(图5),分别测定愈伤组织生长量、总糖、总酸、总酚含量及抗氧化能力。结果显示,25 d后,过表达愈伤组织生长量显著升高,其中erf2-1生长量最高,为野生型wt的1.25倍;除总糖变化表现无显著差异外,其他指标均表现显著差异,其中转基因愈伤组织总酸含量显著降低,erf2-2总酸含量仅为wt的57%,erf2-1、3分别降低21%和29%;总酚含量显著积累,其中erf2-2、3总酚含量均升高了约38%。DPPH、ABTS和FRAP抗氧化能力测定结果表明,erf2转基因愈伤组织抗氧化能力显著高于野生型(表4),并与较高水平的总酸和总酚积累结果相一致。

所有培养皿中间白线左侧为野生型愈伤组织,右侧为转基因愈伤组织

表4 葡萄愈伤组织生长量、总糖、总酸、总酚含量及抗氧化水平测定

*:差异显著(< 0.05);**:差异极显著(< 0.01)。下同

*: Significant difference (< 0.05); **: Extremely significant difference (< 0.01). The same as below

2.4.2 过量表达对葡萄愈伤组织耐盐性的影响 由图5、6可知,不同浓度NaCl处理抑制了大部分愈伤组织的生长,随着胁迫浓度增加,抑制作用加剧。erf2-2愈伤组织在低浓度NaCl胁迫下的抗性指标显著高于wt愈伤组织,与不添加NaCl的对照组相比,20 mmol·L-1NaCl处理后生长量几乎不受影响;而wt愈伤组织的生长量显著降低至82%,且随着盐胁迫浓度增加,生长量保持相对稳定。

当盐浓度为50 mmol·L-1时,erf2愈伤组织生长量降低,但仍显著高于wt愈伤组织。erf2愈伤组织总蛋白含量在100 mmol·L-1NaCl胁迫下明显降低,而wt愈伤组织总蛋白含量在胁迫浓度为50 mmol·L-1时即显著下降(<0.05),胁迫浓度为70 mmol·L-1时的总蛋白含量降低了37.5%。

此外,SOD、POD、CAT酶活性数据表明(图6),erf2愈伤组织在各个浓度盐处理下的酶活性几乎均高于野生型,其中SOD、POD酶活性均在50 mmol·L-1时分别增加了37%与56%,差异达极显著水平(<0.01)。CAT酶活性随着盐浓度的增加而逐渐减弱,且在两种愈伤组织中表现趋势基本一致。20 mmol·L-1盐浓度处理后,erf2愈伤组织中CAT酶活性为56.41 U·mg-1FW,是wt愈伤组织的2.04倍,差异达极显著水平(<0.01)。

进一步探究盐胁迫对愈伤组织细胞渗透调节物质的影响。未受盐胁迫时,erf2愈伤组织游离脯氨酸含量为14.43 mg/100 g,是wt愈伤组织的1.84倍。当细胞受到较低浓度盐胁迫时,两者游离脯氨酸均显著上升;同时,erf2愈伤组织游离脯氨酸含量显著高于野生型,随着胁迫浓度的增加,游离脯氨酸的含量逐渐降低。wt与erf2愈伤组织丙二醛含量无显著差异,不同盐胁迫下变化趋势基本一致,均在70 mmol·L-1NaCl胁迫下达到峰值,表明此时细胞可能受胁迫伤害反应最大(图6)。

