收稿日期:2024-01-13" " "第一作者简介:周超泽(1999―),男,硕士研究生,z15257251689@163.com;黄义文(1994-),男,研究实习员,18838916683@163.com。 #同等贡献。*通信作者:彭军,jun_peng@126.com;匡猛,kuangmeng007@163.com
基金项目:农业生物育种重大项目(2022ZD04019);国家现代农业产业技术体系(CARS-15-26);三亚崖州湾科技城科技专项(SCKJ-JYRC-2022-62)
摘要:棉花是重要的经济作物之一,在国民经济中占据重要地位。棉籽作为棉花生产中的重要产物,富含优质的蛋白质和油脂。充分挖掘利用棉籽中的蛋白和油分资源,能够在一定程度上缓解粮食安全问题。随着棉籽的综合利用价值不断被重视,有关棉籽营养品质遗传改良等的研究取得了长足的进步。本综述介绍了棉籽蛋白与油分含量鉴定的常用方法,概述了这些性状的遗传特性和影响因素;对棉籽蛋白、油分含量与纤维产量及品质性状之间的相关关系进行分析;收集整理已报道的335个油分含量数量性状位点(quantitative trait locus, QTL)和196个蛋白含量QTL构建了一致性物理图谱;对棉籽蛋白与油分相关合成途径和调控基因等方面的研究进展进行总结,并展望了棉籽营养品质生物育种未来的研究方向,旨在为棉籽营养品质的遗传改良提供参考。
关键词:棉籽蛋白;棉籽油分;QTL;物理图谱;合成途径;调控基因
Research progress on the genetic basis and QTL mapping of cottonseed protein and oil content
Zhou Chaoze1#, Huang Yiwen1, 2#, Zhou Dayun1, Huang Longyu1, 2, Wu Yuzhen1, Fu Shouyang1, 2, Peng Jun1, 2*, Kuang Meng1, 2*
(1. Institute of Cotton Research of Chinese Academy of Agricultural Sciences/National key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan 455000, China; 2. Sanya National Nanfan Research Institute of Chinese Academy of Agricultural Sciences, Sanya, Hainan 572024, China)
Abstract: Cotton is an important economic crop in the world, occupying a significant position in the national economy. Cottonseed, as the main product of cotton production, is rich in high-quality protein and oil. Against the backdrop of the current shortage of protein and oil resources, fully exploring and utilizing the protein and oil resources in cottonseed can ensure the safety of edible oil supply and alleviate food security issues. With the increasing attention paid to the comprehensive utilization of cottonseed, the research on the genetic improvement of cottonseed nutritional quality is gradually increasing. This review provides an overview of the common methods for determining cottonseed protein and oil content, and summarizes the genetic characteristics and influencing factors of these traits. The relationships among cottonseed protein and oil content and fiber yield as well as the fiber quality traits were analyzed. A total of 335 quantitative trait locus (QTL) for oil content and 196 QTL for protein content were collected to construct a consistent physical map. In addition, the research progress of cottonseed protein and oil related synthetic pathways and regulatory genes were introduced, and the future research directions of biological breeding for cottonseed nutritional quality was prospected, which can provide a reference for the genetic improvement of nutritional quality in cottonseed.
Keywords: cottonseed protein; cottonseed oil; QTL; physical map; biosynthetic pathway; regulatory genes
棉花(Gossypium spp.)是重要的经济作物之一,长期以来主要用于棉纤维的生产,为纺织等工业提供大量的天然原料。随着人口增加和人类生活水平的提高,对蛋白质和油脂资源的需求不断增加[1-2],急需拓宽蛋白质和油脂来源。棉花是世界上第5大油料作物[3]和第2大植物蛋白来源,棉籽中富含优质的油脂和蛋白质[4]。棉籽中的油分含量约占棉籽仁质量的30%[5],蛋白含量约占棉籽仁质量的40%[6]。棉籽油中含有丰富的不饱和脂肪酸(50%以上的亚油酸)、维生素E及较低含量的胆固醇,长期食用有利于人体心脑血管健康[7]。而且,棉籽油不会掩盖食物天然的味道,是食品业中油炸和精细烹饪用油的理想选择[8]。由于其合适长度的碳链,棉籽油还被视为1种理想的生物质燃料原料[9]。棉籽蛋白中的氨基酸组成良好,包含人体必需的8种氨基酸,同时具有抗氧化、降血压、提高免疫力等功能[10]。加工后的棉籽浓缩蛋白含量在50%~70%[11],可部分替代鱼粉及大豆蛋白,在饲用行业有极大的利用空间[12]。在我国食用植物油自给率仅约30%,且饲用蛋白大量紧缺、全球粮油价格持续上涨的背景下,加强高油、高蛋白性状的遗传改良和棉花新品种培育,提高棉籽蛋白与油分的综合利用率,可在一定程度上补足国内蛋白和油分资源的供需缺口,保障国家粮食安全。
然而,不同于一般的农艺性状,棉籽蛋白与油分含量属于棉花子代性状,受多遗传体系的影响[13],又是由多基因控制的数量性状,易受环境因素的影响。并且蛋白油分含量与纤维性状之间存在相关关系[14]。这些都给棉籽蛋白与油分含量相关基因的挖掘和遗传机理研究带来了严峻的挑战。因此,本综述整理了近年来与棉籽蛋白和油分含量相关的研究报道,总结了棉籽蛋白与油分含量的鉴定方法、遗传基础、影响因素、数量性状位点(quantitative trait locus, QTL)定位和基因挖掘等方面取得的研究进展,并对未来的遗传改良研究方向进行展望,以期为棉籽营养品质相关研究提供参考。
1 棉籽蛋白与油分含量的测定方法
精确、快速、高效的棉籽蛋白与油分含量测定技术是种质发掘、遗传分析、QTL定位和功能基因挖掘的基础。棉籽蛋白与油分含量的测定方法有多种,测定油分含量的方法有索氏抽提法[15]、气相色谱法[16]、核磁共振法[17]以及近红外光谱法[18]等;测定蛋白含量的方法有凯氏定氮法[19]、氨基酸分析法[20]、近红外光谱法等。这些方法可以分为2类,即真值法和预测法。
真值法主要通过直接测定样品中的油分或蛋白含量来获得较为精确的数值。索氏抽提法利用半连续溶剂萃取,采用低沸点的有机溶剂回流抽提粗脂肪,以样品与残渣的质量差计算粗脂肪含量。凯氏定氮法通过将有机氮转化为氨态氮再与硫酸结合生成硫酸铵,测出有机物中含氮量后进行换算,从而获得样品粗蛋白含量。这2种方法测定结果准确,重复性好,是主流的蛋白与油分含量的检测方法。氨基酸分析法利用氨基酸分析仪进行茚三酮柱后衍生反应,鉴定氨基酸残基的绝对含量,将各氨基酸残基的总和作为蛋白质含量[21]。气相色谱法通过测定脂肪酸的绝对含量再换算成油分含量,可对微量样品进行分析。这2种方法都具有检测灵敏、精确度高等优点。上述4种方法都是通过测定样品的蛋白或油分含量的真实值,具有较高的准确性。然而这些方法操作复杂,检测效率相对较低,价格昂贵,并且需要破坏种子的完整性,可用于小批量种子的鉴定,不适于育种后代材料的批量选择。
预测法是通过建立模型对样品的油分或蛋白含量进行估算预测。核磁共振法主要利用测定原子核在磁场中及电磁波照射下的共振信号,作出核磁共振图谱以分析鉴定化合物的组成和结构[22]。近红外光谱法利用待测样品中C-H、N-H、O-H、C-C等化学键在近红外光下的振动并以漫反射形式获得吸收光谱,结合化学计量学等方法建立光谱与化学成分含量的线性或非线性模型,以此获得待测成分的含量。核磁共振法和近红外光谱法都是无损预测法,不同的是近红外光谱法可同时测定多个参数,而核磁共振法单次只能获得1种参数。预测法具有检测效率高、无需破损种子、操作简便、安全环保并且不需要复杂的前期处理等优点,适用于大批量种子的表型鉴定工作。但其测定结果的准确度依赖于定标模型,且易受到种子含水量、样品均匀性等因素的影响。
在开展相关测定工作时,可根据实验目的、待测样品数量、材料特性以及实验需求等选择合适的检测方法,也可采取多种方法相互验证,以提高表型鉴定的准确率。
2 棉籽蛋白与油分含量的遗传基础及影响因素
2.1 棉籽蛋白与油分含量的遗传分化和遗传效应
