刘涌泉,李刚,方达
双曲空间中渐近拟非扩张映射与几乎渐近拟非扩张映射混合迭代的强收敛
刘涌泉1,2,李刚1,2,方达1,2
(1. 吉安职业技术学院 小学教育学院,江西 吉安 343000;2. 吉安幼儿师范高等专科学校 教师教育学院,江西 吉安 343000)
在双曲空间中,引入了关于三个渐近拟非扩张映射和三个几乎渐近拟非扩张映射新的SP-迭代算法, 获得了渐近拟非扩张映射和几乎渐近拟非扩张映射在新的SP-迭代算法下的强收敛性定理,所得结果推广和改进了相关文献的结论.
双曲空间;渐近拟非扩张映射;几乎渐近拟非扩张映射;SP-迭代算法;公共不动点
2011年,PHUENGRATTANA[1]等引入了一种新的SP-迭代算法逼近连续映射的不动点,并证明了该算法在Bananch空间中的强收敛性,通过数值结果显示,相比于传统的Mann迭代、Ishikawa迭代和Noor迭代,SP-迭代的收敛速度更快.2014年,KANG[2]等在双曲空间中引入了S-迭代算法逼近非Lipschitzian连续Lipschitzian型映射的不动点,并建立了该迭代算法关于一个几乎渐近拟非扩张映射不动点的强收敛定理.2017年,闻道君[3]等改进了KANG等的S-迭代算法,在双曲空间中引入了SP-迭代算法逼近几乎渐近拟映射的不动点,并证明了该迭代算法关于一个渐近拟非扩张映射不动点的强收敛定理.
本文将文献[1]的SP-迭代算法从Banach空间推广到更为一般的双曲空间,改进文献[2]的S-迭代算法以及文献[3]的迭代算法,引入新的混合SP-迭代算法,在双曲空间中建立了关于三个渐近拟非扩张映射和三个几乎渐近拟非扩张映射公共不动点的强收敛定理.
注渐近拟非扩张映射是几乎渐近拟非扩张映射.反之,一般不成立.
利用式(1), 类似可得
借助式(4)~(6),可得
证明必要性显然成立.
由定理3可得到推论1~2.
由定理4可得到推论3~4.
本文所用的方法以及所得的结果是文献[9-12]一些相应结果的重要推广.
[1] PHUENGRATTANA W,SUANTAI S.On the rate of convergence of Mann,Ishikawa,Noor and SP-iterations for continuous functions on an arbitrary interval[J].Journal of Computational and Applied Mathematics,2011(235):3006-3014.
[2] KANG S M,DASHPUTR E,MALAGAR B L,et al.On the convergence of fixed points for Lipschitz type mappings in hyperbolic spaces[J].Fixed Point Theory and Applications,2014(1):1-15.
[3] 闻道君,宋树枝,万波.双曲空间中几乎渐近非扩张型映象不动点的收敛性定理[J].云南大学学报(自然科学版),2017,39(2):172-177.
[4] KOHLENBACH U.Some logical metatheorems with applications in functional analysis[J].Transactions of the American Mathematical Society,2005,357(1):89-128.
[5] TAKAHASHI W.A convexity in metric space and nonexpansive mappings[J].Kodai Mathematical Seminar Reports,1970,22(2):142-149.
[6] SHIMIZU T,AKAHASHI W.Fixed points of multivalued mappings in certain convex metric spaces[J].Topological Methods in Nonlinear Analysis,1996,8(1):197-203 .
[7] KABG S M,DASHPUTRE S,MALAGAR B L,et al.On the convergence of fixed points for Lipschitz type mappings in hyperbolic spaces[J].Fixed Point Theory and Applications,2014(1):229-231.
[8] LIU Q H.Iterative sequences for asymptotically quasi-nonexpansive mappings with error member[J].Journal of Mathematical Analysis and Applications,2001,259(1):18-24.
[9] SINGH SALUJA G.Convergence results for nearly asymptotically quasi-nonexpansive mappings in hyperbolic spaces[J].Gulf Journal of Mathematics,2017,5(3):91-107.
[10] 刘涌泉,黄星,饶永生.渐近拟非扩张映射的新型混合迭代算法及应用[J].哈尔滨师范大学自然科学学报,2018,34(1):15-20.
[11] 刘涌泉,杨旭,谢涛.渐近拟非扩张映射三步混合迭代算法的收敛性[J].井冈山大学学报(自然科学版),2018,39(5):7-12.
[12] SHARMA A.Approximating fixed points of nearly asymptotically nonexpansive mappings in CAT()spaces[J].Arab Journal of Mathematical Sciences,2018,24 (2):166-181.
Strong convergence for mixed type iteration of asymptotically quasi-nonexpansive mappings and nearly asymptotically quasi-nonexpansive mappings in hyperbolic spaces
LIU Yongquan1,2,LI Gang1,2,FANG Da1,2
(1. School of Primary Education,Ji′an Vocational and Technical College,Ji′an 343000,China;2. School of Teacher Education,Ji′an Preschool Teachers College,Ji′an 343000,China)
A new SP-iterative scheme for three asymptotically quasi-nonexpansive mappings and three nearly asymptotically quasi-nonexpansive mappings is introduced in hyperbolic spaces.The strong convergence theorems of three asymptotically quasi-nonexpansive mappings and three nearly asymptotically quasi-nonexpansive mappings are established under the new SP-iterative scheme.The results improve and extend the results of some relevant literature.
hyperbolic spaces;asymptotically quasi-nonexpansive mappings;nearly asymptotically quasi-nonexpansive mappings;SP-iterative scheme;common fixed point
1007-9831(2023)12-0009-06
O177.91
A
10.3969/j.issn.1007-9831.2023.12.002
2023-05-02
江西省教育厅科技计划项目(GJJ219409)
刘涌泉(1987-),男,江西高安人,讲师,硕士,从事非线性泛函分析研究.E-mail:z1597966abc@163.com