3 讨论

3.1 AP2/ERF转录因子参与多个生物代谢通路及逆境胁迫响应

AP2/ERF转录因子广泛存在于植物中,参与植物次生代谢物质合成、逆境胁迫响应等多种生物学过程[1-3]。截至目前,针对AP2/ERF基因家族功能研究多集中在拟南芥、番茄及水稻等模式植物上,在葡萄等园艺植物中研究相对较少。葡萄AP2/ERF基因家族包括149个成员,分为ERF、RAV及AP2三个亚族[1],基于VvERF2蛋白质理化性质预测(图1),VvERF2具有单个AP2/ERF结构域,属于ERF亚族。研究证实,ERF亚族基因对植物生长发育、高盐、高温、干旱诱导较敏感。同源转化后提高了番茄植株对干旱和盐胁迫的耐受性[43],参与番茄果实成熟和代谢物质的变化[44]。本研究中,葡萄VvERF2与番茄中SiERF1蛋白质序列一致性较高,进化树分析显示亲缘关系较近,暗示二者在植物生长发育和响应胁迫过程中具有相似的生物学功能。此外,八倍体草莓ERF家族全基因组分析发现,和是调控草莓果实成熟的潜在相关基因[45];过表达的苹果愈伤组织对低温、干旱、盐度和脱落酸的敏感性低于野生型[46];受冷、盐、碱、干旱胁迫诱导,其在根系中的表达量较高,对低温胁迫更为敏感,超表达后增强了水稻对过量H2O2的去除能力[47];大豆的异源表达增强了转基因烟草抗逆性[48];冷、盐和干旱诱导在大豆植株中表达上调,转基因烟草耐盐性强、抗旱能力高[49]。然而,和的过表达使拟南芥对干旱胁迫更敏感,抗盐能力下降[50];过表达降低了水稻对盐胁迫的耐受性:盐胁迫下,促使水稻幼苗中Na+/K+比值增加,而RNAi植株中Na+/K+比值降低[51];转拟南芥在萌发期和幼苗期对盐胁迫的耐性降低[52];沉默可提高马铃薯叶片对病虫的抗性,提高植株对盐胁迫耐受性,并激活防御相关基因(、和)[53]。花椰菜BraERF023a转录因子促进遗传转化株系的生长发育,正调控植物对盐和干旱胁迫水平[54]。因此,不同物种ERF亚族基因对逆境的响应各异,可能存在不同的调控途径。由本研究可知,同源转化超表达后,不仅促进葡萄愈伤组织的生长,提高转基因愈伤组织总酸、总酚的积累及抗氧化能力,且通过调控活性氧代谢平衡和渗透调节物质水平进一步增强了盐胁迫下的植物抗性。

图6 不同盐胁迫浓度对葡萄愈伤组织生长量、活性氧清除相关酶活性及蛋白质和渗透调节物质含量的影响

3.2 AP2/ERF转录因子通过多条途径调控逆境胁迫应答

AP2/ERF转录因子调控植物逆境胁迫应答的机制极其复杂,有时可以直接与目标基因启动子上顺式作用元件结合调控其转录水平,有时则需要与其他蛋白协同作用调控下游基因的表达来适应各种生物与非生物胁迫。比如通过与启动子GCC-box结合直接调控、、、等致病相关基因(pathogenesis- related gene,PR)的表达[55]。Sun等[56]发现VaERF092可通过与启动子GCC-box结合来调控的表达,从而增强了其对冷胁迫的耐受性。在烟草中,ERF转录因子Tsil与一个锌指蛋白Tsipl在体内互作,同时过表达Tsil和Tsipl显著提高了转基因植株抗盐能力,这说明Tsil和Tsipl蛋白的相互作用加强了Tsipl介导的转录激活[57]。在大麦中,转录因子HvDRFI能够和bZIP转录因子HvABIS相互作用,促进下游基因的表达[58]。在玉米中,DBF1与DIP1蛋白质的相互作用可提高启动子的活性进而调控目的基因的表达以应答逆境胁迫[59]。AP2/ERF转录因子SiANT1可能通过正调控下游耐盐相关基因和的表达提高谷子的耐盐性[60]。启动子存在多种ABA、Me-JA激素相关顺式作用元件,以及多种MBY转录因子作用元件,暗示可能通过参与多种激素相互作用过程及与MYB、MYC等转录因子协同调控植物逆境胁迫抗性。

4 结论

不同物种ERF2直系同源蛋白理化性质存在一定差异,葡萄与番茄、无花果ERF2蛋白序列相似度较高;具有组织表达特异性,其表达调控涉及多种激素及MYB、MYC等转录因子逆境胁迫响应过程,在葡萄愈伤组织中表达水平较低且受盐胁迫诱导显著上调;过表达促进葡萄愈伤组织多酚等次生代谢物质积累,维持活性氧代谢平衡,提高细胞抗氧化水平,增强细胞膜渗透调节能力,从而提高葡萄愈伤组织耐盐性。

[1] LICAUSI F, GIORGI F M, ZENONI S, OSTI F, PEZZOTTI M, PERATA P. Genomic and transcriptomic analysis of the AP2/ERF superfamily in. BMC Genomics, 2010, 11(1): 1-16.

[2] NAKANO T, SUZUKI K, FUJIMURA T, SHINSHI H. Genome-wide analysis of thegene family inand rice. Plant Physiology, 2006, 140(2): 411-432.

