阿尔茨海默病临床前期的MRI及PET研究进展

2024-01-01 00:00:00彭彩亮曹丹娜王杨蔡丽娜李晓陵
中国中西医结合影像学杂志 2024年4期
关键词:颞叶皮质海马

[摘要] 阿尔茨海默病(AD)是老年人最常见的进行性神经退行性疾病,目前尚无有效的靶向药物。药物临床试验失败的原因可能是在疾病阶段采取干预措施为时已晚,故AD临床前期的识别诊断尤为重要。主观认知下降(SCD)和遗忘型轻度认知障碍(aMCI)被认为是AD的临床前期阶段,探讨SCD及aMCI相关生物标志物有助于了解AD的早期病理机制并延缓其进展。MRI及PET技术作为无创脑成像技术,可提供脑解剖结构和功能信息,已成功用于疾病的早期检测。就AD背景下SCD及aMCI的主要MRI及PET特征和关键发现进行综述。

[关键词] 主观认知下降;遗忘型轻度认知障碍;阿尔茨海默病;磁共振成像;正电子发射计算机体层成像

DOI:10.3969/j.issn.1672-0512.2024.04.025

[基金项目] 国家自然科学基金面上项目(82074537);黑龙江省自然科学基金项目(LH2020H103);哈尔滨市科技创新人才优秀学科带头人基金(2016RAXYJ096);黑龙江中医药大学科研基金(2019MS

03);黑龙江省中医管理局课题(ZYW2022-088)。

[通信作者] 李晓陵,Email:495412857@qq.com。

阿尔茨海默病(Alzheimer’s disease,AD)严重威胁着老年人的健康,给家庭和社会带来了巨大的经济负担。目前全世界约2 400万AD患者,且患病率呈逐年增长趋势,预计到2050年将增加4倍[1],故早期识别AD的临床前期阶段至关重要。AD的发展可能经历了从主观认知下降(subjective cognitive decline,SCD)到轻度认知障碍(mild cognitive impairment,MCI)的连续过程[2]。SCD被认为是MCI的前期阶段,该概念由Jessen等[3]在2014年正式提出,其将SCD定义为患者主诉与过去相比有明显的记忆力下降,但常规神经心理测试在正常范围。遗忘型轻度认知障碍(amnestic mild cognitive impairment,aMCI)是MCI的一种亚型,患者认知状态介于SCD和AD中间,以记忆衰退为特征,进展为AD的可能性很高[4-5]。SCD和aMCI的准确定义及其在不同临床环境中的诊断一直存在争议。PET敏感度较高,MRI特异度和软组织对比度较高,两者均可检测早期脑解剖结构和功能改变,已广泛应用于AD临床前期研究中。但目前有关AD临床前期影像学表现的报道较少,故笔者系统梳理了有关MRI与PET技术在SCD和aMCI中的应用研究,以期为AD的早期诊断、早期干预及疗效评估提供影像学依据。

1" SCD及aMCI的脑结构影像研究

1.1" SCD和aMCI的脑灰质改变

结构MRI主要通过测量皮质体积反映其大脑形态学变化,随着AD的进展,SCD、aMCI皮质体积会发生萎缩。aMCI和SCD在内侧颞叶、额颞叶区的灰质体积减少模式相似,且灰质体积减少程度与记忆抱怨及行为缺陷程度有关[6]。大量研究表明,SCD患者常出现与AD类似的异常影像学生物标志物,尤其是在海马和内嗅皮质,且该结构与记忆功能相关[7-9]。aMCI患者除海马及内嗅皮质发生萎缩外,额叶、颞叶和顶叶皮质等多个大脑区域也显示灰质体积明显减少,这些发现可将aMCI与SCD及健康衰老人群区分开[10-11]。而荟萃分析发现,aMCI患者的杏仁核、直回和颞极/颞上沟等皮质下区域的灰质明显萎缩[12],文献报道出现的差异性可能与诊断标准不统一相关。海马是记忆系统的重要组成部分,海马萎缩是诊断AD最有效和最广泛应用的生物标志物之一,基于神经病理学数据显示海马各亚区在AD进展过程中受累情况不一致[13-14]。有研究表明,与正常对照组相比,SCD患者海马分子层、齿状回、左侧CA3区、CA4区、杏仁核过渡区及双侧海马尾体积减少,aMCI患者海马下托、前下托、旁下托、分子层、齿状回、CA1区、CA3区、CA4区、海马伞、杏仁核过渡区及双侧海马尾亚区体积显著减少;海马各亚区变化趋势进一步表明,随着疾病的进展,海马分子层、齿状回、CA4亚区体积呈明显萎缩模式[15-16]。

