马红 王月超 孙莹 高红 陶波 韩玉军
摘要
除草劑的应用为农业生产带来便利,但长期、单一使用某一种或相同机制的除草剂也引发了杂草对除草剂的抗性问题。抗性杂草种类逐渐增加,抗性形成机制复杂,导致农田杂草的治理难度增加。杂草对除草剂的抗性机制主要分为两种,一种是除草剂靶标位点基因的突变或过量表达导致的靶标抗性,另一种是杂草对除草剂吸收、转运、固存和代谢等一个或多个生理过程发生变化导致的非靶标抗性。本文综述了杂草对9类不同作用方式除草剂的非靶标抗性机制的生理、生化和分子基础的研究进展,以期为抗性杂草综合治理提供参考。
关键词
杂草; 除草剂; 作用方式; 非靶标抗性; 抗性机制
中图分类号:
S 481.4; S 451.1
文献标识码: A
DOI: 10.16688/j.zwbh.2022688
Advances in nontarget resistance mechanisms of weeds to nine kinds of commonly used herbicides with different mechanisms of action
MA Hong1, WANG Yuechao1,2, SUN Ying1, GAO Hong1, TAO Bo1, HAN Yujun1*
(1. College of Plant Protection, Northeast Agricultural University, Harbin 150030, China; 2. Crop Resources
Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China)
Abstract
The application of herbicides has brought convenience to agricultural production, but longterm use of single herbicide or herbicides with the same mode of action has caused the problem of weed resistance to herbicides. The types of resistant weeds keep increasing, and the formation mechanism of resistance is complex, which leads to the difficulty in the control of weeds in farmlands. The resistance mechanisms of weeds to herbicides are mainly divided into two types. One is target resistance caused by mutations or overexpression of herbicidetargeted genes, and the other is nontarget resistance caused by changes in one or more physiological processes such as herbicide uptake, transport, sequestration, and metabolism. In this review, the physiological, biochemical and molecular bases of nontarget resistance mechanisms of weeds to nine kinds of herbicides with different action modes were summarized to provide a reference for the comprehensive management of resistant weeds.
Key words
weeds; herbicides; mode of action; nontarget resistance; resistance mechanism
农田杂草的发生使我国每年粮食产量下降1 750万t,严重威胁我国粮食安全[1]。除草剂的引入有效控制了农田杂草的发生和危害,提高了作物的产量和质量[2]。然而,相同作用机理的除草剂连续重复施用,导致杂草对除草剂的抗性问题日益严重。目前,全球已有72个国家的96种作物田的267种杂草对除草剂产生抗性,其中涉及513个抗除草剂生物型[3]。杂草抗药性的形成主要与杂草的生物学特性、除草剂的特性与选择压力、农艺措施等有关[4]。了解除草剂的作用机制可以在很大程度上预测杂草抗性的发展方向,减缓杂草抗药性形成的速度,制定合理的杂草综合治理策略。以往的研究报道中除草剂抗性多数集中在靶标抗性上,对非靶标抗性方面的研究较少。但近年来,非靶标抗性方面的研究逐渐得到了重视。本文就杂草对几种常见不同作用机制除草剂的非靶标抗性机制的研究进展进行总结。
1 杂草对除草剂抗性机制研究概况
杂草对除草剂抗性指杂草在接触到对野生型杂草具有致死效果的除草剂剂量后,能够生存和繁殖的遗传能力[5]。杂草对除草剂的抗性大致可分为靶标抗性和非靶标抗性[5]。靶标抗性主要是指除草剂靶标位点基因的突变导致靶标蛋白对除草剂敏感性下降或靶标蛋白过量表达[6],靶标抗性主要由单基因性状决定[7]。杂草对除草剂的非靶标抗性机制比靶标抗性机制复杂得多[8]。非靶标抗性机制是到达靶标位点的除草剂有效成分减少,包括杂草对除草剂吸收/转运的减少、代谢解毒除草剂能力的增强以及对除草剂的屏蔽作用等,从而降低除草剂对杂草的伤害[56]。杂草对除草剂非靶标抗性中最常见的机制就是代谢解毒能力增强[9],这种作用受到多种酶的调控。多数情况下植物完成对除草剂的解毒作用需要4个阶段,首先由细胞色素P450单加氧酶(CYP450s)或其他氧化酶将除草剂氧化,随后谷胱甘肽 S转移酶(GSTs)或糖基转移酶(GTs)等与第一步产物结合,通过ABC转运蛋白等将结合物转运至液泡或细胞外,最后将液泡中或细胞外的产物降解完成对除草剂的解毒作用[5]。虽然也有研究报道在一些杂草中发现了单基因遗传的非靶标抗性,但涉及解毒酶的非靶标抗性通常是由多基因调控的,并且不同杂草对不同作用机制除草剂或同一作用机制的不同除草剂的解毒调控基因以及解毒方式也不尽相同,可能导致同种杂草对作用机制完全不同的其他种类除草剂产生抗性[7,10]。因此關于除草剂非靶标抗性的研究有利于挖掘杂草对不同作用机制除草剂的抗性基因,从酶学、分子及代谢等不同方面研究杂草对不同除草剂抗药性问题。