[3] JOFUKU K D, DEN BOER B G, VAN MONTAGU M, OKAMURO J K. Control offlower and seed development by the homeotic gene. The Plant Cell, 1994, 6(9): 1211-1225.

[4] FENG K, HOU X L, XING G M, LIU J X, DUAN A Q, XU Z S, LI M Y, ZHUANG J, XIONG A S. Advances in AP2/ERF super-family transcription factors in plant. Critical Reviews in Biotechnology, 2020, 40(6): 750-776.

[5] OH S J, SONG S I, KIM Y S, JANG H J, KIM S Y, KIM M, KIM Y K, NAHM B H, KIM J K.CBF3/DREB1A and ABF3in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiology, 2005, 138(1): 341-351.

[6] MAGHSOUDI K, EMAM Y, NIAZI A, PESSARAKLI M, ARVIN M J.expression level and proline accumulation in the sensitive and tolerant wheat cultivars under control and drought stress conditions in the presence/absence of silicon and salicylic acid. Journal of Plant Interactions, 2018, 13(1): 461-471.

[7] BANDURSKA H, BREŚ W, ZIELEZIŃSKA M, MIELOSZYK E. Does potassium modify the response of(jacq.) to long-term salinity? Plants, 2023, 12(7): 1439.

[8] 吕笑言, 王宇光, 金英. 甜菜BvM14-CMO、BvM14-BADH基因的克隆、盐胁迫表达及生物信息学分析. 黑龙江大学自然科学学报, 2018, 35(1): 79-84.

LÜ X Y, WANG Y G, JIN Y. Cloning, salt stress expression and bioinformatics analysis of BvM14-CMO and BvM14-genes in sugarbeet. Journal of Natural Science of Heilongjiang University, 2018, 35(1): 79-84. (in Chinese)

[9] SEKULA B, DAUTER Z. Spermidine synthase (SPDS) undergoes concerted structural rearrangements upon ligand binding - A case study of the two SPDS isoforms from. Frontiers in Plant Science, 2019, 10: 555.

[10] CHITNIS M V, MUNRO C A, BROWN A J P, GOODAY G W, GOW N A R, DESHPANDE M V. The zygomycetous fungus,contains a large family of differentially regulated chitin synthase genes. Fungal Genetics and Biology, 2002, 36(3): 215-223.

[11] MILLER E N, INGRAM L O. Sucrose and overexpression of trehalose biosynthetic genes () increase desiccation tolerance of recombinant. Biotechnology Letters, 2008, 30(3): 503-508.

[12] 王镭, 才华, 柏锡, 李丽文, 李勇, 朱延明. 转基因水稻的培育与耐盐性分析. 遗传, 2008, 30(8): 1051-1055.

WANG L, CAI H, BAI X, LI L W, LI Y, ZHU Y M. Cultivation of transgenic rice plants withgene and its salt tolerance. Hereditas, 2008, 30(8): 1051-1055. (in Chinese)

[13] FU S F, CHOU W C, HUANG D D, HUANG H J. Transcriptional regulation of a rice mitogen-activated protein kinase gene,, in response to environmental stresses. Plant and Cell Physiology, 2002, 43(8): 958-963.

[14] PIAO H L, LIM J H, KIM S J, CHEONG G W, HWANG I. Constitutive over-expression ofinduces NaCl stress responses in the absence of NaCl stress and results in enhanced NaCl tolerance in. The Plant Journal, 2001, 27(4): 305-314.

[15] SHOU H X, BORDALLO P, WANG K. Expression of theprotein kinase (NPK1) enhanced drought tolerance in transgenic maize. Journal of Experimental Botany, 2004, 55(399): 1013-1019.

[16] ZHOU Y B, LIU C, TANG D Y, YAN L, WANG D, YANG Y Z, GUI J S, ZHAO X Y, LI L G, TANG X D, YU F, LI J L, LIU L L, ZHU Y H, LIN J Z, LIU X M. The receptor-like cytoplasmic kinase STRK1 phosphorylates and activates CatC, thereby regulating H2O2homeostasis and improving salt tolerance in rice. The Plant Cell, 2018, 30(5): 1100-1118.

[17] UMEZAWA T, YOSHIDA R, MARUYAMA K, YAMAGUCHI- SHINOZAKI K, SHINOZAKI K. SRK2C, a SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(49): 17306-17311.