棉籽蛋白含量和油分含量在种间和种内均存在较大的变异[23],这为棉花油分和蛋白含量的遗传改良和基因挖掘提供了丰富的种质资源。Hinze等[24]分析了33个棉种共2 256份样本的蛋白和油分含量,发现在所有供试棉种中,四倍体棉种具有最高的油分含量和次高的蛋白含量,而二倍体棉种的蛋白含量和油分含量普遍较低,栽培种的油分含量(22.7%)略高于野生种(20.9%),且陆地棉(G. hirsutum)和海岛棉(G. barbadense)的蛋白含量和油分含量均具有广泛的变异范围。在栽培种中,海岛棉的棉籽平均油分含量显著高于陆地棉,草棉(G. herbaceum)和亚洲棉(G. arboreum)的棉籽含油量相对较低[25]。刘明等[26]对300份海岛棉的油分与蛋白含量进行研究,结果表明蛋白含量和油分含量的变异范围分别为25.92%~35.89%和35.79%~48.68%。Hu等[27]对318份陆地棉的蛋白与油分含量进行测定,发现蛋白含量和油分含量的变异范围分别为34.04%~45.68%和27.19%~39.89%。
除广泛的表型变异外,棉籽蛋白与油分含量性状均表现出较好的遗传特性。刘小芳等[28]通过对陆地棉重组自交系群体进行棉籽油分与蛋白含量的表型鉴定发现,蛋白含量和油分含量均存在超亲遗传现象,其中油分含量存在超低亲本的超亲分离,蛋白含量表现为超高亲本的超亲分离。Singh等[29]利用8个陆地棉品种进行双列杂交,发现加性效应和非加性效应均对油分含量起重要作用。Du等[30]对316份棉花种质进行分析发现,蛋白含量和油分含量的广义遗传力均在93%以上。以上结果表明棉籽蛋白含量和油分含量均存在丰富的遗传变异且具有较高的遗传稳定性,这为棉籽营养品质改良奠定了坚实的遗传基础。
2.2 棉籽蛋白与油分含量的影响因素
除遗传因素外,水分、温度、土壤养分等环境因素也会对棉籽蛋白与油分含量产生影响[31-32]。一定程度的干旱胁迫会降低油分合成途径中的一些关键酶活性并提高蛋白合成相关酶的活性,使得碳源更多地流向蛋白合成途径[33],导致棉籽中油分含量降低、蛋白含量增加[6]。低温会阻碍棉籽中干物质的积累,导致籽指降低,从而降低棉籽油分含量[34]。Gong等[34]将日照时间、降水量、经度、纬度等10个环境因素分为地理和气象因子,并进行去趋势对应分析(detrended correspondence analysis, DCA),结果表明日平均降水量、累计降水量是影响油分含量的主要因素,分别解释棉籽油分含量总变异的19.6%和18.2%。棉籽中蛋白与油分的积累对土壤中的营养元素含量较为敏感[35]。Rochester等[36]研究表明施用氮肥会增加棉籽蛋白含量,降低油分含量。在土壤中添加适量钾元素可以显著提高棉花的铃数、籽棉产量、籽指以及棉籽油分含量[37]。棉籽中的蛋白与油分在一定的发育阶段内迅速积累。Yang等[38]研究发现在开花后17~24 d,大量游离氨基酸在种子内部积累,开花后24~38 d游离氨基酸快速合成蛋白质,这2个时期对成熟棉籽的蛋白与油分含量有关键性影响。籽指与蛋白含量及油分含量之间有一定联系。Pahlacani等[39]研究表明棉籽质量与油分含量呈显著的正相关关系(相关系数为0.88),较重的种子中积累了更多的光合产物(碳),从而积累更多的油分;另一方面,用于棉花生长发育的氮是有限的,蛋白质在较大的种子中被“稀释”,含量占比降低[40]。棉籽蛋白与油分含量还受到环境与基因型互作(genotype × environment, G × E)的影响。Yuan等[31]在3个环境下对196份国内外陆地棉种质的油分与蛋白含量进行了测定,利用双向方差分析发现,蛋白与油分含量受到基因型、环境以及G × E的显著影响。其他研究中也证明了G × E显著影响蛋白与油分含量[14, 32, 41]。在先前的研究中,关于棉籽蛋白含量和油分含量之间的负相关关系已经得到了证实[24, 27],而这一现象在其他油料作物种子中也有类似的报道[42],因此,同时提高二者的含量仍然具有一定的挑战性。
3 棉籽蛋白和油分含量与纤维品质性状之间的关系
在棉籽蛋白与油分含量的遗传改良过程中,面临的1个主要挑战是如何在改良营养品质的同时不影响纤维主要品质性状。棉籽蛋白与油分存在于胚珠中,而纤维则是由胚珠表皮的单细胞突起的毛状体发育而来[43],棉籽蛋白、油分含量与纤维品质性状之间存在着一定关联性。Campbell等[14]对多个环境下的82份美国棉花种质的棉籽蛋白与油分含量、纤维产量和品质性状进行测定,结果表明棉籽蛋白含量与皮棉产量、衣分、马克隆值等性状呈正相关关系,而与籽指和纤维强度呈负相关关系;棉籽油分含量与皮棉产量、衣分等性状呈负相关关系,与籽指和纤维强度呈正相关关系。Hu等[27]对国内318份陆地棉进行分析,也得出相似的研究结果。蛋白、油分的含量和纤维发育之间可能涉及复杂的生化机制,当胚珠中的碳源流向纤维时会使种子油分含量下降[44]。Yang等[45]发现体外添加超长链脂肪酸可以促进棉纤维的伸长。研究人员利用全基因组关联分析(genome-wide association study, GWAS)发现,棉籽蛋白、油分含量与纤维品质性状存在共定位位点[27]。这为棉花营养品质和纤维品质的协同改良提供了理论支持。
4 棉籽蛋白与油分含量QTL定位和GWAS研究进展
QTL定位是作物分子育种和基因挖掘的基础[46]。随着棉籽营养品质性状不断被重视,研究人员利用连锁分析和关联分析等方法在不同的群体中挖掘出一些与棉籽蛋白和油分含量相关的QTL。笔者团队从33个研究中[27-28, 30-32, 47-74]收集整理了335个棉籽油分含量QTL、196个棉籽蛋白含量QTL以及关联位点标记信息(附表1)。这些研究中的定位群体包括海陆渐渗系、重组自交系、染色体片段代换系以及用于GWAS的自然群体。由于群体遗传背景、标记类型、定位软件和种植环境等的不同,研究结果之间存在较大差异。因此,整合不同的研究结果才能发现更多稳定、主效的QTL。本文利用文献报道的QTL和单核苷酸多态性(single nucleotide polymorphism, SNP)标记,通过与陆地棉遗传标准系TM-1基因组比对,明确QTL和关联位点的物理位置,构建了棉籽蛋白与油分含量相关位点的一致性物理图谱。由于侧翼标记未比对到同一染色体上、文献未提供标记序列信息等原因,该物理图谱共包含188个QTL和469个分子标记(图1~2)。油分含量和蛋白含量QTL分别有109个和79个。表型变异解释率(phenotypic variation explained, PVE)≥10%的棉籽蛋白含量主效QTL有25个,其中5个是稳定的主效QTL(qPC08.1、qPro2-c3-
2、qPC-A03-1、qPC-5和qPro1-c21-1),至少在2个环境中检测到。PVE≥10%的棉籽油分含量主效QTL有23个,其中3个是稳定的主效QTL(qOC-chr11-1、qOC-chr12-1和qOil4-c21-1),至少在2个环境中检测到。
陆地棉的26条染色体上均有相关QTL分布,A01(11个)、A09(10个)、A12(14个)、D01(17个)和D05(13个)这5条染色体上含有10个及以上的棉籽蛋白或油分含量相关的QTL,其中D01染色体上定位到的QTL最多,包含8个PVE≥10%的QTL,主要位于D01染色体的0.6~12.8 Mb和53.0~64.5 Mb区间内。A01染色体的4.1~6.5 Mb和A09染色体的65.7~74.2 Mb都包含了5个不同的QTL;A03染色体的65.3~73.2 Mb和D04染色体的4.2~7.2 Mb区间也有4个不同的QTL。还有一些蛋白含量和油分含量共定位的QTL。如Yu等[47]定位到A12染色体上的qPro1-c12-2和qOil2-c12-1(41.6~57.1 Mb)、D07染色体上的qOil2-c16-1和qPro1-
c16-1(13.3~26.8 Mb)、D08染色体上的qPro1-
c24-2和qOil2-c24-1(3.0~13.6 Mb);刘小芳等[28]和Yu等[47]定位到D05染色体上的qOil2-c19-1和qPro2-c19-1(12.2~46.3 Mb);秦利[48]定位到D13染色体上的qPC18-2和Liu等[49]定位到的qOil-18-1(5.6~7.8 Mb)。上述共定位的5对主效QTL对蛋白含量和油分含量表现出相反的加性效应值。这些区间很有可能存在调控棉籽蛋白与油分生物合成的关键基因。
5 棉籽中蛋白与油分的合成积累及调控基因挖掘研究进展
棉籽蛋白和油分的生物合成过程涉及多种酶的催化作用,这些酶的活性受到基因型以及环境条件等因素的影响,加大了棉籽蛋白与油分遗传改良研究的难度[75]。深入解析棉籽蛋白和油分的生物合成机制对于提升棉籽营养品质具有积极意义。随着基因组学的发展,棉籽蛋白与油分含量相关基因的挖掘鉴定和功能验证已经取得一些进展。研究人员利用基因工程技术过表达或沉默关键酶及转录因子的编码基因,实现对棉籽蛋白和油分含量的定向改良。本文对棉籽蛋白及油分合成途径中的关键酶和相关基因的功能进行简要介绍,并绘制了棉籽蛋白及油分的生物合成途径示意图(图3)。
5.1 油分与蛋白合成途径的关键节点
碳源分配是影响棉籽中蛋白和油分含量的关键因素[35]。磷酸烯醇式丙酮酸羧化酶(phosphoenolpyruvate carboxylase, PEPCase)和乙酰辅酶A羧化酶(acetyl coenzyme A carboxylase, ACCase)在调节碳源流入油分和蛋白质生物合成途径中发挥关键作用[76-77]。PEPCase是1种羧基裂解酶,可催化磷酸烯醇式丙酮酸(phosphoenolpyruvate, PEP)和HCO3-生成草酰乙酸(oxaloacetic acid, OAA),后者进入三羧酸循环(tricarboxylic acid cycle, TCA)提供蛋白质和油分生物合成所需的多种中间产物[78]。干涉PEPCase活性可影响蛋白与油分合成的底物分配,这解释了棉籽油分含量和蛋白含量之间的显著负相关关系。低活性的PEPCase利于促进更多的碳源流向油分合成途径。研究表明沉默GhPEPC1和GhPEPC2分别使棉籽油分含量增加16.7%和7.3%[77, 79]。
5.2 棉籽油分合成调控及相关基因挖掘研究进展
棉籽油主要以三酰甘油(triacylglycerol, TAG)的形式储存在种子中,TAG是甘油和三分子脂肪酸(fatty acid, FA)在多种酶的催化作用下形成的甘油酯,其生物合成途径由一系列功能基因调控[80]。TAG的生物合成主要涉及脂肪酸从头合成和TAG合成。每个阶段中相关基因所控制的酶活性发生变化均会影响合成运输和组装效率,最终影响种子的油分积累。