1.2" SCD和aMCI的脑白质改变

DTI是一种检测白质微观结构完整性的影像学方法,包括平均扩散率(mean diffusivity,MD)和各向异性分数(factional anisotropy,FA)2个常用参数。脑组织损伤通常伴MD增加和FA降低,故DTI有助于了解患者出现的特定体征和症状[17]。与正常对照组相比,SCD组在脾后皮质、后扣带皮质和颞中回皮质下白质束中MD较高,在放射冠前、上、下纵束和胼胝体压部FA降低[18-19]。随着病情进展,病变范围逐渐扩大,aMCI患者左侧额上回FA明显降低,颞极和下颞叶、左侧前扣带回、胼胝体膝部、左侧额上回和双侧放射冠MD显著增加[19-21]。表明SCD的DTI指标介于健康人和aMCI之间,与健康对照组相比,aMCI组表现为多个区域白质束完整性受损,包括左侧丘脑前辐射、右侧皮质脊髓束和左侧扣带回,而SCD组左侧扣带回呈弥漫性改变,aMCI组左侧扣带回MD与情景记忆呈负相关,右侧皮质脊髓束FA与执行功能呈负相关,而与SCD组无明显相关性,进一步说明可能在SCD患者出现客观认知功能障碍之前,就可检测到白质完整性改变[22]。

2" SCD和aMCI的fMRI研究

静息态fMRI主要用于研究神经功能网络在不同脑区间的相互关系,以探索与认知相关的神经生理机制,其数据分析方法包括脑局部自发活动、脑网络及功能连接分析。研究表明,SCD患者双侧顶下小叶,右枕中、下回,右颞上回和右小脑后叶脑自发活动增强[23]。aMCI患者后扣带回、海马区和海马旁的活动减少,而后扣带回活动减少在AD患者中进一步扩大[24]。默认模式网络(default mode network,DMN)、显著性网络和执行控制网络改变,可作为发现AD早期的敏感神经影像学标志物[25]。DMN被认为是AD早期最先累及的功能子网,包括内侧前额叶皮质、后扣带回、内侧颞叶区和外侧颞顶区[26]。Wang等[27]研究显示,与正常对照组相比,SCD受试者在躯体运动和视觉网络中分离出的子图中心度减少,aMCI受试者在额顶叶控制、背侧注意、边缘和DMN中的中心度均有减少;表明早在SCD时,主神经网络已受损,且局部联想网络也开始损伤,而在aMCI中,联想网络损伤从局部扩展到全局,初级网络的代偿机制被激活。

DMN功能连接改变被认为是AD的影像学标志物[28]。后扣带回、楔前叶在DMN中至关重要,也是AD最易累及的脑区[29-30]。研究表明,SCD患者的后扣带回与楔前叶功能连接显著降低,但aMCI患者后扣带回与楔前叶之间未发现功能连接改变,这可能是SCD患者的特征性改变[31]。越来越多的研究表明,SCD患者脑功能连接特征主要分布在前额叶皮质、顶叶皮质和皮质下区域,与DMN和额顶任务控制网络相对应[32-34]。而aMCI患者脑连接的差异主要分布在内侧颞叶,说明SCD患者比aMCI患者的前额叶皮质功能网络更易出现异常[35]。此外,aMCI的特征是背侧注意网络和中央执行网络静息态功能连接增加,这一发现被认为是aMCI向AD进展的预测指标[36]。

3" SCD和aMCI的PET研究

PET技术是检测脑内蛋白沉积的无创手段。淀粉样斑块(如Aβ或Tau蛋白)是AD的特异性标志物。有研究表明,在AD临床前期患者中,可检测到Aβ积累先开始于楔前叶、内侧眶额皮质和后扣带回,即DMN的几个核心区域[37];另有研究表明,淀粉样蛋白沉积首先出现在SCD患者中[38],而aMCI患者的蛋白沉积主要发生在额顶叶及楔前叶,可能反映认知功能的进一步降低[39]。SCD向AD进展主要与内嗅皮质的Tau蛋白负荷增加相关[40]。