[18] ZHU J Q, ZHANG J T, TANG R J, LV Q D, WANG Q Q, YANG L, ZHANG H X. Molecular characterization of, an inositol polyphosphate kinase gene homolog fromhalophila, and its heterologous expression to improve abiotic stress tolerance in. Physiologia Plantarum, 2009, 136(4): 407-425.

[19] 苏倩, 杜文宣, 马琳, 夏亚迎, 李雪, 祁智, 庞永珍. 紫花苜蓿的克隆及功能分析. 中国农业科学, 2022, 55(19): 3697-3709.doi: 10.3864/j.issn.0578-1752.2022.19.002.

SU Q, DU W X, MA L, XIA Y Y, LI X, QI Z, PANG Y Z. Cloning and functional analyses of. Scientia Agricultura Sinica, 2022, 55(19): 3697-3709. doi: 10.3864/j.issn. 0578-1752.2022.19.002. (in Chinese)

[20] LATZ A, MEHLMER N, ZAPF S, MUELLER T D, WURZINGER B, PFISTER B, CSASZAR E, HEDRICH R, TEIGE M, BECKER D. Salt stress triggers phosphorylation of thevacuolar K+channel TPK1 by calcium-dependent protein kinases (CDPKs). Molecular Plant, 2013, 6(4): 1274-1289.

[21] DUTILLEUL C, RIBEIRO I, BLANC N, NEZAMES C D, DENG X W, ZGLOBICKI P, PALACIO BARRERA A M, ATEHORTÙA L, COURTOIS M, LABAS V, GIGLIOLI-GUIVARC'H N, DUCOS E. ASG2 is a farnesylated DWD protein that acts as ABA negative regulator in. Plant, Cell & Environment, 2016, 39(1): 185-198.

[22] ZHOU X Y, LI J F, WANG Y Q, LIANG X Y, ZHANG M, LU M H, GUO Y, QIN F, JIANG C F. The classical SOS pathway confers natural variation of salt tolerance in maize. The New Phytologist, 2022, 236(2): 479-494.

[23] 潘晓雪, 胡明瑜, 蒋晓英, 白文钦, 官玲, 吴红, 雷开荣. 过量表达盐芥TsIPK2基因增强转基因水稻耐盐性. 植物营养与肥料学报, 2019, 25(5): 741-747.

PAN X X, HU M Y, JIANG X Y, BAI W Q, GUAN L, WU H, LEI K R. Overexpression of thesalsuginea TsIPK2 gene enhances salt tolerance of transgenic rice. Plant Nutrition and Fertilizer Science, 2019, 25(5): 741-747. (in Chinese)

[24] SHI H Z, KIM Y, GUO Y, STEVENSON B, ZHU J K. TheSOS5locus encodes a putative cell surface adhesion protein and is required for normal cell expansion. The Plant Cell, 2003, 15(1): 19-32.

[25] DOU M Z, CHENG S, ZHAO B T, XUAN Y H, SHAO M L. The indeterminate domain protein ROC1 regulates chilling tolerance via activation of DREB1B/CBF1in rice. International Journal of Molecular Sciences, 2016, 17(3): 233.

[26] MARUYAMA K, TAKEDA M, KIDOKORO S, YAMADA K, SAKUMA Y, URANO K, FUJITA M, YOSHIWARA K, MATSUKURA S, MORISHITA Y, SASAKI R, SUZUKI H, SAITO K, SHIBATA D, SHINOZAKI K, YAMAGUCHI-SHINOZAKI K. Metabolic pathways involved in cold acclimation identified by integrated analysis of metabolites and transcripts regulated by DREB1A and DREB2A. Plant Physiology, 2009, 150(4): 1972-1980.

[27] KIM S, KANG J Y, CHO D I, PARK J H, KIM S Y. ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance. The Plant Journal, 2004, 40(1): 75-87.

[28] HWANG K, SUSILA H, NASIM Z, JUNG J Y, AHN J H.ABF3and ABF4transcription factors act with the NF-YC complex to regulateexpression and mediate drought-accelerated flowering. Molecular Plant, 2019, 12(4): 489-505.

[29] YOSHIDA T, FUJITA Y, SAYAMA H, KIDOKORO S, MARUYAMA K, MIZOI J, SHINOZAKI K, YAMAGUCHI-SHINOZAKI K. AREB1, AREB2, and ABF3are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. The Plant Journal, 2010, 61(4): 672-685.