5.2.1 脂肪酸从头合成。丙酮酸脱氢酶复合体(pyruvate dehydrogenase complex, PDHC)催化丙酮酸合成乙酰辅酶A[81],后者经ACCase和β-酮脂酰酰基载体蛋白合酶(β-ketoacyl-acyl carrier protein synthase, KAS)等多种关键酶的催化作用形成酰基载体蛋白(acyl carrier protein, ACP)的脂肪酸合成前体。ACCase是脂肪酸生物合成途径的限速酶,过表达GhACCase基因能提高棉籽中的油分含量。Cui等[82]通过超表达ACCase编码基因,使棉籽含油量提高16.58%~21.92%。丙二酰辅酶A酰基载体蛋白丙二酰基转移酶(malonyl-coenzyme A acyl carrier protein malonyl transferase, MCAMT)催化丙二酰辅酶A(malonyl-
CoA)和ACP生成丙二酰辅酶ACP(malonyl-
ACP),在脂肪酸合成的酰基转移阶段起关键作用。在拟南芥中过表达AtMCAMT可提高种子的油脂含量[83]。KAS Ⅲ催化乙酰辅酶A和丙二酰ACP产生4:0-ACP,这是脂肪酸链延伸的第1步[84]。Du等[85]鉴定到1个能够控制脂肪酸合成的GaKASIII基因。脂肪酸的缩合、还原、脱水以及再还原过程涉及到多种关键酶的作用,其中包括KASⅠ、β-酮脂酰-ACP还原酶(β-ketoacyl-ACP-
reductase, KAR)、β-羟丁酰ACP脱水酶(β-hydroxyacyl-ACP-dehydrase, HAD)和烯脂酰-ACP还原酶(enoyl-ACP-reductase, ENR)。KASⅠ催化4:0-ACP到16:0-ACP的碳链延长。研究表明拟南芥AtKASⅠ缺失会导致种子中脂肪酸含量显著降低[86]。KASⅡ 催化16:0-ACP 到18:0-ACP 的生成[87]。Liu等[88]使用RNA干扰(RNA interference, RNAi)技术下调GhKASⅡ的表达,使棉籽中的棕榈酸(C16:0)积累量显著增加。过表达GhKAR和GhENR均能显著提高棉籽油分含量,分别比野生型材料提高10.2%~10.7%和10.2%~14.14%[89]。酰基ACP硫脂酶(fatty acyl-ACP-thioesterase, FAT)、乙酰辅酶A合成酶(acyl-CoA synthetase, ACS)、十八烷酰-ACP-去饱和酶(stearoyl-ACP-
desaturase, SAD)以及脂肪酸脱氢酶(fatty acid desaturase, FAD)可在一定程度上调控脂肪酸的组成。FAT催化脂肪酸合成的最后1步反应,决定合成游离脂肪酸的种类和碳链长度。沉默GhFATB使棉籽中油酸(C18:1)含量增加156.96%,降低棕榈酸(C16:0)和亚油酸(C18:2)含量[90]。ACS催化游离脂肪酸转化为酰基辅酶A,酰基辅酶A是脂肪酸降解和细胞脂质合成的关键中间体。研究发现GhACS1和GhACS2在棉花花药早期发育中发挥作用[91]。SAD是催化18:0-ACP转化为18:1-ACP的关键酶[92]。在棉花种子中下调GhSAD-1的表达显著增加了硬脂酸(C18:0)含量(从2%~3%提升到40%)[93]。FAD在植物中催化大部分脂肪酸的脱饱和反应[94]。沉默GhFAD2会显著提高棉籽中油酸的含量[95]。研究表明,GhFAD2-1控制大约80%的油酸转变为亚油酸[96-97],FAD2基因突变后产生高油酸种子[98-99]。
5.2.2 TAG合成阶段。甘油-3-磷酸酰基转移酶(glycerol-3-phosphate acyltransferase, GPAT)催化肯尼迪(Kennedy)途径的第1步反应,将FA从酰基辅酶A转移到甘油醛-3-磷酸(glyceraldehyde-3-phosphate, G-3-P)的sn-1羟基位,生成溶血磷脂酸[100]。溶血磷脂酸酰基转移酶(lysophosphatidic acid acyltransferase, LPAAT)可将FA链催化成3-磷酸甘油酸,进一步促进油分生成。Wang等[101]在4个栽培棉种中鉴定出40个LPAAT基因,其中在酵母中过表达At-Gh13LPAAT5使棕榈酸和油酸含量增加25%~31%,总TAG含量增加16%~29%。磷脂酸磷酸酶(phosphatidic acid phosphatase, PAP)催化磷脂酸(phosphatidic acid, PA)产生二酰甘油(diacylglycerol, DAG)。拟南芥双突变体pah1pah2植株中DAG的含量比野生型减少了15%[102]。二酰甘油酰基转移酶(diacylglycerol acyltransferase, DGAT)通过酯化DAG生成TAG,是TAG合成的限速酶[103]。在植物中已鉴定出至少5种不同类型的DGAT:DGAT1[104]、DGAT2[105-106]、WS/DGAT[107-108]、可溶性DGAT[109-110]和DacT[111]。Wu等[112]使用种子特异性启动来驱动DGAT1编码基因的表达,使转基因棉籽的油分含量增加到13.9%,明显高于野生型棉株(4.7%);刘正杰等[113]发现沉默棉花GhDGAT1基因导致种仁油分含量下降3.13%。
5.2.3 转录因子。除多种酶类外,一些转录因子在调控棉籽油分含量方面也发挥着重要作用,如WRINKLED 1(WRI1)[114]、Dof[115]、NF-YB6[116]以及DPBF2[9]等。
Dof蛋白是植物特异性转录因子家族,棉花GhDof1与大豆GmDof4同源。GmDof4通过直接结合启动子区的顺式作用元件来激活ACCase编码基因的转录,阻断碳源流入蛋白合成途径,从而提高转基因拟南芥种子中油分的含量[117]。Su等[118]发现过表达GhDof1基因可以增加棉籽油分含量。WRI基因家族是AP2/EREBP(APETALA2/乙烯响应元件结合蛋白)转录因子家族的1个分支[119]。GhWRI1参与种子发育过程中FA的生物合成,过表达GhWRI1会增加转基因拟南芥和陆地棉的种子油分含量和种子质量[114],GhWRI1还参与纤维发育过程,与纤维长度有关[120]。NF-Y是真核生物中普遍存在的异源三聚体转录因子家族,由3个独立的亚基NF-YA、NF-YB和NF-YC形成转录因子复合物,能够特异性结合启动子区的位点,调控靶标基因表达[121]。NF-YB6在陆地棉棉籽油分快速积累期起关键作用,其表达水平在此阶段显著增加,在花后20" d和30 d该基因的相对表达量比花后10 d分别增加了约340倍和380倍[116]。
5.3 棉籽蛋白含量的调控
蛋白质合成的前体物质是氨基酸,氨基酸的生物合成影响蛋白质的含量和组成。谷氨酸是高等植物氨基酸代谢的中心物质,谷氨酸的氨基可以在多种转氨酶的作用下生成不同的氨基酸[122]。如天冬氨酸转氨酶(aspartate aminotransferase, AST)介导谷氨酸和草酰乙酸之间的可逆转氨,生成天冬氨酸和α-酮戊二酸[123];丙氨酸转氨酶(alanine aminotransferase, ALT)催化丙酮酸和谷氨酸可逆转化为丙氨酸和α-酮戊二酸[124]。谷氨酸脱氢酶(glutamate dehydrogenase, GDH)催化谷氨酸与α-酮戊二酸之间的可逆反应,是连接碳代谢和氮代谢的重要酶类。种子中的氮主要来源于根系吸收以及之后的转移过程,硝酸盐还原酶(nitrate reductase, NR)将外源硝酸盐还原为亚硝酸盐[125],亚硝酸盐还原酶(nitrite reductase, NIR)将亚硝酸盐还原为NH4+进入植物体内。谷氨酰胺合成酶(glutamine synthetase, GS)和谷氨酸合成酶(glutamate synthase, GOGAT)是将NH4+转化成植物体内氨基酸的关键酶类,其活性可在一定程度上表征蛋白质合成的强度[126-127]。He等[128]指出GhGS基因与种子胚胎发育相关。Iqbal等[129]研究发现GhASN(编码天冬酰胺合成酶)的较高水平表达与游离氨基酸的积累和蛋白质合成有关。
除多种关键酶类外,种子蛋白质的合成和积累受多种转录因子的协同调控。目前关于调控棉花种子蛋白合成的转录因子相关的研究报道较少,如GhERF105[130]、HY5[131]等。已报道的相关转录因子主要集中于大豆和拟南芥,主要有FUS3[132]、LEC2[133]、ABI3[134]、ROM1[135]、MYC2、MYC3和
MYC4[136]等。
6 讨论与展望
长期以来,棉纤维被认为是棉花的主产品,但仅占棉花收获籽棉产量的35.7%;棉籽被视为棉花的副产品,却占收获产量的64.3%[137]。实际上,棉籽中含有相当丰富且优质的营养物质,是重要的蛋白和油脂来源。以往棉籽的油用和饲用价值未得到正确认识,相关遗传改良研究进展较为滞后。因此,加强棉籽的综合开发利用,开展棉籽营养品质生物育种,可为我国油料和饲用蛋白安全提供重要保障。
关于棉籽营养品质生物育种未来的研究方向,笔者提出以下几点建议:(1)加强高蛋白、高油分优异棉花种质的鉴定筛选。目前,有关棉籽营养品质优异种质资源鉴定的研究报道还不多,可结合棉籽营养品质高通量鉴定方法,加强对野生棉和栽培棉种质的大规模鉴定筛选,发掘高蛋白、高油分种质资源,为营养品质改良奠定资源基础。(2)加强棉籽蛋白及油分相关调控基因的挖掘。棉籽蛋白和油分含量的QTL研究仍处于初定位阶段,QTL定位区间较大,缺少主效位点和关键基因。棉花基因组测序以及多组学技术的快速发展,为棉籽营养品质重要基因的挖掘提供了新的平台和手段。同时本文对已收集到的相关QTL进行整合,构建了棉籽蛋白油分含量的一致性物理图谱,为相关候选基因挖掘提供可靠信息。(3)推进棉籽营养品质生物育种。随着国家对转基因棉花品种的进一步放开,通过基因工程手段进行棉籽营养品质改良成为1种可靠、有效的手段。近年来基因编辑技术在大豆[138]、玉米[139]等其他作物中取得了显著成果,这为棉籽营养品质改良提供了经验和方法。(4)探究棉籽营养品质与纤维品质协同改良的可能性。纤维和棉籽是棉花生产的两大产物,且都与胚珠发育密切相关,如何做到两者协同改良是1个关键的问题,应加强两者之间营养物质分配和调控通路的研究,为棉花“油纤饲”(油料、纤维、饲料)兼用型种质资源创制以及新品种培育奠定基础。
附表:
详见本刊网站(http://journal.cricaas.com.cn/)本文网页版。
附表1 棉籽蛋白与油分含量的QTL位点和分子标记
Table S1 QTL and molecular markers for the content of protein and oil in cottonseed
参考文献:
[1] Wu M, Pei W F, Wedegaertner T, et al. Genetics, breeding and genetic engineering to improve cottonseed oil and protein: a review[J/OL]. Frontiers in Plant Science, 2022, 13: 864850[2024-
01-02]. https://doi.org/10.3389/fpls.2022.864850.