葡萄糖代谢是反映认知功能变化的敏感指标[41]。18F-脱氧葡萄糖(18F-FDG)可评估脑代谢,是公认的认知功能障碍生物标志物。已有研究利用18F-FDG PET技术提出AD相关的代谢模式,其特征是DMN、顶颞关联区、后扣带回、楔前叶葡萄糖代谢降低[42]。顶叶、颞叶区葡萄糖低代谢是预测认知能力下降的神经影像学生物标志物,其发生在AD数年前的病理生理过程中[43]。基于ROI和体素的分析方法对SCD患者进行研究,结果显示右侧楔前叶葡萄糖代谢降低及右侧颞叶葡萄糖代谢增加为SCD显著特征,且记忆衰退与右侧楔前叶葡萄糖代谢降低有关[44]。近期研究表明,SCD患者右侧颞中回葡萄糖代谢降低为其主要特征,且在认知连续体中逐渐下降,这可帮助区分正常与其他认知阶段患者[45]。SCD患者脑葡萄糖代谢已发生有限的变化,低代谢区域逐渐扩散,并伴认知变化。aMCI患者额顶叶及楔前叶FDG摄入量减少,葡萄糖代谢降低[46]。aMCI病程长,以内侧颞叶局灶性病变为特征,普遍存在内侧颞叶葡萄糖低代谢,其中部分受试者内侧颞叶葡萄糖低代谢可延伸至额边缘区域[47],与SCD和对照组相比,aMCI的皮质糖代谢显著降低[8]。

综上所述,SCD及aMCI在进展至AD前会经过特定脑区萎缩、脑功能改变、病理性生物标志物、脑葡萄糖代谢降低的生理病理过程。且在AD背景下,SCD及aMCI中AD特征区域可能存在易感性,也验证了SCD与aMCI所致AD具有相似脑改变模式的观点。神经影像技术,尤其是多模态神经影像技术,在识别与SCD及aMCI相关的潜在病理改变、提高诊断准确性等方面具有巨大潜力。在aMCI和SCD的临床诊断中,除了海马结构模式被推荐用于临床诊断之外,功能模式、病理性标志物及葡萄糖代谢在诊断中也具有一定潜力,在以后的工作中需应用多模态研究,克服单一模式上的局限性。关于SCD及aMCI多数研究结果出现差异的原因,可归结于组间差异性大、纳入标准不统一、样本量不同等问题。SCD缺少通用的定义(如主观记忆下降、主观认知障碍、主观认识抱怨),有些研究是在SCD概念框架发表之前进行的,故使各研究结果复杂化,缺少可比性。未来应扩大样本量,并结合更先进的成像建模方法(如人工智能),增加纵向研究的数量,并在纵向研究设计中注意SCD的萎缩模式与aMCI的联系,突出其临床实用性。

[参考文献]

[1] HUGO J,GANGULI M. Dementia and cognitive impairment[J]. Clinics Geriatric Medicine,2014,30(3):421-442.

[2] BERGER-SIECZKOWSKI E,GRUBER B,STÖGMANN E,et al. Differences regarding the five-factor personality model in patients with subjective cognitive decline and mild cognitive impairment[J]. Neuropsychiatr,2019,33(1):35-45.

[3] JESSEN F,AMARIGLIO R E,VAN BOXTEL M,et al. A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer’s disease[J]. Alzheimers Dement,2014,10(6):844-852.

[4] PETERSEN R C. Mild cognitive impairment as a diagnostic entity[J]. J Intern Med,2004,256(3):183-194.

[5] JOSHI H,BHARATH S,JOHN J P,et al. Resting state functional connectivity abnormalities and delayed recall performance in patients with amnestic mild cognitive impairment[J]. Brain Imaging Behav,2020,14(1):267-277.

[6] SAYKIN A J,WISHART H A,RABIN L A,et al. Older adults with cognitive complaints show brain atrophy similar to that of amnestic MCI[J]. Neurology,2006,67(5):834-842.