2 杂草对不同作用机制除草剂的非靶标抗性机制的研究进展
2.1 杂草对乙酰乳酸合酶(ALS)抑制剂的非靶标抗性机制
ALS抑制剂类除草剂自1982年投入使用后,杂草对该类除草剂抗性即开始逐渐发展,1998年以后对该类除草剂有抗性杂草的种类数量已超过其他类型除草剂[11],在所有作用方式除草剂中位列第一。目前,全球有170种杂草对ALS抑制剂产生抗性,其中我国报道的有17种[3]。ALS抑制剂类除草剂也被称为乙酰羟基酸合成酶(AHAS)抑制剂,主要抑制支链氨基酸异亮氨酸、亮氨酸和缬氨酸的生物合成[12]。ALS抑制剂作为高效、广谱的除草剂,可以应用于玉米、大豆、水稻、小麦和油菜等多种作物田。目前已经报道的抗ALS抑制剂的杂草中,多数是氨基酸突变引起的靶标抗性起到主要作用,但也有文献报道杂草对除草剂代谢的增强提高了杂草对ALS抑制剂的抗性,说明抗ALS抑制剂的杂草中存在非靶标抗性机制[11]。
大量研究证明,代谢抗性是杂草对ALS抑制剂产生非靶标抗性的主要途径,在这个过程中CYP450s基因的过量表达起了重要作用。Zhao等[13]在对抗甲基二磺隆看麦娘Alopecurus aequalis的抗性机制进行研究时发现CYP94A1和CYP71A4在抗性植株中过量表达。颜伯俊[14]发现CYP71C2基因介导硬稃稗Echinochloa glabrescens对五氟磺草胺的抗性,并能赋予拟南芥Arabidopsis thaliana抗五氟磺草胺。Shen等[15]在研究抗苯磺隆播娘蒿Descurainia sophia时发现CYP77B34基因可以赋予拟南芥抗多种类型的除草剂,包括ALS抑制剂、原卟啉原氧化酶(PPO)抑制剂、超长链脂肪酸(VLCFA)合成抑制剂、光系统Ⅱ(PSⅡ)抑制剂等。刘健等[16]使用CYP450s抑制剂预处理抗五氟磺草胺稻稗Echinochloa oryzoides后,其对五氟磺草胺抗性显著降低,这说明CYP450s在其对ALS抑制剂的代谢抗性中起到很大作用。这种现象也存在于作物当中,Saika等[17]发现,籼稻中的CYP72A31使籼稻对双草醚的耐受能力高于粳稻,过表达CYP72A31的拟南芥获得了对苄嘧磺隆的耐药性,CYP72A31可以提高杂草对双草醚和苄嘧磺隆的代谢。除CYP450s外,ABC转运蛋白也参与对ALS抑制剂的非靶标抗性[1821]。Liu等[18]在抗苯磺隆的鹅肠菜Stellaria aquatica中发现了3个CYP450s基因和1个ABC转运蛋白基因在所有抗性植株中均过量表达,这说明杂草对ALS抑制剂非靶标抗性形成中存在着多种基因和酶系的复合调控作用。
2.2 杂草对光系统Ⅱ(PSⅡ)抑制剂的非靶标抗性机制
光系统Ⅱ(PSⅡ)抑制剂通过竞争结合叶绿体光系统Ⅱ复合体中D1蛋白上的质体醌(QB)结合位点,阻碍电子从PSⅡ传递到PSⅠ,从而抑制NADPH和ATP的产生,使植物不能正常进行光合作用而死亡[22]。目前,全球共有87种,我国有3种杂草对PSⅡ抑制剂产生抗性[3]。
大多数情况下,PSⅡ抑制剂的抗性主要是通过CYP450s和/或GSTs对除草剂的代谢进行单一或复合调控。Nakka等[23]的研究发现,抗莠去津长芒苋Amaranthus palmeri体内的GSTs与莠去津结合速度是敏感种群的24倍。Evans等[24]在糙果苋Amaranthus tuberculatus中确认了1个Phi类GST基因AtuGSTF2与莠去津抗性有关,进一步发现,将莠去津施于抗莠去津糙果苋后6 h,约有92%的莠去津被GSTs结合,而在敏感植株中,92%的莠去津仍作为母体化合物保留在植株内[25]。Gray等[26]在苘麻Abutilon theophrasti中发现谷胱甘肽共轭作用和N脱烷基作用可以代谢莠去津。此外,用CYP450s抑制剂1氨基苯并三氮唑进行预处理会导致抗性硬直黑麦草Lolium rigidum对西玛津的敏感性增加[27]。Svyantek等[28]发现,在编码D1蛋白的psbA基因未突变的情况下,抗PSⅡ抑制剂的早熟禾Poa annua对莠去津的吸收、转运减少,CYP450s介导的早熟禾对除草剂的代谢增强,说明除了增强代谢外,吸收和转运的减少也能促进杂草对PSⅡ抑制剂产生抗性。
2.3 杂草对5烯醇式丙酮酰莽草酸3磷酸合酶(EPSPS)抑制剂的非靶标抗性机制
草甘膦是一种非选择性的广谱除草剂,具有独特的化学结构,其与磷酸烯醇式丙酮酸(PEP)竞争性结合EPSPS[29],使莽草酸途径无法正常进行。EPSPS作为莽草酸途径的关键酶,催化PEP和莽草酸3磷酸(S3P)合成氨基酸前体[3031]。莽草酸途径受阻致使植物不能产生芳香族氨基酸色氨酸、酪氨酸和苯丙氨酸,导致植物的生长和发育受到抑制,进而死亡。目前全球有56种,我国有2种杂草对草甘膦产生了抗性[3]。
抗草甘膦杂草的非靶标抗性机制主要与转运蛋白有关。Peng等[32]通过GSFLX 454焦磷酸测序发现,施用草甘膦后抗草甘膦小蓬草Erigeron canadensis的几个ABC转运蛋白基因的表达量增加。Ge等[33]的研究发现,抗草甘膦小蓬草植株内超过85%的草甘膦被封存在液泡中,而敏感植株中只有15%。而且这种现象在施用草甘膦后的几天之内不可逆转[3335]。Pan等[36]发现,抗草甘膦稗草Echinochloa crusgalli中定位于质膜的EcABCC8可以将草甘膦排出细胞,并且在EcABCC8基因序列一致的情况下,抗性植株中EcABCC8表达量更高,细胞中草甘膦含量更低。这些研究表明,转运蛋白将草甘膦主动转运至液泡内封存或排出细胞都可以增加杂草对草甘膦的抗性。