[30] WANG C L, LU G Q, HAO Y Q, GUO H M, GUO Y, ZHAO J, CHENG H M. ABP9, a maize bZIP transcription factor, enhances tolerance to salt and drought in transgenic cotton. Planta, 2017, 246(3): 453-469.

[31] VERMA D, JALMI S K, BHAGAT P K, VERMA N, SINHA A K. A bHLH transcription factor, MYC2, imparts salt intolerance by regulating proline biosynthesis in. The FEBS Journal, 2020, 287(12): 2560-2576.

[32] YOO J H, PARK C Y, KIM J C, DO HEO W, CHEONG M S, PARK H C, KIM M C, MOON B C, CHOI M S, KANG Y H, LEE J H, KIM H S, LEE S M, YOON H W, LIM C O, YUN D J, LEE S Y, CHUNG W S, CHO M J. Direct interaction of a divergent CaM isoform and the transcription factor, MYB2, enhances salt tolerance in. Journal of Biological Chemistry, 2005, 280(5): 3697-3706.

[33] OH J E, KWON Y, KIM J H, NOH H, HONG S W, LEE H. A dual role for MYB60 in stomatal regulation and root growth ofunder drought stress. Plant Molecular Biology, 2011, 77(1/2): 91-103.

[34] SUGANO S, KAMINAKA H, RYBKA Z, CATALA R, SALINAS J, MATSUI K, OHME-TAKAGI M, TAKATSUJI H. Stress-responsive zinc finger geneplays a role in drought tolerance in petunia. The Plant Journal, 2003, 36(6): 830-841.

[35] KIM S H, HONG J K, LEE S C, SOHN K H, JUNG H W, HWANG B K. CAZFP1, Cys2/His2-type zinc-finger transcription factor gene functions as a pathogen-induced early-defense gene in. Plant Molecular Biology, 2004, 55(6): 883-904.

[36] GAMBINO G, RUFFA P, VALLANIA R, GRIBAUDO I. Somatic embryogenesis from whole flowers, anthers and ovaries of grapevine (spp.). Plant Cell, Tissue and Organ Culture, 2007, 90(1): 79-83.

[37] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCTmethod. Methods, 2001, 25(4): 402-408.

[38] LI X L, WANG C R, LI X Y, YAO Y X, HAO Y J. Modifications of Kyoho grape berry quality under long-term NaCl treatment. Food Chemistry, 2013, 139: 931-937.

[39] XU L L, YUE Q Y, BIAN F E, SUN H, ZHAI H, YAO Y X. Melatonin enhances phenolics accumulation partially via ethylene signaling and resulted in high antioxidant capacity in grape berries. Frontiers in Plant Science, 2017, 8: 1426.

[40] KATALINIĆ V, MOŽINA S S, SKROZA D, GENERALIĆ I, ABRAMOVIČ H, MILOŠ M, LJUBENKOV I, PISKERNIK S, PEZO I, TERPINC P, BOBAN M. Polyphenolic profile, antioxidant properties and antimicrobial activity of grape skin extracts of 14varieties grown in Dalmatia (Croatia). Food Chemistry, 2010, 119(2): 715-723.

[41] RE R, PELLEGRINI N, PROTEGGENTE A, PANNALA A, YANG M, RICE-EVANS C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 1999, 26(9/10): 1231-1237.

[42] SUN B S, NEVES A C, FERNANDES T A, FERNANDES A L, MATEUS N, DE FREITAS V, LEANDRO C, SPRANGER M I. Evolution of phenolic composition of red wine during vinification and storage and its contribution to wine sensory properties and antioxidant activity. Journal of Agricultural and Food Chemistry, 2011, 59(12): 6550-6557.

[43] LI Z J, TIAN Y S, XU J, FU X Y, GAO J J, WANG B, HAN H J, WANG L J, PENG R H, YAO Q H. A tomato ERF transcription factor, SlERF84, confers enhanced tolerance to drought and salt stress but negatively regulates immunity againstpv.DC3000. Plant Physiology and Biochemistry, 2018, 132: 683-695.

[44] YOU S J, WU Y, LI W, LIU X F, TANG Q L, HUANG F K, LI Y, WANG H, LIU M C, ZHANG Y. SlERF.G3-Like mediates a hierarchical transcriptional cascade to regulate ripening and metabolic changes in tomato fruit. Plant Biotechnology Journal, 2023: 10.1111/ pbi.14177.