[2] Wang W J, Li J, Liu J C, et al. Utilising cottonseed in animal feeding: a dialectical perspective[J/OL]. Modern Agriculture, 2023, 1: 112-121[2024-01-02]. https://doi.org/10.1002/moda.16.
[3] Zhang H B, Li Y, Wang B, et al. Recent advances in cotton genomics[J/OL]. International Journal of Plant Genomics, 2008: 742304[2024-01-02]. https://www.hindawi.com/journals/ijpg/
2008/742304/.
[4] Hu W, Dai Z, Yang J S, et al. The variability of cottonseed yield under different potassium levels is associated with the changed oil metabolism in embryo[J/OL]. Field Crops Research, 2018, 224: 80-90[2024-01-02]. https://doi.org/10.1016/j.fcr.2018.05.007.
[5] 田博宇, 黄义文, 周大云, 等. 不同形态棉籽中油分含量快速无损近红外检测方法的建立[J/OL]. 棉花学报, 2023, 35(4): 325-
333[2024-01-02]. https://doi.org/10.11963/cs20230005.
Tian Boyu, Huang Yiwen, Zhou Dayun, et al. Development of a rapid non-destructive method for the detection of cottonseed oil content by near-infrared spectroscopy[J/OL]. Cotton Science, 2023, 35(4): 325-333[2024-01-02]. https://doi.org/10.11963/
cs20230005.
[6] 杨硕, 黄义文, 周大云, 等. 基于近红外光谱技术建立棉籽蛋白质含量快速无损测定方法[J/OL]. 中国粮油学报, 2023[2024-
01-02]. https://link.cnki.net/doi/10.20048/j.cnki.issn.1003-0174.
000631.
Yang Shuo, Huang Yiwen, Zhou Dayun, et al. Establishment of a rapid and non-destructive determination of protein content in cottonseed by near infrared spectroscopy[J/OL]. Journal of the Chinese Cereals and Oils Association, 2023[2024-01-02]. https://
link.cnki.net/doi/10.20048/j.cnki.issn.1003-0174.000631.
[7] Konuskan D B, Yilmaztekin M, Mehmet M, et al. Physico-
chemical characteristic and fatty acids compositions of cottonseed oils[J]. Journal of Agricultural Sciences, 2017, 23(2): 253-259.
[8] Qayyum A, Murtaza N, Azhar F M, et al. Biodiversity and nature of gene action for oil and protein contents in Gossypium hirsutum L. estimated by SSR markers[J/OL]. Journal of Food, Agriculture and Environment, 2009, 7(2): 590-593[2024-01-02]. https://www.researchgate.net/publication/264044318.
[9] Zhu D, Le Y, Zhang R T, et al. A global survey of the gene network and key genes for oil accumulation in cultivated tetraploid cottons[J/OL]. Plant Biotechnology Journal, 2021, 19(6): 1170-1182[2024-01-02]. https://doi.org/10.1111/pbi.13538.
[10] Gao D, Cao Y, Li H. Antioxidant activity of peptide fractions derived from cottonseed protein hydrolysate[J/OL]. Journal of the Science of Food and Agriculture, 2010, 90(11): 1855-1860[2024-01-02]. https://doi.org/10.1002/jsfa.4024.
[11] 薛敏. 棉籽浓缩蛋白加工工艺及其在水产饲料中营养价值[J/OL]. 饲料工业, 2021, 42(12): 1-5[2024-01-02]. https://doi.org/10.13302/j.cnki.fi.2021.12.001.
Xue Min. Processing of cottonseed protein concentrated and its nutrient values in aquatic feed[J/OL]. Feed Industry Magazine, 2021, 42(12): 1-5[2024-01-02]. https://doi.org/10.13302/j.cnki.fi.2021.12.001.
[12] Zhang Q L, Liang H L, Xu P, et al. Effects of enzymatic cottonseed protein concentrate as a feed protein source on the growth, plasma parameters, liver antioxidant capacity and immune status of largemouth bass (Micropterus salmoides)[J/OL]. Metabolites, 2022, 12(12): 1233[2024-01-02]. https://doi.org/10.3390/
metabo12121233.
[13] Ye Z H, Lu Z Z, Zhu J. Genetic analysis for developmental behavior of some seed quality traits in upland cotton (Gossypum hirsutum L.) [J/OL]. Euphytica, 2003, 129: 183-191[2024-
01-02]. https://doi.org/10.1023/A:1021974901501.
[14] Campbell B T, Chapman K D, Sturtevant D, et al. Genetic ana-
lysis of cottonseed protein and oil in a diverse cotton germplasm[J/OL]. Crop Science, 2016, 56(5): 2457-2464[2024-01-02]. https://doi.org/10.2135/cropsci2015.12.0742.
[15] 全国粮油标准化技术委员会. 植物油料 含油量测定: GB/T 14488.1-2008[S]. 北京: 中国标准出版社, 2008.
National Grain and oil Standardization Technical Committee. Oilseeds-determination of oil content: GB/T 14488.1-2008[S]. Beijing: Standards Press of China, 2008.
[16]" "ezanka T, Mare?觢 P. Determination of plant triacylglycerols using capillary gas chromatography, high-performance liquid chromatography and mass spectrometry[J/OL]. Journal of Chromatography A, 1991, 542: 145-159[2024-01-02]. https://
doi.org/10.1016/S0021-9673(01)88755-0.
[17] 李浩川, 曲彦志, 杨继伟, 等. 基于核磁共振的玉米不同籽粒类型单粒质量和含油率分析[J/OL]. 农业工程学报, 2018, 34(20): 183-188[2024-01-02]. https://doi.org/10.11975/j.issn.1002-
6819.2018.20.023.
Li Haochuan, Qu Yanzhi, Yang Jiwei, et al. Analysis on single kernel weight and oil content of different grain types in maize based on NMR[J/OL]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(20): 183-188[2024-01-02]. https://doi.org/10.11975/j.issn.1002-6819.2018.20.023.
[18] 原姣姣, 王成章, 陈虹霞. 近红外光谱技术及其在植物油品质分析中的应用[J]. 生物质化学工程, 2010, 44(6): 59-65.
Yuan Jiaojiao, Wang Chengzhang, Chen Hongxia. Near infrared spectroscopy technology and analysis in quality traits of vegetable oil[J]. Biomass Chemical Engineering, 2010, 44(6): 59-65.
[19] McKenzie H A, Wallace H S. The Kjeldahl determination of nitrogen: a critical study of digestion conditions-temperature, catalyst, and oxidizing agent[J/OL]. Australian Journal of Chemistry, 1954, 7(1): 55-70[2024-01-02]. https://doi.org/10.1071/CH9540055.
[20] Rutherfurd S M, Gilani G S. Amino acid analysis[J/OL]. Current Protocols in Protein Science, 2009, 58(1): 11.9.1-11.9. 37[2024-
01-02]. https://doi.org/10.1002/0471140864.ps1109s58.
[21] M?覸hre H K, Dalheim L, Edvinsen G K, et al. Protein determination-method matters[J/OL]. Foods, 2018, 7(1): 5[2024-01-
02]. https://doi.org/10.3390/foods7010005.
[22] Diehl B. Principles in NMR spectroscopy[M]. Amsterdam: Elsevier, 2008: 1-41.
[23] 刘正杰, 郭宝生, 张园, 等. 棉籽油含量及成分研究与改良[J/OL]. 分子植物育种, 2012, 10(6): 1038-1048[2024-01-02]. https://doi.org/10.5376/mpb.cn.2012.10.0006.
Liu Zhengjie, Guo Baosheng, Zhang Yuan, et al. Research and improvement on the oil content and composition of cottonseed[J/OL]. Molecular Plant Breeding, 2012, 10(6): 1038-1048[2024-
01-02]. https://doi.org/10.5376/mpb.cn.2012.10.0006.