[7] JESSEN F,FEYEN L,FREYMANN K,et al. Volume reduction of the entorhinal cortex in subjective memory impairment[J]. Neurobiol Aging,2006,27(12):1751-1756.

[8] ELIASSEN C F,REINVANG I,SELNES P,et al. Biomarkers in subtypes of mild cognitive impairment and subjective cognitive decline[J]. Brain Behav,2017,7(9):e00776.

[9] PETER J,SCHEEF L,ABDULKADIR A,et al. Gray matter atrophy pattern in elderly with subjective memory impairment[J]. Alzheimers Dement,2014,10(1):99-108.

[10] SUN P,LOU W,LIU J,et al. Mapping the patterns of cortical thickness in single- and multiple-domain amnestic mild cognitive impairment patients:a pilot study[J]. Aging (Albany NY),2019,11(22):10000-10015.

[11] BHARATH S,JOSHI H,JOHN J P,et al. A multimodal structural and functional neuroimaging study of amnestic mild cognitive impairment[J]. Am J Geriatr Psychiatry,2017,25(2):158-169.

[12] SCHROETER M L,STEIN T,MASLOWSKI N,et al. Neural correlates of Alzheimer’s disease and mild cognitive impairment:a systematic and quantitative meta-analysis involving 1351 patients[J]. Neuroimage,2009,47(4):1196-1206.

[13] FLORES R,JOIE R,CHÉTELAT G. Structural imaging of hippocampal subfields in healthy aging and Alzheimer’s disease[J]. Neuroscience,2015,309:29-50.

[14] SHUKLA D,MANDAL P K,MISHRA R,et al. Hippocampal glutathione depletion and pH increment in Alzheimer’s disease:an in vivo MRS study[J]. J Alzheimers Dis,2021,84(3):1139-1152.

[15] ZHAO W,WANG X,YIN C,et al. Trajectories of the hippocampal subfields atrophy in the Alzheimer’s disease:a structural imaging study[J]. Front Neuroinform,2019,13:13.

[16] 罗财妹,李梦春,秦若梦,等. 阿尔茨海默病谱系患者的海马亚区体积损害特征[J]. 中风与神经疾病杂志,2019,36(12):1097-1101.

[17] LIU J,LIANG P,YIN L,et al. White matter abnormalities in two different subtypes of amnestic mild cognitive impairment[J]. PLoS One,2017,12(1):e170185.

[18] SELNES P,FJELL A M,GJERSTAD L,et al. White matter imaging changes in subjective and mild cognitive impairment[J]. Alzheimers Dement,2012,8(5 Suppl):S112-S121.

[19] BRUEGGEN K,DYRBA M,CARDENAS-BLANCO A,et al. Structural integrity in subjective cognitive decline,mild cognitive impairment and Alzheimer’s disease based on multicenter diffusion tensor imaging[J]. J Neurol,2019,266(10):2465-2474.

[20] THILLAINADESAN S,WEN W,ZHUANG L,et al. Changes in mild cognitive impairment and its subtypes as seen on diffusion tensor imaging[J]. Int Psychogeriatr,2012,24(9):1483-1493.

[21] GYEBNÁR G,SZABÓ Á,SIRÁLY E,et al. What can DTI tell about early cognitive impairment? - Differentiation between MCI subtypes and healthy controls by diffusion tensor imaging[J]. Psychiatry Res Neuroimaging,2018,272:46-57.

[22] SHAO W,LI X,ZHANG J,et al. White matter integrity disruption in the pre-dementia stages of Alzheimer’s disease:from subjective memory impairment to amnestic mild cognitive impairment[J]. Eur J Neurol,2019,26(5):800-807.

[23] SUN Y,DAI Z,LI Y,et al. Subjective cognitive decline:mapping functional and structural brain changes-a combined resting-state functional and structural MR imaging study[J]. Radiology,2016,281(1):185-192.

[24] SONG J,QIN W,LIU Y,et al. Aberrant functional organization within and between resting-state networks in AD[J]. PLoS One,2013,8(5):e63727.