杂草对草甘膦产生抗性的另一个重要原因是代谢增强。研究发现,在施用草甘膦168 h后,耐性两耳草Digitaria insularis体内超过56%的草甘膦被代谢为氨甲基膦酸(AMPA)、乙醛酸、肌氨酸,而在敏感植株中只有10%草甘膦被代谢[37]。在抗性小蓬草中草甘膦也被快速代谢,在施用草甘膦后96 h,几乎100%的草甘膦被代谢为AMPA、乙醛酸和肌氨酸[38]。植物和微生物中醛酮还原酶(AKR)基因的沉默或突变都会增加它们对草甘膦的敏感性。Vemanna等[39]的研究表明,在烟草Nicotiana tabacum中过量表达假单胞菌Pseudomonas的PsAKR基因或水稻的OsAKR基因可获得对草甘膦的抗性,Pan等[40]采用RNAseq分析澳大利亚的光头稗Echinochloa colona种群,发现了一种高活性的醛酮还原酶重叠群对草甘膦表现出代谢抗性;并且在表达EcAKR41的大肠杆菌Escherichia coli中也发现了AMPA和乙醛酸等草甘膦代谢物,这与抗性稗草对草甘膦的代谢极为相似。
杂草对草甘膦吸收的减少也可以促使杂草对草甘膦产生低水平抗性。植株气孔密度与大小,表皮毛密度等表观性状的差异都会影响杂草对草甘膦的吸收[41]。转录组测序(RNAseq)发现草甘膦处理后抗性多花黑麦草Lolium multiflorum与敏感多花黑麦草中差异基因大部分与质膜有关,表明抗性杂草中可能存在阻止草甘膦进入细胞的屏障[42]。DominguezValenzuela等[43]在抗草甘膦紫菀Aster squamatus种群中发现吸收减少、转运减少以及代謝增加3种机制同时存在。Yanniccari等[44]在抗草甘膦扁穗雀麦Bromus catharticus中也发现,相比于敏感型植株,草甘膦在抗性植株叶片上存留、吸收和转运更少。
此外,研究者发现,草甘膦处理三裂叶豚草Ambrosia trifida后其叶片会迅速枯萎,从植物上脱落[4546]。这种死亡脱落的快速响应机制一定程度上限制了草甘膦在植物体内的移动,即减少了除草剂的转运,含有草甘膦的组织脱落后,植株可以继续生长。应用外源苯丙氨酸和酪氨酸可以很大程度上逆转这种快速响应,并且抗性植株中叶片脱落部位活性氧增加,说明这种逆转机制可能与莽草酸途径失调和活性氧的积累有关。
2.4 杂草对乙酰辅酶A羧化酶(ACCase)抑制剂的非靶标抗性机制
乙酰辅酶A羧化酶(ACCase)是合成脂肪酸的关键酶,对植物的生存至关重要[47]。ACCase抑制剂使杂草不能正常进行脂肪酸合成最终死亡[48]。作为重要的选择性除草剂,ACCase抑制剂被大量应用后,杂草抗性发展迅速,迄今为止全球已有50种,我国有10种杂草对该类除草剂产生了抗性[3]。
杂草对ACCase抑制剂的抗性多数是CYP450s参与的代谢抗性。研究发现硬直黑麦草抗性种群可以快速降解禾草灵[4950],其代谢物与小麦中通过环羟基化和糖结合形成的代谢物很相似[51],表明杂草对ACCase抑制剂的抗性与小麦抗除草剂类似,存在CYP450s参与的代谢增强作用[5152]。胡椒基丁醚(PBO)或马拉硫磷等预处理可以降低日本看麦娘Alopecurus japonicus和棒头草Polypogon fugax对ACCase抑制剂的抗性[5354]。而CYP450诱导剂2,4滴预处理可提高禾草灵敏感型硬直黑麦草种群对禾草灵的代谢速率从而提高其抗性[55],证实了CYP450s在增强杂草代谢抗性中发挥作用。
除CYP450s的调控作用外,GSTs和GTs也参与对ACCase抑制剂代谢的调控。Gaines等[50]对抗禾草灵的硬直黑麦草进行RNAseq,发现2个CYP450s、1个GT和1个氮酸酯单加氧酶(NMO)基因在禾草灵代谢抗性中发挥作用。彭谦[56]通过RNAseq也明确了稗草对噁唑酰草胺的抗性与EcGSTF1基因有关。Pan等[57]在菵草Beckmannia syzigachne对精噁唑禾草灵的非靶标抗性中发现CYP450s、GSTs、UDP以及酯酶在内的15个基因上调表达或突变,证实了多种酶在杂草对ACCase抑制剂非靶标抗性中起到调控作用。
2.5 杂草对合成生长素类除草剂的非靶标抗性机制
合成生长素类除草剂(SAH)是模拟天然植物激素吲哚3乙酸(IAA)的一类除草剂[58]。此类除草剂主要用于防除单子叶作物田中的阔叶杂草[59]。自1945年2,4滴引入并商用以来,SAH的应用已有70余年,杂草对SAH的抗性进化较为缓慢,到目前为止全球有41种,我国有5种杂草对合成生长素类除草剂产生抗性[3]。
杂草对SAH除草剂非靶标抗性机制之一是对SAH吸收减少,通常是由于叶片角质层或其他结构屏障阻碍除草剂吸收到植物体内[60]。对代谢水平一致的,抗、感2,4滴的野莴苣Lactuca serriola植株同时施用2,4滴 96 h后,抗性植株叶片比敏感植株中2,4滴含量更少[6061]。证明了植株表型差异会影响除草剂吸收从而赋予杂草抗性。
SAH向作用部位传导减少也是主要的非靶标抗性机制之一。东方大蒜芥Sisymbrium orientale经2,4滴处理后72 h,抗性植物的叶片中大约残留有77%的2,4滴,而在敏感植物中只有32%的2,4滴还保留在叶片中[62]。抗麦草畏地肤Bassia scoparia的RNAseq分析表明,与麦草畏敏感地肤相比,抗性地肤体内影响生长素运输的基因下调表达,这可能是导致地肤对麦草畏产生抗性的原因[63]。
另一个主要的抗性机制是SAH的快速代谢,在这个过程中CYP450s参与的环羟基化作用促进了除草剂的解毒代谢。在抗性糙果苋中,2,4滴的代谢速度比敏感植株快得多[64]。Torra等[65]发现抗2,4滴虞美人Papaver rhoeas的根和地上部可以检测到在敏感植株中检测不到的两种羟基代谢物,证实了抗性植株中存在CYP450s参与的羟基化作用,使植株对除草剂的代谢增强。此外,当用CYP450s抑制剂马拉硫磷预处理后,抗SAH的糙果苋、虞美人、长芒苋对SAH的敏感性增加也说明了CYP450s参与杂草抗性的产生[6467]。
2.6 杂草对光系统Ⅰ(PSⅠ)抑制剂的非靶标抗性机制