[24] Hinze L L, Horn P J, Kothari N, et al. Nondestructive measurements of cottonseed nutritional trait diversity in the US national cotton germplasm collection[J/OL]. Crop Science, 2015, 55(2): 770-782[2024-01-02]. https://doi.org/10.2135/cropsci2014.04.
0318.
[25] Sharif I, Farooq J, Chohan S M, et al. Strategies to enhance cottonseed oil contents and reshape fatty acid profile employing different breeding and genetic engineering approaches[J/OL]. Journal of Integrative Agriculture, 2019, 18(10): 2205-2218[2024-01-02]. https://doi.org/10.1016/S2095-3119(18)62139-2.
[26] 刘明,范君华,由宝昌, 等. 海岛棉棉仁蛋白质和脂肪含量分析[J]. 作物品种资源, 1994(4): 25-28.
Liu Ming, Fan Junhua, You Baochang, et al. Analysis of protein and fat content in shelled seed of sea-island cotton (Gossypium barbadense L.)[J]. Crop Germplasm Resources, 1994(4): 25-28.
[27] Hu Y, Han Z G, Shen W J, et al. Identification of candidate genes in cotton associated with specific seed traits and their initial functional characterization in Arabidopsis[J/OL]. The Plant Journal, 2022, 112(3): 800-811[2024-01-02]. https://doi.org/10.1111/tpj.15982.
[28] 刘小芳, 李俊文, 余学科, 等. 利用重组自交系进行陆地棉(Gossypium hirsutum L.)棉籽油分含量和蛋白质含量的QTL定位[J/OL]. 分子植物育种, 2013, 11(5): 520-528[2024-01-02]. https://doi.org/10.3969/mpb.011.000520.
Liu Xiaofang, Li Junwen, Yu Xueke, et al. Identification of QTL for cottonseed oil and protein content in upland cotton (Gossypium hirsutum L.) based on a RIL population[J/OL]. Molecular Plant Breeding, 2013, 11(5): 520-528[2024-01-02]. https://doi.org/ 10.3969/mpb.011.000520.
[29] Singh S, Singh V V, Choudhary A D. Combining ability estimates for oil content, yield components and fibre quality traits in cotton (G. hirsutum) using an 8 × 8 diallel mating design[J]. Tropical and Subtropical Agroecosystems, 2010, 12(1): 161-
166.
[30] Du X M, Liu S Y, Sun J L, et al. Dissection of complicate genetic architecture and breeding perspective of cottonseed traits by genome-wide association study[J/OL]. BMC Genomics, 2018, 19(1): 1-17[2024-01-02]. https://doi.org/10.1186/s12864-
018-4837-0.
[31] Yuan Y C, Wang X L, Wang L Y, et al. Genome-wide association study identifies candidate genes related to seed oil composition and protein content in Gossypium hirsutum L.[J/OL]. Frontiers in Plant Science, 2018, 9: 1359[2024-01-02]. https://
doi.org/10.3389/fpls.2018.01359.
[32] Ma J J, Liu J, Pei W F, et al. Genome-wide association study of the oil content in upland cotton (Gossypium hirsutum L.) and identification of GhPRXR1, a candidate gene for a stable QTL qOC-Dt5-1[J/OL]. Plant Science, 2019, 286: 89-97[2024-01-
02]. https://doi.org/10.1016/j.plantsci.2019.05.019.
[33] Li Y X, Hu W, Setter T L, et al. Soil drought decreases oil synthesis and increases protein synthesis in cottonseed kernel during the flowering and boll formation of cotton[J/OL]. Environmental and Experimental Botany, 2022, 201: 104964[2024-
01-02]. https://doi.org/10.1016/j.envexpbot.2022.104964.
[34] Gong J W, Kong D P, Liu C W, et al. Multi-environment evalua-
tions across ecological regions reveal that the kernel oil content of cottonseed is equally determined by genotype and environment[J/OL]. Journal of Agricultural and Food Chemistry, 2022, 70(8): 2529-2544[2024-01-02]. https://pubs.acs.org/doi/
10.1021/acs.jafc.1c07082.
[35] Yang H, Zhang X, Chen B, et al. Integrated management strategies increase cottonseed, oil and protein production: the key role of carbohydrate metabolism[J/OL]. Frontiers in Plant Science, 2017, 8: 48[2024-01-02]. https://doi.org/10.3389/
fpls.2017.00048.
[36] Rochester I J, Constable G A. Nitrogen-fertiliser application effects on cotton lint percentage, seed size, and seed oil and protein concentrations[J/OL]. Crop and Pasture Science, 2020, 71(9): 831-836[2024-01-02]. https://doi.org/10.1071/CP20288.
[37] Hu W, Dai Z, Yang J S, et al. Cultivar sensitivity of cotton seed yield to potassium availability is associated with differences in carbohydrate metabolism in the developing embryo[J/OL]. Field Crops Research, 2017, 214: 301-309[2024-01-02]. https://
doi.org/10.1016/j.fcr.2017.09.022.
[38] Yang H K, Meng Y L, Chen B L, et al. How integrated management strategies promote protein quality of cotton embryos: high levels of soil available N, N assimilation and protein accumulation rate[J/OL]. Frontiers in Plant Science, 2016, 7: 1118[2024-
01-02]. https://doi.org/10.3389/fpls.2016.01118.
[39] Pahlacani M, Miri A, Kazemi G. Response of oil and protein content to seed size in cotton (Gossypium hirsutum L., cv. Sahel) [J/OL]. Plant Breeding and Seed Science, 2009, 59: 53-
64[2024-01-02]. https://doi.org/10.2478/v10129-009-0004-8.
[40] Pettigrew W T, Dowd M K. Interactions between irrigation regimes and varieties result in altered cottonseed composition[J]. Journal of Cotton Science, 2012, 16(1): 42-52.
[41] 李佳乐, 赵茹冰, 陈进红, 等. 基因型和环境对陆地棉棉籽中主要成分含量影响[J/OL]. 棉花学报, 2019, 31(6): 14[2024-
01-02]. https://doi.org/10.11963/1002-7807.ljlzsj.20191104.
Li Jiale, Zhao Rubing, Chen Jinhong, et al. Effects of genotype and environment on the main components in cottonseed of upland cotton[J/OL]. Cotton Science, 2019, 31(6): 14[2024-01-
02]. https://doi.org/10.11963/1002-7807.ljlzsj.20191104.
[42] Zhang H Y, Goettel W, Song Q J, et al. Selection of GmSWEET39 for oil and protein improvement in soybean[J/OL]. PLoS Genetics, 2020, 16(11): e1009114[2024-01-02]. https://
doi.org/10.1371/journal.pgen.1009114.
[43] Han L B, Li Y B, Wang H Y, et al. The dual functions of WLIM1a in cell elongation and secondary wall formation in developing cotton fibers[J/OL]. The Plant Cell, 2013, 25(11): 4421-4438[2024-01-02]. https://doi.org/10.1105/tpc.113.116970.
[44] Chapman K D, Neogi P B, Hake K D, et al. Reduced oil accumulation in cottonseeds transformed with a Brassica nonfunctional allele of a delta-12 fatty acid desaturase (FAD2) [J/OL]. Crop Science, 2008, 48(4): 1470-1481[2024-01-02]. https://doi.org/10.2135/cropsci2007.11.0618.
[45] Yang Z R, Liu Z, Ge X Y, et al. Brassinosteroids regulate cotton fiber elongation by modulating very-long-chain fatty acid biosynthesis[J/OL]. The Plant Cell, 2023, 35(6): 2114-2131[2024-01-02]. https://doi.org/10.1093/plcell/koad060.
[46] Kushanov F N, Turaev O S, Ernazarova D K, et al. Genetic diversity, QTL mapping, and marker-assisted selection techno-
logy in cotton (Gossypium spp.)[J/OL]. Frontier in Plant Science, 2021, 12: 779386. https://doi.org/10.3389/fpls.2021.779386.
[47] Yu J W, Yu S X, Fan S L, et al. Mapping quantitative trait loci for cottonseed oil, protein and gossypol content in a Gossypium hirsutum × Gossypium barbadense backcross inbred line population[J/OL]. Euphytica, 2012, 187(2): 191-201[2024-01-02]. https://doi.org/10.1007/s10681-012-0630-3.
[48] 秦利. 陆地棉种子品质性状遗传及其QTL定位研究[D]. 杭州: 浙江大学, 2009.
Qin Li. Inheritance of seed quality traits and their QTL mapping in upland cotton (G. hirsutum L.)[D]. Hangzhou: Zhejiang University, 2009.
[49] Liu H Y, Zhang L, Mei L, et al. qOil-3, a major QTL identification for oil content in cottonseed across genomes and its candidate gene analysis[J/OL]. Industrial Crops and Products, 2020, 145: 112070. https://doi.org/10.1016/j.indcrop.2019.112070.
[50] Song X L, Zhang T Z. Identification of quantitative trait loci controlling seed physical and nutrient traits in cotton[J/OL]. Seed Science Research, 2007, 17(4): 243-251[2024-01-02]. https://doi.org/10.1017/S0960258507834957.
[51] 刘大军. 陆地棉SRAP图谱构建与种子物理、营养品质性状QTL定位[D]. 重庆: 西南大学, 2010.
Liu Dajun. Construction of SRAP genetic map and QTL mapping of physical and nutrional quality traits in upoland cotton (Gossypium hirsutum L.) [D]. Chongqing: Southwest University, 2010.
[52] An C, Jenkins J N, Wu J, et al. Use of fiber and fuzz mutants to detect QTL for yield components, seed, and fiber traits of upland cotton[J/OL]. Euphytica, 2010, 172: 21-34[2024-01-
02]. https://doi.org/10.1007/s10681-009-0009-2.