[45] ZHANG Y T, GUO C H, DENG M Y, LI S L, CHEN Y Y, GU X J, TANG G H, LIN Y X, WANG Y, HE W, LI M Y, ZHANG Y, LUO Y, WANG X R, CHEN Q, TANG H R. Genome-wide analysis of the ERF family and identification of potential genes involved in fruit ripening in octoploid strawberry. International Journal of Molecular Sciences, 2022, 23(18): 10550.

[46] RUI L, ZHU Z Q, YANG Y Y, WANG D R, LIU H F, ZHENG P F, LI H L, LIU G D, LIU R X, WANG X F, ZHANG S, YOU C X. Functional characterization of

[47] ZHANG X M, JIANG J W, MA Z W, YANG Y P, MENG L D, XIE F C, CUI G W, YIN X J. Cloning ofgene from Caucasian clover and its functional analysis responding to low-temperature stress. Frontiers in Plant Science, 2022, 13: 968965.

[48] ZHANG G Y, CHEN M, LI L C, XU Z S, CHEN X P, GUO J M, MA Y Z. Overexpression of the soybeanGmERFgene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. Journal of Experimental Botany, 2009, 60(13): 3781-3796.

[49] ZHANG G Y, CHEN M, CHEN X P, XU Z S, LI L C, GUO J M, MA Y Z. Isolation and characterization of a novel EAR-motif-containing geneGmERFfrom soybean (L.). Molecular Biology Reports, 2010, 37(2): 809-818.

[50] YANG Z, TIAN L N, LATOSZEK-GREEN M, BROWN D, WU K Q.ERF4 is a transcriptional repressor capable of modulating ethylene and abscisic acid responses. Plant Molecular Biology, 2005, 58(4): 585-596.

[51] LIU D F, CHEN X J, LIU J Q, YE J C, GUO Z J. The rice ERF transcription factor OsERF922 negatively regulates resistance toand salt tolerance. Journal of Experimental Botany, 2012, 63(10): 3899-3911.

[52] ZHUANG J, JIANG H H, WANG F, PENG R H, YAO Q H, XIONG A S. A rice OsAP23, functioning as an AP2/ERF transcription factor, reduces salt tolerance in transgenic. Plant Molecular Biology Reporter, 2013, 31(6): 1336-1345.

[53] TIAN Z D, HE Q, WANG H X, LIU Y, ZHANG Y, SHAO F, XIE C H. The potato ERF transcription factor StERF3negatively regulates resistance toand salt tolerance in potato. Plant and Cell Physiology, 2015, 56(5): 992-1005.

[54] 李慧, 韩占品, 贺丽霞, 杨亚苓, 尤书燕, 邓琳, 王春国. 花椰菜的克隆及在响应盐和干旱胁迫中的功能. 中国农业科学, 2021, 54(1): 152-163. doi: 10.3864/j.issn.0578-1752.2021.01.011.

LI H, HAN Z P, HE L X, YANG Y L, YOU S Y, DENG L, WANG C G. Cloning and functional analysis ofunder salt and drought stresses in cauliflower (L. var. botrytis). Scientia Agricultura Sinica, 2021, 54(1): 152-163. doi: 10.3864/j.issn. 0578-1752.2021.01.011. (in Chinese)

[55] GUTTERSON N, REUBER T L. Regulation of disease resistance pathways by AP2/ERF transcription factors. Current Opinion in Plant Biology, 2004, 7(4): 465-471.

[56] SUN X M, ZHANG L L, WONG D C J, WANG Y, ZHU Z F, XU G Z, WANG Q F, LI S H, LIANG Z C, XIN H P. The ethylene response factor VaERF092 from Amur grape regulates the transcription factor VaWRKY33, improving cold tolerance. The Plant Journal, 2019, 99(5): 988-1002.

[57] TRAN L S P, NAKASHIMA K, SAKUMA Y, OSAKABE Y, QIN F, SIMPSON S D, MARUYAMA K, FUJITA Y, SHINOZAKI K, YAMAGUCHI-SHINOZAKI K. Co-expression of the stress-inducible zinc finger homeodomain ZFHD1 and NAC transcription factors enhances expression of thegene in. The Plant Journal, 2007, 49(1): 46-63.

[58] XUE G P, LOVERIDGE C W.is involved in abscisic acid-mediated gene regulation in barley and produces two forms of AP2 transcriptional activators, interacting preferably with a CT-rich element. The Plant Journal, 2004, 37(3): 326-339.