百草枯是一种非选择性的快速除草剂,它通过转移PSⅠ的电子使光合作用受到抑制。百草枯接受单个电子生成还原性的阳离子自由基,其与氧进一步反应时生成超氧离子[68]。在有光的条件下,百草枯催化产生超氧离子,最终形成羟基自由基并导致脂质过氧化[6869]。目前全球共有32种,我国有5种杂草对光系统Ⅰ抑制剂产生抗性[3]。
已报道的对光系统Ⅰ抑制剂的非靶标抗性机制主要是通过液泡隔离减少除草剂转运。研究发现,施用百草枯后抗性硬直黑麦草原生质体中百草枯含量比敏感植株高出2~3倍,表明除草剂可能被封存在液泡中[70]。在意大利黑麦草Lolium perenne中也有类似抗百草枯机制的报道[71]。但这种抗性机制的分子基础还有待证实。
2.7 杂草对原卟啉原氧化酶(PPO)抑制剂的非靶标抗性机制
在亚铁血红素和叶绿素合成过程中,原卟啉原氧化酶(PPO)的作用是将原卟啉原Ⅸ转化为原卟啉Ⅸ[72]。PPO被抑制导致中间产物在细胞膜上积累,这些中间产物被光氧化,最终导致活性氧(ROS)的产生。ROS破坏细胞膜中的脂肪和蛋白质,使其发生脂质过氧化,破坏细胞膜结构,使细胞质外泄,最后造成植物死亡[7374]。目前全球已发现14种,我国发现3种杂草对PPO抑制剂产生抗性[3]。
关于PPO抑制剂抗性的报道多为靶标抗性[7577]。非靶标抗性的报道主要集中在长芒苋和糙果苋中,主要由CYP450s和GSTs调控。用马拉硫磷预处理未发生基因突变的抗唑草酮糙果苋后发现其對唑草酮的敏感性增加,证明CYP450s参与了糙果苋对唑草酮的抗性[78]。同样,对未发生基因突变的抗氟磺胺草醚的长芒苋进行马拉硫磷或NBDcl预处理后其对氟磺胺草醚也更加敏感,也说明CYP450s和GSTs介导了其对氟磺胺草醚的抗性[7980]。
2.8 杂草对超长链脂肪酸(VLCFA)合成抑制剂的非靶标抗性机制
超长链脂肪酸(VLCFA)合成抑制剂影响超长链脂肪酸碳链延长[81]。超长链脂肪酸是合成甘油三酯、蜡质、磷脂和复杂的鞘脂的必要条件,对植物各种功能的发挥至关重要[82]。细胞分裂过程以及维持膜运输途径都需要磷脂和鞘脂[8284]。目前全球已经发现13种,我国发现2种杂草对超长链脂肪酸合成抑制剂产生抗性[3]。
杂草对超长链脂肪酸合成抑制剂的非靶标抗性机制主要为GSTs和CYP450s介导的代谢抗性。Busi等[85]在硬直黑麦草种群中发现了对砜吡草唑的代谢抗性,在施药后24 h内大约88%的砜吡草唑被代谢,代谢产物可以与谷胱甘肽结合,并发现2个GST基因在抗性植株内2~6倍过表达。此外,Brabham等[86]在长芒苋中发现了对精异丙甲草胺的抗性,将GSTs抑制剂NBDcl加到琼脂溶液中进行长芒苋的萌发试验,观察到了抗性长芒苋根系生长减少,表明GSTs参与了长芒苋的非靶标抗性。Strom等[87]发现GSTs抑制剂4氯7硝基苯呋喃唑和CYP450s抑制剂马拉硫磷可降低抗性长芒苋代谢精异丙甲草胺的量。进一步试验发现,长芒苋对精异丙甲草胺的代谢由第一阶段O脱甲基化和第二阶段与谷胱甘肽结合协同发挥作用,其中CYP450s介导的O脱甲基化反应赋予长芒苋对精异丙甲草胺的抗性[88]。Rangani等[89]发现ApGSTU19、ApGSTF8、ApGSTF2以及ApGSTF2like基因的过量表达使长芒苋根系中GSTs活性升高,与长芒苋对精异丙甲草胺的抗性密切相关。
2.9 杂草对对羟基苯丙酮酸双加氧酶(HPPD)抑制剂的非靶标抗性机制
HPPD抑制剂能抑制对羟基苯丙酮酸双加氧酶的活性,阻碍对羟基苯基丙酮酸(HPPA)向尿黑酸(HGA)的转化,使质体醌和生育酚不能正常合成[90]。质体醌对电子从PSⅡ向PSⅠ转移至关重要,也是类胡萝卜素形成所需的八氢番茄红素去饱和酶(PDS)的辅助因子[91]。HPPD抑制剂类除草剂大多抑制类胡萝卜素的形成,导致叶绿素分子的光氧化和细胞膜的脂质过氧化,最终导致植物死亡[92]。
关于HPPD抑制剂的杂草抗性报道相对较少。截至目前,已经发现的抗HPPD抑制剂的杂草非靶标抗性主要是由CYT450s调控的除草剂代谢。抗硝磺草酮长芒苋体内的硝磺草酮在施用硝磺草酮24 h后被代谢90%以上[91]。并且抗硝磺草酮糙果苋可以通过二酮环的4羟基化促进对硝磺草酮的代谢[93]。此外,研究发现与环磺酮敏感型长芒苋相比,抗环磺酮植株中环磺酮被快速地4羟基化,糖基化,并伴随着CYP450s的表达量增加[94]。Guo等[95]研究发现,CYP81A亚家族可以提高稻稗E.oryzoides对异噁草酮的代谢抗性,进而发现转CYP81A12、CYP81A21、CYP81A15和CYP81A24基因的拟南芥对异噁草酮的抗性增加,表明CYP450s参与了异噁草酮的代谢[95]。此外,Hideo[96]在水稻中发现HIS 1基因编码的Fe(Ⅱ)/2氧戊二酸依赖性加氧酶对β三酮类除草剂具有解毒作用,可以赋予水稻、拟南芥对β三酮类除草剂的抗性。但在杂草中是否存在与水稻相似的对HPPD类除草剂的代谢机制尚未得到证实,值得进一步深入研究。
3 展望
自除草剂普及后,抗性杂草的种类和数量逐年增多,抗性水平不断提高,抗性杂草的治理难度也随之增大。截至目前,我国已经有74个抗性个体共44个生物型抗性杂草在玉米、大豆、水稻、小麦等主要作物田及果园中发生较为严重[3,97],如不加以研究和治理,將会严重影响产量,对我国粮食安全造成严重威胁。了解杂草抗性生物型对除草剂的抗性水平和抗性机制有助于定制有效的杂草管理策略。相比于靶标抗性,非靶标抗性对杂草综合治理带来的威胁更大。非靶标抗性可能使杂草对不同作用机制的除草剂产生抗性,甚至对尚未上市的除草剂也会产生抗性。因此,了解非靶标抗性的进化机制,特别是CYP450s、GSTs、ABC转运蛋白等多种酶调控的作用机制尤为重要。随着转录组学、代谢组学、基因编辑等技术被应用到除草剂抗性机制的研究中,人们将更直观地了解到杂草的非靶标抗性机理,将对杂草抗药性基因的挖掘、抗除草剂作物的培育、全新生物除草剂的开发以及杂草抗药性的治理提供更多的参考依据。
参考文献
[1] 张超宇. 我国除草剂的发展趋势分析[J]. 农民致富之友, 2017(19): 119.