[53] Liu H Y, Quampah A, Chen J H, et al. QTL analysis for gossypol and protein contents in upland cottonseeds with two different genetic systems across environments[J/OL]. Euphytica, 2012, 188: 453-463[2024-01-02]. https://doi.org/10.1007/s10681-012-
0733-x.
[54] Alfred Q, Liu H Y, Xu H M, et al. Mapping of quantitative trait loci for oil content in cottonseed kernel[J/OL]. Journal of
Genetics, 2012, 91: 289-295[2024-01-02]. https://doi.org/10.1007/
s12041-012-0184-0.
[55] 何林池, 徐鹏, 郭婷婷, 等. 陆地棉棉籽油分和蛋白质含量QTL的定位[J/OL]. 江苏农业学报, 2014, 30(6): 1248-1252[2024-01-02]. https://doi.org/10.3969/j.issn.1000-4440.2014.06.
010.
He Linchi, Xu Peng, Guo Tingting, et al. Mapping QTLs related to seed oil and protein contents in upland cotton (Gossypium hirsutum L.) [J/OL]. Journal of Jiangsu Agriculture, 2014, 30(6): 1248-1252[2024-01-02]. https://doi.org/10.3969/j.issn.1000-
4440.2014.06.010.
[56] 李金荣. 棉籽品质性状的胚与母体植株遗传效应及QTL定位研究[D]. 杭州: 浙江大学, 2014.
Li Jinrong. Studies on the genetic effects of the embryo and maternal plant in cottonseeed quality traits and their QTL mapping[D]. Hangzhou: Zhejiang University, 2014.
[57] Liu G Z, Mei H X, Wang S, et al. Association mapping of seed oil and protein contents in upland cotton[J/OL]. Euphytica, 2015, 205: 637-645[2024-01-02]. https://doi.org/10.1007/
s10681-015-1450-z.
[58] Liu D X, Liu F, Shan X R, et al. Construction of a high-density genetic map and lint percentage and cottonseed nutrient trait QTL identification in upland cotton (Gossypium hirsutum L.) [J/OL]. Molecular Genetics and Genomics, 2015, 290: 1683-
1700[2024-01-02]. https://doi.org/10.1007/s00438-015-1027-5.
[59] Badigannavar A, Myers G O. Genetic diversity, population structure and marker trait associations for seed quality traits in cotton (Gossypium hirsutum) [J/OL]. Journal of Genetics, 2015, 94: 87-94[2024-01-02]. https://doi.org/10.1007/s12041-
015-0489-x.
[60] Shang L G, Abduweli A, Wang Y M, et al. Genetic analysis and QTL mapping of oil content and seed index using two recombinant inbred lines and two backcross populations in upland cotton[J/OL]. Plant Breeding, 2016, 135(2): 224-231[2024-01-
02]. https://doi.org/10.1111/pbr.12352.
[61] Zeng Y D, Sun J L, Bu S H, et al. EcoTILLING revealed SNPs in GhSus genes that are associated with fiber-and seed-related traits in upland cotton[J/OL]. Scientific Reports, 2016, 6(1): 29250[2024-01-02]. https://doi.org/10.1038/srep29250.
[62] 黄梦珠. 陆地棉棉籽油分与蛋白质含量QTL定位[D]. 重庆: 西南大学, 2018.
Huang Mengzhu. Mapping QTL controlling cottonseed oil and protein content in upland cotton[D]. Chongqing: Southwest University, 2018.
[63] Wang W W, Sun Y, Yang P, et al. A high density SLAF-seq SNP genetic map and QTL for seed size, oil and protein content in upland cotton[J/OL]. BMC Genomics, 2019, 20(1): 1-11[2024-01-02]. https://doi.org/10.1186/s12864-019-5819-6.
[64] Zhao W, Kong X, Yang Y, et al. Association mapping seed kernel oil content in upland cotton using genome-wide SSRs and SNPs[J/OL]. Molecular Breeding, 2019, 39: 1-11[2024-01-02]. https://doi.org/10.1007/s11032-019-1007-2.
[65] Zhu D, Li X M, Wang Z W, et al. Genetic dissection of an allotetraploid interspecific CSSLs guides interspecific genetics and breeding in cotton[J/OL]. BMC Genomics, 2020, 21(1): 1-16[2024-01-02]. https://doi.org/10.1186/s12864-020-06800-x.
[66] 张艳波, 王袁, 冯甘雨, 等. 棉籽油分和 3 种主要脂肪酸含量QTL分析[J/OL]. 作物学报, 2022, 48(2): 380-395[2024-01-
02]. https://doi.org/10.3724/SP.J.1006.2022.04273.
Zhang Yanbo, Wang Yuan, Feng Ganyu, et al. QTLs analysis of oil and three major fatty acid contents in cottonseeds[J/OL]. Acta Agronomica Sinica, 2022, 48(2): 380-395[2024-01-02]. https://doi.org/10.3724/SP.J.1006.2022.04273.
[67] 赵漪柔. 陆地棉种子主要成分的QTL定位与遗传分析[D]. 杭州: 浙江大学, 2021.
Zhao Yirou. QTL mapping and genetic analysis of main components of upland cottonseeds[D]. Hangzhou: Zhejiang University, 2021.
[68] Zhang Z B, Gong J W, Zhang Z, et al. Identification and analysis of oil candidate genes reveals the molecular basis of cottonseed oil accumulation in Gossypium hirsutum L.[J/OL]. Theoretical and Applied Genetics, 2022, 135: 449-460[2024-01-02]. https://doi.org/10.1007/s00122-021-03975-z.
[69] Gong J W, Peng Y, Yu J W, et al. Linkage and association ana-
lyses reveal that hub genes in energy-flow and lipid biosynthesis pathways form a cluster in upland cotton[J/OL]. Computational and Structural Biotechnology Journal, 2022, 20: 1841-1859[2024-01-02]. https://doi.org/10.1016/j.csbj.2022.04.012.
[70] 乐明媚. 达尔文氏棉染色体片段代换系子指和棉仁营养品质性状QTL定位[D]. 重庆: 西南大学, 2023.
Yue Mingmei. QTL mapping for seed index and nutritional quality traits of cotton kernel from the chromosome segment substitution lines of Gossypium darwinii[D]. Chongqing Southwest University, 2023.
[71] 包婉玉. 陆地棉优质纤维重组近交系群体棉籽营养品质性状QTL定位[D]. 重庆: 西南大学, 2023.
Bao Wanyu. QTL mapping of cottonseed nutritional quality traits in G. hirsutum recombinant inbred lines with high fiber quality cultivar/lines as parents[D]. Chongqing: Southwest University, 2023.
[72] 崔玉茹. 毛棉染色体片段代换系棉仁营养品质性状QTL定位[D]. 重庆: 西南大学, 2022.
Cui Yuru. QTL mapping for kernel nutritional quality traits in the chromosome segment substitution lines of Gossypium tomentosum[D]. Chongqing: Southwest University, 2022.
[73] 刘珺. 黄褐棉染色体片段代换系棉仁营养品质相关性状QTL定位[D]. 重庆: 西南大学," 2023.
Liu Jun. QTL mapping for kernel nutritional quality traits using the chromosome segment substitution lines from G. mustelinum[D]. Chongqing: Southwest University, 2023.
[74] 唐义华. 陆地棉栽培品种与野生种系尖斑棉群体棉仁营养品质性状QTL定位[D]. 重庆: 西南大学, 2023.
Tang Yihua. QTL mapping for kernel nutritional quality traits from (G. hirsutum cultivar × G. hirsutum race punctatum) po-
pulation[D]. Chongqing: Southwest University, 2023.
[75] 赵彦朋, 梁伟, 王丹, 等. 植物油脂合成调控与遗传改良研究进展[J/OL]. 中国农业科技导报, 2018, 20(1): 14-24[2024-01-
02]. https://doi.org/10.13304/j.nykjdb.2017.0170.
Zhao Yanpeng, Liang Wei, Wang Dan, et al. Research progress on synthetic regulation and genetic improvement of vegetable oils[J/OL]. Journal of Agricultural Science and Technology, 2018, 20(1): 14-24[2024-01-02]. https://doi.org/10.13304/j.nykjdb.2017.0170.
[76] Salie M J, Thelen J J. Regulation and structure of the heteromeric acetyl-CoA carboxylase[J/OL]. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 2016, 1861(9): 1207-1213[2024-01-02]. https://doi.org/10.1016/
j.bbalip.2016.04.004.
[77] Xu Z P, Li J W, Guo X P, et al. Metabolic engineering of cottonseed oil biosynthesis pathway via RNA interference[J/OL]. Scientific Reports, 2016, 6(1): 33342[2024-01-02]. https://doi.org/10.1038/srep33342.
[78] Lepiniec L, Vidal J, Chollet R, et al. Phosphoenolpyruvate carboxylase: structure, regulation and evolution[J/OL]. Plant Science, 1994, 99(2): 111-124[2024-01-02]. https://doi.org/10.1016/
0168-9452(94)90168-6.
[79] Zhao Y P, Huang Y, Wang Y M, et al. RNA interference of GhPEPC2 enhanced seed oil accumulation and salt tolerance in upland cotton[J/OL]. Plant Science, 2018, 271: 52-61[2024-01-
02]. https://doi.org/10.1016/j.plantsci.2018.03.015.
[80] Bates P D, Stymne S, Ohlrogge J. Biochemical pathways in seed oil synthesis[J/OL]. Current Opinion in Plant Biology, 2013, 16(3): 358-364[2024-01-02]. https://doi.org/10.1016/j.pbi.2013.02.015.