[59] SALEH A, LUMBRERAS V, LOPEZ C, KIZIS E D P D, PAGÈS M. Maize DBF1-interactor protein 1 containing an R3H domain is a potential regulator of DBF1activity in stress responses. The Plant Journal, 2006, 46(5): 747-757.

[60] 宁蕾, 王曙光, 琚鹏举, 柏星轩, 葛林豪, 齐欣, 姜奇彦, 孙现军, 陈明, 孙黛珍. 过表达谷子对水稻耐盐性的影响. 中国农业科学, 2018, 51(10): 1830-1841. doi: 10.3864/j.issn.0578-1752.2018. 10.002.

NING L, WANG S G, JU P J, BAI X X, GE L H, QI X, JIANG Q Y, SUN X J, CHEN M, SUN D Z. Rice overexpression of milletgene increases salt tolerance. Scientia Agricultura Sinica, 2018, 51(10): 1830-1841. doi: 10.3864/j.issn.0578-1752.2018.10.002. (in Chinese)

Identification of Salt Resistance Functional of Grape Transcription Factor VvERF2

DAI YingZi, GUO HongYang, YANG ZhiFeng, WANG XianPu, XU LiLi

College of Agronomy, Shihezi University/Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization Xinjiang Production and Construction Corps, Shihezi 832003, Xinjiang

【Objective】In order to give references for future study on the mechanism of the AP2/ERF superfamily on grapes, the protein bioinformatics analysis of grape transcription factor VvERF2 was performed. Additionally, the procedures of gene cloning and homologous genetic transformation were employed for exploring the function of VvERF2 under salt stress in grape callus. 【Method】For the bioinformatics analysis of the VvERF2 protein, the NCBI Blast database (https://blast.ncbi.nlm.nih.gov/Blast.cgi) and additional online resources were utilized. The Thompson seedless (L.) callus was used as the material, and the grape homologous genetic transformation system ofwere constructed. The transgenic callus phenotype was determined by growth volume, total sugar, total acid, and other factors. Free proline, antioxidant enzyme activity, and other indices were used to assess the salt tolerance of transgenic callus. 【Result】Based on the bioinformatical analysis of VvERF2 and the 7 most homologous orthologous protein sequences, thegene encoded 240 amino acids, which were quite similar to those of tomatoes and figs, with protein homology percentages of 78% and 67%, respectively. The amino acid residues in eight species varied from 240 to 348, their molecular weights from 26.43 to 38.60 kDa, their theoretical isoelectric points from 5.54 to 8.68, and their index of fatty amino acids were all belonged to unstable proteins, which was higher than 66%. The physicochemical properties of amino acid sequences in different species were quite different. In addition, the promoter ofgene had a variety of cis-acting element related to abscisic acid and other transcription factors, such as MYB. Particularly,expressed specificity in different tissues, with callus exhibiting the lowest level of expression. Following salt stress, however,gene expression increased to three times that of the control group. Transgenic results showed that after overexpression ofgene in grape callus, growth amount, total acid, total phenol content and antioxidant activity of DPPH (1, 1-diphenyl-2-trinitrophenylhydrazine) were significantly increased. The content of total protein and free proline in transgenic callus were almost higher than those in wild-type callus treated with different concentrations of NaCl. 【Conclusion】The overexpression ofpromoted callus growth and accumulation of secondary metabolites, such as phenolic substances, and improved salt tolerance of grape.

grape;;salt stress; functional identification

10.3864/j.issn.0578-1752.2024.02.009

2023-06-16;

2023-11-09

国家自然科学基金(32260722)、石河子大学青年创新培育人才支持计划(KX03090305)、石河子大学高层次人才科研启动项目(2022ZK014)

代瑛姿,E-mail:2388874188@qq.com。通信作者王宪璞,E-mail:waxp2011@163.com。通信作者许丽丽,E-mail:1156075993@qq.com

(责任编辑 赵伶俐)

猜你喜欢
生长量转基因葡萄
探秘转基因
转基因,你吃了吗?
日本落叶松人工林生长规律分析
北大河林业局森林生长量、枯损量调查与分析
葡萄熟了
当葡萄成熟时
宜春区域南方红豆杉生境及其生长量分析
天然的转基因天然的转基因“工程师”及其对转基因食品的意蕴
华山松中幼林抚育和未抚育对生长量的影响
玩转转基因