[2] HAMILL A S, HOLT J S, MALLORYSMITH C A. Contributions of weed science to weed control and management [J]. Weed Technology, 2004, 18: 15631565.
[3] HEAP I. The international herbicideresistant weed database [DB/OL]. [20221013]. http:∥www.weedscience.org.
[4] 韩庆莉, 沈嘉祥. 杂草抗药性的形成、作用机理研究进展[J]. 云南农业大学学报, 2004(5): 556561.
[5] 毕亚玲, 李君君, 戴玲玲, 等. 杂草对除草剂非靶标抗性机理研究进展[J]. 植物保护, 2020, 46(5): 15.
[6] 李健, 李美, 高兴祥, 等. 杂草抗药性及其机理研究进展[J]. 山东农业科学, 2016, 48(12): 165170.
[7] DLYE C, JASIENIUK M, CORRE V L. Deciphering the evolution of herbicide resistance in weeds [J]. Trends in Genetics, 2013, 29(11): 649658.
[8] 白霜. 牛繁缕对苯磺隆代谢抗性基因的挖掘及功能验证[D]. 泰安: 山东农业大学, 2019.
[9] SANDERMANN H. Molecular ecotoxicology of plants [J]. Trends in Plant Science, 2004, 9(8): 406413.
[10]PRESTON C. Inheritance and linkage of metabolismbased herbicide crossresistance in rigid ryegrass (Lolium rigidum) [J]. Weed Science, 2003, 51(1): 412.
[11]HEAP I. Global perspective of herbicideresistant weeds [J]. Pest Management Science, 2014, 70(9): 13061315.
[12]UMBARGER H E. Amino acid biosynthesis and its regulation [J]. Annual Review of Biochemistry, 1978, 47: 532606.
[13]ZHAO Ning, YAN Yanyan, GE Lu’an, et al. Target site mutations and cytochrome P450s confer resistance to fenoxapropPethyl and mesosulfuronmethyl in Alopecurus aequalis [J]. Pest Management Science, 2019, 75(1): 204214.
[14]顏伯俊. 细胞色素P450氧化酶介导的硬稃稗(Echinochloa glabrescens)对五氟磺草胺的抗药性机理研究[D]. 南京: 南京农业大学, 2020.
[15]SHEN Jing, YANG Qian, HAO Lubo, et al. The metabolism of a novel cytochrome P450 (CYP77B34) in tribenuronmethylresistant Descurainia sophia L. to herbicides with different mode of actions [J/OL]. International Journal of Molecular Sciences, 2022, 23(10): 5812. DOI: 10.3390/ijms23105812.
[16]刘健, 房加鹏, 董立尧. 稻稗HJHL715种群对五氟磺草胺的抗药性水平及抗性机理分析[J]. 植物保护学报, 2020, 47(1): 197204.
[17]SAIKA H, HORITA J, TAGUCHISHIOBARA F, et al. A novel rice cytochrome P450 gene, CYP72A31, confers tolerance to acetolactate synthaseinhibiting herbicides in rice and Arabidopsis [J]. Plant Physiology, 2014, 166(3): 12321240.
[18]LIU Weitang, BAI Shuang, ZHAO Ning, et al. Nontarget sitebased resistance to tribenuronmethyl and essential involved genes in Myosoton aquaticum (L.) [J/OL]. BMC Plant Biology, 2018, 18(1): 225. DOI: 10.1186/s128700181451x.
[19]ZHAO Ning, LI Wei, BAI Shuang, et al. Transcriptome profiling to identify genes involved in mesosulfuronmethyl resistance in Alopecurus aequalis [J/OL]. Frontiers in Plant Science, 2017, 8: 1391. DOI: 10.3389/fpls.2017.01391.
[20]DUHOUX A, CARRERE S, GOUZY J, et al. RNASeq analysis of ryegrass transcriptomic response to an herbicide inhibiting acetolactatesynthase identifies transcripts linked to nontargetsitebased resistance [J]. Plant Molecular Biology, 2015, 87(4/5): 473487.
[21]YANG Qian, DENG Wei,LI Xuefeng, et al. Targetsite and nontargetsite based resistance to the herbicide tribenuronmethyl in flixweed (Descurainia sophia L.) [J/OL]. BMC Genomics, 2016, 17: 551. DOI: 10.1186/s1286401629158.
[22]劉玉晓, 许晓明. PSⅡ抑制剂作用位点的研究进展和方法[J]. 农药, 2007(3): 154158.