[81] Baud S, Lepiniec L. Physiological and developmental regulation of seed oil production[J/OL]. Progress in Lipid Research, 2010, 49(3): 235-249[2024-01-02]. https://doi.org/10.1016/j.plipres.2010.01.001.
[82] Cui Y P, Liu Z J, Zhao Y P, et al. Overexpression of heteromeric GhACCase subunits enhanced oil accumulation in upland cotton[J/OL]. Plant Molecular Biology Reporter, 2017, 35: 287-
297[2024-01-02]. https://doi.org/10.1007/s11105-016-1022-y.
[83] Jung S H, Kim R J, Kim K J, et al. Plastidial and mitochondrial malonyl CoA-ACP malonyltransferase is essential for cell division and its overexpression increases storage oil content[J/OL]. Plant and Cell Physiology, 2019, 60(6): 1239-1249[2024-01-
02]. https://doi.org/10.1093/pcp/pcz032.
[84] Clough R C, Matthis A L, Barnum S R, et al. Purification and characterization of 3-ketoacyl-acyl carrier protein synthase III from spinach. A condensing enzyme utilizing acetyl-coenzyme A to initiate fatty acid synthesis[J/OL]. Journal of Biological Chemistry, 1992, 267(29): 20992-20998[2024-01-02]. https://
doi.org/10.1016/S0021-9258(19)36787-0.
[85] Du X M, Huang G, He S P, et al. Resequencing of 243 diploid cotton accessions based on an updated A genome identifies the genetic basis of key agronomic traits[J/OL]. Nature Genetics, 2018, 50(6): 796-802[2024-01-02]. https://doi.org/10.1038/
s41588-018-0116-x.
[86] Wu G Z, Xue H W. Arabidopsis β-ketoacyl-[acyl carrier protein] synthase I is crucial for fatty acid synthesis and plays a role in chloroplast division and embryo development[J/OL]. The Plant Cell, 2010, 22(11): 3726-3744[2024-01-02]. https://
doi.org/10.1105/tpc.110.075564.
[87] Pidkowich M S, Nguyen H T, Heilmann I, et al. Modulating seed β-ketoacyl-acyl carrier protein synthase II level converts the composition of a temperate seed oil to that of a palm-like tropical oil[J/OL]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(11): 4742-
4747[2024-01-02]. https://doi.org/10.1073/pnas.061114110.
[88] Liu Q, Wu M, Zhang B L, et al. Genetic enhancement of palmitic acid accumulation in cotton seed oil through RNAi down-regulation of GhKAS2 encoding β-ketoacyl-ACP synthase II (KAS II) [J/OL]. Plant Biotechnology Journal, 2017, 15(1): 132-143[2024-01-02]. https://doi.org/10.1111/pbi.12598.
[89] 刘丽, 王玉美, 赵彦朋, 等. 棉花脂肪酸合成酶基因GhKAR和GhENR表达载体构建及其功能初探[J/OL]. 棉花学报, 2016, 28(6): 527-537[2024-01-02]. https://doi.org/10.11963/
issn.1002-7807.201606002.
Liu Li, Wang Yumei , Zhao Yanpeng, et al. Construction of expression vectors and a preliminarily functional analysis of fatty acid synthetase genes of GhKAR and GhENR in upland cotton[J/OL]. Cotton Science, 2016, 28(6): 527-537[2024-01-
02]. https://doi.org/10.11963/issn.1002-7807.201606002.
[90] Liu F, Zhao Y P, Zhu H G, et al. Simultaneous silencing of GhFAD2-1 and GhFATB enhances the quality of cottonseed oil with high oleic acid[J/OL]. Journal of Plant Physiology, 2017, 215: 132-139[2024-01-02]. https://doi.org/10.1016/j.jplph.2017.
06.001.
[91] Wang X L, Li X B. The GhACS1 gene encodes an acyl-CoA synthetase which is essential for normal microsporogenesis in early anther development of cotton[J/OL]. The Plant Journal, 2009, 57(3): 473-486[2024-01-02]. https://doi.org/10.1111/j.
1365-313X.2008.03700.x.
[92] Rajwade A V, Kadoo N Y, Borikar S P, et al. Differential transcriptional activity of SAD, FAD2 and FAD3 desaturase genes in developing seeds of linseed contributes to varietal variation in α-linolenic acid content[J/OL]. Phytochemistry, 2014, 98: 41-
53[2024-01-02]. https://doi.org/10.1016/j.phytochem.2013.12.
002.
[93] Liu Q, Singh S P, Green A G. High-stearic and high-oleic co-
ttonseed oils produced by hairpin RNA-mediated post-transcriptional gene silencing[J/OL]. Plant Physiology, 2002, 129(4): 1732-1743[2024-01-02]. https://doi.org/10.1104/pp.001933.
[94] Okuley J, Lightner J, Feldmann K, et al. Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis[J/OL]. The Plant Cell, 1994, 6(1): 147-158[2024-01-02]. https://doi.org/10.1105/tpc.6.1.147.
[95] Chen Y Z, Fu M C, Li H, et al. High‐oleic acid content, nontransgenic allotetraploid cotton (Gossypium hirsutum L.) gene-
rated by knockout of GhFAD2 genes with CRISPR/Cas9 system[J/OL]. Plant Biotechnology Journal, 2021, 19(3): 424-426[2024-01-02]. https://doi.org/10.1111/pbi.13507.
[96] Liu Q, Llewellyn D J, Singh S P, et al. Cotton flowering and fruiting. Cotton seed development: opportunities to add value to a byproduct of fiber production[M/OL]. Memphis: The Cotton Foundation Publisher, 2012: 133-162[2024-01-02]. https://
www.cotton.org/foundation/upload/F-F-Chapter-9.pdf.
[97] Liu Q, Singh S, Chapman K, et al. Genetics and genomics of cotton: Bridging traditional and molecular genetics in modifying cottonseed oil[M/OL]. New York: Springer, 2009: 353-382[2024-01-02]. https://doi.org/10.1007/978-0-387-70810-2_15.
[98] Shockey J, Dowd M, Mack B, et al. Naturally occurring high oleic acid cottonseed oil: identification and functional analysis of a mutant allele of Gossypium barbadense fatty acid desa-
turase-2[J/OL]. Planta, 2017, 245: 611-622[2024-01-02]. https://
doi.org/10.1007/s00425-016-2633-0.
[99] Sturtevant D, Horn P, Kennedy C, et al. Lipid metabolites in seeds of diverse Gossypium accessions: molecular identification of a high oleic mutant allele[J/OL]. Planta, 2017, 245: 595-
610[2024-01-02]. https://doi.org/10.1007/s00425-016-2630-3.
[100] Dos Santos Maraschin F, Kulcheski F R, Segatto A L A, et al. Enzymes of glycerol-3-phosphate pathway in triacylglycerol synthesis in plants: Function, biotechnological application and evolution[J/OL]. Progress in Lipid Research, 2019, 73: 46-64[2024-01-02]. https://doi.org/10.1016/j.plipres.2018.12.001.
[101] Wang N H, Ma J J, Pei W F, et al. A genome-wide analysis of the lysophosphatidate acyltransferase (LPAAT) gene family in cotton: organization, expression, sequence variation, and association with seed oil content and fiber quality[J/OL]. BMC Genomics, 2017, 18(1): 1-18[2024-01-02]. https://doi.org/10.1186/s12864-017-3594-9.
[102] Nakamura Y, Koizumi R, Shui G, et al. Arabidopsis lipins mediate eukaryotic pathway of lipid metabolism and cope critically with phosphate starvation[J/OL]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(49): 20978-20983[2024-01-02]. https://doi.org/10.1073/pnas.0907173106.
[103] Liu Q, Siloto R M P, Lehner R, et al. Acyl-CoA: diacylgly-
cerol acyltransferase: molecular biology, biochemistry and biotechnology[J/OL]. Progress in Lipid Research, 2012, 51(4): 350-377[2024-01-02]. https://doi.org/10.1016/j.plipres.2012.
06.001.
[104] Cases S, Smith S J, Zheng Y W, et al. Identification of a gene encoding an acyl CoA: diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis[J/OL]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(22): 13018-13023[2024-01-02]. https://doi.org/10.1073/pnas.95.22.13018.
[105] Lardizabal K D, Mai J T, Wagner N W, et al. DGAT2 is a new diacylglycerol acyltransferase gene family: purification, cloning, and expression in insect cells of two polypeptides from Mortierella ramanniana with diacylglycerol acyltransferase activity[J/OL]. Journal of Biological Chemistry, 2001, 276(42): 38862-38869[2024-01-02]. https://doi.org/10.1074/
jbc.M106168200.
[106] Oelkers P, Tinkelenberg A, Erdeniz N, et al. A lecithin cholesterol acyltransferase-like gene mediates diacylglycerol esterification in yeast[J/OL]. Journal of Biological Chemistry, 2000, 275(21): 15609-15612[2024-01-02]. https://doi.org/10.1074/jbc.C000144200.
[107] Kalscheuer R, Steinbuchel A. A novel bifunctional wax ester synthase/acyl-CoA: diacylglycerol acyltransferase mediates wax ester and triacylglycerol biosynthesis in Acinetobacter calcoaceticus ADP1[J/OL]. Journal of Biological Chemistry, 2003, 278(10): 8075-8082[2024-01-02]. https://doi.org/10.1074/jbc.M210533200.
[108] Santín O, Galié S, Moncalián G. Directed evolution of a bacterial WS/DGAT acyltransferase: improving tDGAT from Thermomonospora curvata[J/OL]. Protein Engineering, Design and Selection, 2019, 32(1): 25-32[2024-01-02]. https://doi.org/
10.1093/protein/gzz011.
[109] Saha S, Enugutti B, Rajakumari S, et al. Cytosolic triacylgly-
cerol biosynthetic pathway in oilseeds. Molecular cloning and expression of peanut cytosolic diacylglycerol acyltransferase[J/OL]. Plant Physiology, 2006, 141(4): 1533-1543[2024-01-
02]. https://doi.org/10.1104/pp.106.082198.
[110] Rani S H, Saha S, Rajasekharan R. A soluble diacylglycerol acyltransferase is involved in triacylglycerol biosynthesis in the oleaginous yeast Rhodotorula glutinis[J/OL]. Microbiology, 2013, 159: 155-166[2024-01-02]. https://doi.org/10.1099/mic.
0.063156-0.
[111] Durrett T P, McClosky D D, Tumaney A W, et al. A distinct DGAT with sn-3 acetyltransferase activity that synthesizes unusual, reduced-viscosity oils in Euonymus and transgenic seeds[J/OL]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(20): 9464-
9469[2024-01-02]. https://doi.org/10.1073/pnas.1001707107.
[112] Wu P, Xu X L, Li J W, et al. Seed-specific overexpression of cotton GhDGAT1 gene leads to increased oil accumulation in cottonseed[J/OL]. The Crop Journal, 2021, 9(2): 487-490[2024-
01-02]. https://doi.org/10.1016/j.cj.2020.10.003
[113] 刘正杰, 张园, 王玉美, 等. 陆地棉GhDGAT1基因干涉载体构建与遗传转化[J]. 中国农业大学学报, 2013(5): 1-8.
Liu Zhengjie, Zhang Yuan, Wang Yumei, et al. Construction of GhDGAT1 gene interference vector and genetic transformation in upland cotton[J]. Journal of China Agricultural University, 2013(5): 1-8.
[114] Liu Z J, Zhao Y P, Liang W, et al. Over-expression of transcription factor GhWRI1 in upland cotton[J/OL]. Biologia Plantarum, 2018, 62: 335-342[2024-01-02]. https://doi.org/10.1007/s10535-018-0777-4.
[115] Chattha W S, Atif R M, Iqbal M, et al. Genome-wide identification and evolution of Dof transcription factor family in cultivated and ancestral cotton species[J/OL]. Genomics, 2020, 112(6): 4155-4170[2024-01-02]. https://doi.org/10.1016/j.ygeno.2020.07.006.s.
[116] Zhao Y P, Wang Y M, Huang Y, et al. Gene network of oil accumulation reveals expression profiles in developing embryos and fatty acid composition in upland cotton[J/OL]. Journal of Plant Physiology, 2018, 228: 101-112[2024-01-02]. https://doi.org/10.1016/j.jplph.2018.06.002.
[117] Wang H W, Zhang B, Hao Y J, et al. The soybean Dof‐type transcription factor genes, GmDof4 and GmDof11, enhance lipid content in the seeds of transgenic Arabidopsis plants[J/OL]. The Plant Journal, 2007, 52(4): 716-729[2024-01-02]. https://doi.org/10.1111/j.1365-313X.2007.03268.x.
[118] Su Y, Liang W, Liu Z J, et al. Overexpression of GhDof1 improved salt and cold tolerance and seed oil content in Gossypium hirsutum[J/OL]. Journal of Plant Physiology, 2017, 218: 222-234[2024-01-02]. https://doi.org/10.1016/j.jplph.2017.07.017.
[119] Zhou Y, Xia H, Li X J, et al. Overexpression of a cotton gene that encodes a putative transcription factor of AP2/EREBP family in Arabidopsis affects growth and development of transgenic plants[J/OL]. PLoS ONE, 2013, 8(10): e78635[2024-
01-02]. https://doi.org/10.1371/journal.pone.0078635.
[120] Zang X S, Pei W F, Wu M, et al. Genome-scale analysis of the WRI-like family in Gossypium and functional characterization of GhWRI1a controlling triacylglycerol content[J/OL]. Frontiers in Plant Science, 2018, 9: 1516[2024-01-02]. https://doi.org/10.3389/fpls.2018.01516.
[121] Tan X X, Zhang H H, Yang Z H, et al. NF-YA transcription factors suppress jasmonic acid-mediated antiviral defense and facilitate viral infection in rice[J/OL]. PLoS Pathogens, 2022, 18(5): e1010548[2024-01-02]. https://doi.org/10.1371/journal.ppat.1010548.
[122] Forde B G, Lea P J. Glutamate in plants: metabolism, regulation, and signalling[J/OL]. Journal of Experimental Botany, 2007, 58(9): 2339-2358[2024-01-02]. https://doi.org/10.1093/
jxb/erm121.
[123] De la Torre F, Ca?觡as R A, Pascual M B, et al. Plastidic aspartate aminotransferases and the biosynthesis of essential amino acids in plants[J/OL]. Journal of Experimental Botany, 2014, 65(19): 5527-5534[2024-01-02]. https://doi.org/10.1093/jxb/
eru240.
[124] Xu Z R, Ma J, Qu C P, et al. Identification and expression analyses of the alanine aminotransferase (AlaAT) gene family in poplar seedlings[J/OL]. Scientific Reports, 2017, 7(1): 45933[2024-01-02]. https://doi.org/10.1038/srep45933.
[125] Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J, et al. Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture[J/OL]. Annals of Botany, 2010, 105(7): 1141-1157[2024-01-02]. https://doi.org/10.1093/aob/mcq028.
[126] Zhang Z H, Wang W M, Guan C, et al. Mechanisms of nitrogen re-distribution in response to enzyme activities and the effects on nitrogen use efficiency in Brassica napus during later growth stages[J]. Pakistan Journal of Botany, 2014, 46(5): 1789-1795.
[127] Liang C G, Chen L P, Yan W, et al. High temperature at grain-filling stage affects nitrogen metabolism enzyme activities in grains and grain nutritional quality in rice[J/OL]. Rice Science, 2011, 18(3): 210-216[2024-01-02]. https://doi.org/10.
1016/S1672-6308(11)60029-2.
[128] He Y J, Guo W Z, Shen X L, et al. Molecular cloning and characterization of a cytosolic glutamine synthetase gene, a fiber strength-associated gene in cotton[J/OL]. Planta, 2008, 228: 473-483[2024-01-02]. https://doi.org/10.1007/s00425-
008-0751-z.
[129] Iqbal A, Gui H P, Wang X R, et al. Genome-wide expression analysis reveals involvement of asparagine synthetase family in cotton development and nitrogen metabolism[J/OL]. BMC Plant Biology, 2022, 22(1): 122. https://doi.org/10.1186/
s12870-022-03454-7.
[130] Wu C F, Cheng H L, Li S Y, et al. Molecular cloning and characterization of GhERF105, a gene contributing to the regulation of gland formation in upland cotton (Gossypium hirsutum L.) [J/OL]. BMC Plant Biology, 2021, 21: 102[2024-
01-02]. https://doi.org/10.1186/s12870-021-02846-5.
[131] Wang X W, Luo Z, Hu Q Y, et al. Light induced shoot-sourced transcription factor HY5 regulates the nitrate uptake of cotton by shoot-to-root signal transport[J/OL]. Plant Physiology and Biochemistry, 2023, 200: 107738[2024-01-
02]. https://doi.org/10.1016/j.plaphy.2023.107738.
[132] 吕新云. GmLEC1与GmFUS3在大豆种子发育过程中的表达及其与贮藏蛋白合成的关系[D]. 太原: 山西农业大学, 2016.
Lü Xinyun. The expression of GmLEC1 and GmFUS3 during seed development and it’s relationship with storage protein synthesis in soybean[D]. Taiyuan: Shanxi Agricultural University, 2016.
[133] Manan S, Ahmad M Z, Zhang G, et al. Soybean LEC2 regulates subsets of genes involved in controlling the biosynthesis and catabolism of seed storage substances and seed development[J/OL]. Frontiers in Plant Science, 2017, 8: 1604[2024-
01-02]. https://doi.org/10.3389/fpls.2017.01604.
[134] Kurup S, Jones H D, Holdsworth M J. Interactions of the developmental regulator ABI3 with proteins identified from developing Arabidopsis seeds[J/OL]. The Plant Journal, 2000, 21(2): 143-155[2024-01-02]. https://doi.org/10.1046/j.1365-
313x.2000.00663.x.
[135] Chern M S, Eiben H G, Bustos M M. The developmentally regulated bZIP factor ROM1 modulates transcription from lectin and storage protein genes in bean embryos[J/OL]. The Plant Journal, 1996, 10(1): 135-148[2024-01-02]. https://doi.org/10.1046/j.1365-313X.1996.10010135.x
[136] Gao C H, Qi S H, Liu K G, et al. MYC2, MYC3, and MYC4 function redundantly in seed storage protein accumulation in Arabidopsis[J/OL]. Plant Physiology and Biochemistry, 2016, 108: 63-70[2024-01-02]. https://doi.org/10.1016/j.plaphy.2016.
07.004.
[137] Rathore K S, Pandeya D, Campbell L A M, et al. Ultra-low gossypol cottonseed: selective gene silencing opens up a vast resource of plant-based protein to improve human nutrition[J/OL]. Critical Reviews in Plant Sciences, 2020, 39(1): 1-29[2024-01-02]. https://doi.org/10.1111/j.1467-7652.2011.
00652.x.
[138] Qi Z M, Guo C C, Li H Y, et al. Natural variation in Fatty Acid 9 is a determinant of fatty acid and protein content[J/OL]. Plant Biotechnology Journal, 2024, 22(3): 759-773[2024-01-02]. https://doi.org/10.1111/pbi.14222.
[139] Gao H, Gadlage M J, Lafitte H R, et al. Superior field performance of waxy corn engineered using CRISPR-Cas9[J/OL]. Nature Biotechnology, 2020, 38(5): 579-581[2024-01-02]. https://doi.org/10.1038/s41587-020-0444-0.
(责任编辑:王小璐 " " 责任校对:王国鑫)" " ●