[23]NAKKA S, GODAR A S, THOMPSON C R, et al. Rapid detoxification via glutathione Stransferase (GST) conjugation confers a high level of atrazine resistance in Palmer amaranth (Amaranthus palmeri) [J]. Pest Management Science, 2017, 73(11): 22362243.
[24]EVANS A F, O’BRIEN S R, MA R, et al. Biochemical characterization of metabolismbased atrazine resistance in Amaranthus tuberculatus and identification of an expressed GST associated with resistance [J]. Plant Biotechnology Journal, 2017, 15(10): 12381249.
[25]VENNAPUSA A R, FALECO F, VIEIRA B, et al. Prevalence and mechanism of atrazine resistance in waterhemp (Amaranthus tuberculatus) from Nebraska [J]. Weed Science, 2018, 66(5): 595602.
[26]GRAY J, BALKE N, STOLTENBERG D. Increased glutathione conjugation of atrazine confers resistance in a Wisconsin velvetleaf (Abutilon theophrasti) biotype [J]. Pesticide Biochemistry and Physiology, 1996, 55(3): 157171.
[27]BURNET M W M, LOVEYS B R, HOLTUM J A M, et al. Increased detoxification is a mechanism of simazine resistance in Lolium rigidum [J]. Pesticide Biochemistry and Physiology, 1993, 46(3): 207218.
[28]SVYANTEK A W, ALDAHIR P, CHEN S, et al. Target and nontarget resistance mechanisms induce annual bluegrass (Poa annua) resistance to atrazine, amicarbazone, and diuron [J]. Weed Technology, 2016, 30(3): 773782.
[29]DUKE S O, POWLES S B. Glyphosate: a onceinacentury herbicide [J]. Pest Management Science, 2008, 64(4): 319325.
[30]ROBERTS F. Evidence for the shikimate pathway in apicomplexan parasites [J]. Nature, 1998, 393(6687): 801805.
[31]蘇少泉. 草甘膦述评[J]. 农药, 2005(4): 145149.
[32]PENG Yanhui, ABERCROMBIE L L G, YUAN J S, et al. Characterization of the horseweed (Conyza canadensis) transcriptome using GSFLX 454 pyrosequencing and its application for expression analysis of candidate nontarget herbicide resistance genes [J]. Pest Management Science, 2010, 66(10): 10531062.
[33]GE Xia, D’AVIGNON D A, ACKERMAN J J H, et al. Rapid vacuolar sequestration: the horseweed glyphosate resistance mechanism [J]. Pest Management Science, 2010, 66(4): 345348.
[34]GE Xia, D’AVIGNON D A, ACKERMAN J J H, et al. Vacuolar glyphosatesequestration correlates with glyphosate resistance in ryegrass (Lolium spp.) from Australia, south America, and Europe: a P31 NMR investigation [J]. Journal of Agricultural and Food Chemistry, 2012, 60(5): 12431250.
[35]GE Xia, D’AVIGNON D A, ACKERMAN J J H, et al. In vivo 31P-nuclear magnetic resonance studies of glyphosate uptake, vacuolar sequestration, and tonoplast pump activity in glyphosateresistant horseweed [J]. Plant Physiology, 2014, 166(3): 12551268.
[36]PAN Lang, YU Qin, WANG Junzhi, et al. An ABCCtype transporter endowing glyphosate resistance in plants [J/OL]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(16): e2100136118. DOI: 10.1073/pnas.2100136118.
[37]CARVALHO L, ROJANODELGADO A, ALVES P L, et al. Differential content of glyphosate and its metabolites in Digitaria insularis biotypes [J]. Communications in Plant Sciences, 2013, 3(3/4): 1720.
[38]GONZALEZTORRALVA F, ROJANODELGADO A M, DE CASTRO M D L, et al. Two nontarget mechanisms are involved in glyphosateresistant horseweed (Conyza canadensis L. Cronq.) biotypes [J]. Journal of Plant Physiology, 2012, 169(17): 16731679.
[39]VEMANNA R S, VENNAPUSA A R, EASWARAN M, et al. Aldoketo reductase enzymes detoxify glyphosate and improve herbicide resistance in plants [J]. Plant Biotechnology Journal, 2017, 15(7): 794804.
[40]PAN Lang, YU Qin, HAN Heping, et al. Aldoketo reductase metabolizes glyphosate and confers glyphosate resistance in Echinochloa colona [J]. Plant Physiology, 2019, 181(4): 15191534.
[41]PLACIDO H F, SANTOS R F, OLIVEIRA R S, et al. Morphological characterization of the foliar surface in glyphosateresistant tall windmill grass [J]. Agronomy Journal, 2022, 114(1): 641650.
[42]CECHIN J, PIASECKI C, BENEMANN D P, et al. Transcriptome analysis identifies candidate target genes involved in glyphosateresistance mechanism in Lolium multiflorum [J/OL]. Plants, 2020, 9(6): 685. DOI: 10.3390/plants9060685.
[43]DOMINGUEZVALENZUELA J A, DE LA CRUZ R A, PALMABAUTISTA C, et al. Nontarget site mechanisms endow resistance to glyphosate in saltmarsh aster (Aster squamatus) [J/OL]. Plants, 2021, 10(9): 1970. DOI: 10.3390/plants10091970.
[44]YANNICCARI M, VAZQUEZGARCIA J G, GOMEZLOBATO M E, et al. First case of glyphosate resistance in Bromus catharticus Vahl.: examination of endowing resistance mechanisms [J/OL]. Frontiers in Plant Science, 2021, 12: 617945. DOI: 10.3389/fpls.2021.617945.
[45]VAN HORN C R, MORETTI M L, ROBERTSON R R, et al. Glyphosate resistance in Ambrosia trifida: Part 1. Novel rapid cell death response to glyphosate [J]. Pest Management Science, 2018, 74(5): 10711078.
[46]MORETTI M L, VAN HORN C R, ROBERTSON R, et al. Glyphosate resistance in Ambrosia trifida: Part 2. Rapid response physiology and nontargetsite resistance [J]. Pest Management Science, 2018, 74(5): 10791088.
[47]NIKOLSKAYA T, ZAGNITKO O, TEVZADZE G, et al. Herbicide sensitivity determinant of wheat plastid acetylCoA carboxylase is located in a 400amino acid fragment of the carboxyltransferase domain [J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(25): 1464714651.
[48]李永豐, 张自常, 杨霞, 等. 稻田稗属杂草对芳氧苯氧丙酸酯类除草剂的差异敏感性及其机理[J]. 江苏农业学报, 2015, 31(3): 543551.
[49]BUSI R, VILAAIUB M M, POWLES S B. Genetic control of a cytochrome P450 metabolismbased herbicide resistance mechanism in Lolium rigidum [J]. Heredity, 2011, 106(5): 817824.
[50]GAINES T A, LORENTZ L, FIGGE A, et al. RNASeq transcriptome analysis to identify genes involved in metabolismbased diclofop resistance in Lolium rigidum [J]. Plant Journal, 2014, 78(5): 865876.
[51]YU Qin, HAN Hepin, CAWTHRAY G R, et al. Enhanced rates of herbicide metabolism in low herbicidedose selected resistant Lolium rigidum [J]. Plant Cell and Environment, 2013, 36(4): 818827.
[52]AHMADHAMDANI M S, YU Qin, HAN Heping, et al. Herbicide resistance endowed by enhanced rates of herbicide metabolism in wild oat (Avena spp.) [J]. Weed Science, 2013, 61(1): 5562.
[53]FENG Yujuan, GAO Yuan, ZHANG Yong, et al. Mechanisms of resistance to pyroxsulam and ACCase inhibitors in Japanese foxtail (Alopecurus japonicus) [J]. Weed Science, 2016, 64(4): 695704.
[54]ZHAO Ning, GE Lu’an, YAN Yanyan, et al. Trp1999Ser mutation of acetylCoA carboxylase and cytochrome P450sinvolved metabolism confer resistance to fenoxapropPethyl in Polypogon fugax [J]. Pest Management Science, 2019, 75(12): 31753183.
[55]HAN Heping, YU Qin, CAWTHRAY G R, et al. Enhanced herbicide metabolism induced by 2,4D in herbicide susceptible Lolium rigidum provides protection against diclofopmethyl [J]. Pest Management Science, 2013, 69(9): 9961000.
[56]彭謙. 稗草谷胱甘肽S转移酶在抗噁唑酰草胺代谢抗性中的作用[D]. 武汉: 华中农业大学, 2020.
[57]PAN Lang, LI Jun, ZHANG Teng, et al. Crossresistance patterns to acetyl coenzyme A carboxylase (ACCase) inhibitors associated with different ACCase mutations in Beckmannia syzigachne [J]. Weed Research, 2015, 55(6): 609620.
[58]BUSI R, GOGGIN D E, HEAP I M, et al. Weed resistance to synthetic auxin herbicides [J]. Pest Management Science, 2018, 74(10): 22652276.
[59]GROSSMANN K. Auxin herbicides: current status of mechanism and mode of action [J]. Pest Management Science, 2010, 66(2): 113120.
[60]KOHLER E A, THROSSELL C S, REICHER Z J. 2,4D rate response, absorption, and translocation of two ground ivy (Glechoma hederacea) populations [J]. Weed Technology, 2004, 18(4): 917923.
[61]RIAR D S, BURKE I C, YENISH J P, et al. Inheritance and physiological basis for 2,4D resistance in prickly lettuce (Lactuca serriola L.) [J]. Journal of Agricultural and Food Chemistry, 2011, 59(17): 94179423.
[62]DANG H, MALONE J M, BOUTSALIS P, et al. Reduced translocation in 2,4Dresistant oriental mustard populations (Sisymbrium orientale L.) from Australia [J]. Pest Management Science, 2018, 74(6): 15241532.
[63]葉萱. 杂草对合成生长素类除草剂的抗性[J]. 世界农药, 2018, 40(6): 18.
[64]FIGUEIREDO M R A, LEIBHART L J, REICHER Z J, et al. Metabolism of 2,4dichlorophenoxyacetic acid contributes to resistance in a common waterhemp (Amaranthus tuberculatus) population [J]. Pest Management Science, 2018, 74(10): 23562362.
[65]TORRA J, ROJANODELGADO A M, REYCABALLERO J, et al. Enhanced 2,4D metabolism in two resistant Papaver rhoeas populations from Spain [J/OL]. Frontiers in Plant Science, 2017, 8: 1584. DOI: 10.3389/fpls.2017.01584.
[66]SHERGILL L S, BISH M D, JUGULAM M, et al. Molecular and physiological characterization of sixway resistance in an Amaranthus tuberculatus var. rudis biotype from Missouri [J]. Pest Management Science, 2018, 74(12): 26882698.
[67]SHYAM C, PETERSON D E, JUGULAM M. Resistance to 2,4D in Palmer amaranth (Amaranthus palmeri) from Kansas is mediated by enhanced metabolism [J]. Weed Science, 2022, 70(4): 390400.
[68]HAWKES T R. Mechanisms of resistance to paraquat in plants [J]. Pest Management Science, 2014, 70(9): 13161323.
[69]GUTTERIDGE J M. Lipid peroxidation initiated by superoxidedependent hydroxyl radicals using complexed iron and hydrogen peroxide [J]. FEBS letters, 1984, 172(2): 245249.
[70]YU Qin, HUANG Shaobai, POWLES S. Direct measurement of paraquat in leaf protoplasts indicates vacuolar paraquat sequestration as a resistance mechanism in Lolium rigidum [J]. Pesticide Biochemistry and Physiology, 2010, 98(1): 104109.
[71]BRUNHARO C, HANSON B D. Vacuolar sequestration of paraquat is involved in the resistance mechanism in Lolium perenne L. spp. multiflorum [J/OL]. Frontiers in Plant Science, 2017, 8: 1485. DOI: 10.3389/fpls.2017.01485.
[72]張玉池, 王晓蕾, 徐文蓉, 等. 国内外抗除草剂基因专利的分析[J]. 杂草学报, 2017, 35(2): 122.
[73]SHERMAN T D, BECERRIL J M, MATSUMOTO H, et al. Physiological basis for differential sensitivities of plant species to protoporphyrinogen oxidaseinhibiting herbicides [J]. Plant Physiology, 1991, 97(1): 280287.
[74]石小清, 沈晓霞, 王阿国, 等. 原卟啉原氧化酶抑制剂研究与开发进展[J]. 浙江化工, 2000(3): 3537.
[75]HUANG Zhaofeng, CUI Hailan, WANG Chunyu, et al. Investigation of resistance mechanism to fomesafen in Amaranthus retroflexus L [J/OL]. Pesticide Biochemistry and Physiology, 2020, 165: 104560. DOI: 10.1016/j.pestbp.2020.104560.
[76]滕春紅, 王星茗, 崔书芳, 等. 黑龙江省大豆田反枝苋对氟磺胺草醚的抗药性机制研究[J]. 植物保护, 2019, 45(5): 197201.
[77]DU Long, LI Xiao, JIANG Xiaojing, et al. Targetsite basis for fomesafen resistance in redroot pigweed (Amaranthus retroflexus) from China [J]. Weed Science, 2021, 69(3): 290299.
[78]OBENLAND O, MA R, O’BRIEN S, et al. Carfentrazoneethyl resistance in an Amaranthus tuberculatus population is not mediated by amino acid alterations in the PPO2 protein [J/OL]. PLoS ONE, 2019, 14: e0215431. DOI: 10.1371/journal.pone.0215431.
[79]VARANASI V K, BRABHAM C, NORSWORTHY J K. Confirmation and characterization of nontarget site resistance to fomesafen in Palmer amaranth (Amaranthus palmeri) [J]. Weed Science, 2018, 66(6): 702709.
[80]VARANASI V K, BRABHAM C, KORRES N E, et al. Nontarget site resistance in Palmer amaranth Amaranthus palmeri (S.) Wats. confers crossresistance to protoporphyrinogen oxidaseinhibiting herbicides [J]. Weed Technology, 2019, 33(2): 349354.
[81]TANETANI Y, KAKU K, KAWAI K, et al. Action mechanism of a novel herbicide, pyroxasulfone [J]. Pesticide Biochemistry and Physiology, 2009, 95(1): 4755.
[82]BUSI R. Resistance to herbicides inhibiting the biosynthesis of verylongchain fatty acids [J]. Pest Management Science, 2014, 70(9): 13781384.
[83]LECHELTKUNZE C, MEISSNER R C, DREWES M, et al. Flufenacet herbicide treatment phenocopies the fiddlehead mutant in Arabidopsis thaliana [J]. Pest Management Science, 2003, 59(8): 847856.
[84]MARKHAM J E, MOLINO D, GISSOT L, et al. Sphingolipids containing verylongchain fatty acids define a secretory pathway for specific polar plasma membrane protein targeting in Arabidopsis [J]. Plant Cell, 2011, 23(6): 23622378.
[85]BUSI R, PORRI A, GAINES T A, et al. Pyroxasulfone resistance in Lolium rigidum is metabolismbased [J]. Pesticide Biochemistry and Physiology, 2018, 148: 7480.
[86]BRABHAM C, NORSWORTHY J K, HOUSTON M M, et al. Confirmation of Smetolachlor resistance in Palmer amaranth (Amaranthus palmeri) [J]. Weed Technology, 2019, 33(5): 720726.
[87]STROM S A, HAGER A G, SEITER N J, et al. Metabolic resistance to Smetolachlor in two waterhemp (Amaranthus tuberculatus) populations from Illinois, USA [J]. Pest Management Science, 2020, 76(9): 31393148.
[88]STROM S A, HAGER A G, CONCEPCION J C T, et al. Metabolic pathways for Smetolachlor detoxification differ between tolerant corn and multipleresistant waterhemp [J]. Plant and Cell Physiology, 2021, 62(11): 17701785.
[89]RANGANI G, NOGUERA M, SALASPEREZ R, et al. Mechanism of resistance to Smetolachlor in Palmer amaranth [J/OL]. Frontiers in Plant Science, 2021, 12: 652581. DOI: 10.3389/fpls.2021.652581.
[90]柏亞罗. HPPD抑制剂类除草剂的产品研发及市场概况[J]. 世界农药, 2021, 43(5): 113.
[91]NAKKA S, GODAR A S, WANI P S, et al. Physiological and molecular characterization of hydroxyphenylpyruvate dioxygenase (HPPD)inhibitor resistance in Palmer amaranth (Amaranthus palmeri S. Wats.) [J/OL]. Frontiers in Plant Science, 2017, 8: 555. DOI: 10.3389/fpls.2017.00555.
[92]姜丽丽. 新型二酮腈类HPPD抑制剂的设计、合成及除草活性[D]. 武汉: 华中师范大学, 2015.
[93]KAUNDUN S S, HUTCHINGS S J, DALE R P, et al. Mechanism of resistance to mesotrione in an Amaranthus tuberculatus population from Nebraska, USA [J/OL]. PLoS ONE, 2017, 12(6): e0180095. DOI: 10.1371/journal.pone.0180095.
[94]KUPPER A, PETER F, ZOLLNER P, et al. Tembotrione detoxification in 4hydroxyphenylpyruvate dioxygenase (HPPD) inhibitorresistant Palmer amaranth (Amaranthus palmeri S. Wats.) [J]. Pest Management Science, 2018, 74(10): 23252334.
[95]GUO Feng, IWAKAMI S, YAMAGUCHI T, et al. Role of CYP81A cytochrome P450s in clomazone metabolism in Echinochloa phyllopogon [J]. Plant Science, 2019, 283: 321328.
[96]HIDEO M. A rice gene that confers broadspectrum resistance to βtriketone herbicides [J]. Science, 2019, 365(6451): 393396.
[97]張翔鹤, 满芮, 王晓丽, 等. 2013-2018年中国主要作物田杂草发生危害数据集[J]. 中国科学数据(中英文网络版), 2021, 6(4): 196205.
(责任编辑:杨明丽)