[25] YU E,LIAO Z,TAN Y,et al. High-sensitivity neuroimaging biomarkers for the identification of amnestic mild cognitive impairment based on resting-state fMRI and a triple network model[J]. Brain Imaging Behav,2019,13(1):1-14.

[26] XIE Y,LIU T,AI J,et al. Changes in centrality frequency of the default mode network in individuals with subjective cognitive decline[J]. Front Aging Neurosci,2019,11:118.

[27] WANG Z,QIAO K,CHEN G,et al. Functional connectivity changes across the spectrum of subjective cognitive decline,amnestic mild cognitive impairment and Alzheimer’s disease[J]. Front Neuroinform,2019,13:26.

[28] SCHERR M,UTZ L,TAHMASIAN M,et al. Effective connectivity in the default mode network is distinctively disrupted in Alzheimer’s disease—a simultaneous resting-state FDG-PET/fMRI study[J]. Hum Brain Mapp,2021,42(13):4134-4143.

[29] PRIETO DEL VAL L,CANTERO J L,ATIENZA M. Atrophy of amygdala and abnormal memory-related alpha oscillations over posterior cingulate predict conversion to Alzheimer’s disease[J]. Sci Rep,2016,6:31859.

[30] WANG J,BECKER B,WANG L,et al. Corresponding anatomical and coactivation architecture of the human precuneus showing similar connectivity patterns with macaques[J]. Neuroimage,2019,200:562-574.

[31] XUE C,YUAN B,YUE Y,et al. Distinct disruptive patterns of default mode subnetwork connectivity across the spectrum of preclinical Alzheimer’s disease[J]. Front Aging Neurosci,2019,11:307.

[32] XU X,LI W,TAO M,et al. Effective and accurate diagnosis of subjective cognitive decline based on functional connection and graph theory view[J]. Front Neurosci,2020,14:577887.

[33] YAN T,WANG Y,WENG Z,et al. Early-stage identification and pathological development of Alzheimer’s disease using multimodal MRI[J]. J Alzheimers Dis,2019,68(3):1013-1027.

[34] CHEN H,SHENG X,LUO C,et al. The compensatory phenomenon of the functional connectome related to pathological biomarkers in individuals with subjective cognitive decline[J]. Transl Neurodegener,2020,9(1):21.

[35] XU X,LI W,MEI J,et al. Feature selection and combination of information in the functional brain connectome for discrimination of mild cognitive impairment and analyses of altered brain patterns[J]. Front Aging Neurosci,2020,12:28.

[36] JOSHI H,BHARATH S,JOHN J P,et al. Resting state functional connectivity abnormalities and delayed recall performance in patients with amnestic mild cognitive impairment[J]. Brain Imaging Behav,2020,14(1):267-277.

[37] PALMQVIST S,SCHÖLL M,STRANDBERG O,et al. Earliest accumulation of β-amyloid occurs within the default-mode network and concurrently affects brain connectivity[J]. Nat Commun,2017,8(1):1214.

[38] FARRAR G,MOLINUEVO J L,ZANETTE M. Is there a difference in regional read 18F flutemetamol amyloid patterns between end-of-life subjects and those with amnestic mild cognitive impairment?[J]. Eur J Nucl Med Mol Imaging,2019,46(6):1299-1308.

[39] HERHOLZ K,EBMEIER K. Clinical amyloid imaging in Alzheimer’s disease[J]. Lancet Neurol,2011,10(7):667-670.

[40] BUCKLEY R F,HANSEEUW B,SCHULTZ A P,et al. Region-specific association of subjective cognitive decline with tauopathy independent of global β-amyloid burden[J]. JAMA Neurol,2017,74(12):1455-1463.

[41] LANDAU S M,HARVEY D,MADISON C M,et al. Associations between cognitive,functional,and FDG-PET measures of decline in AD and MCI[J]. Neurobiol Aging,2011,32(7):1207-1218.

[42] APOSTOLOVA I,LANGE C,SUPPA P,et al. Impact of plasma glucose level on the pattern of brain FDG uptake and the predictive power of FDG PET in mild cognitive impairment[J]. Eur J Nucl Med Mol Imaging,2018,45(8):1417-1422.

[43] SPERLING R A,AISEN P S,BECKETT L A,et al. Toward defining the preclinical stages of Alzheimer’s disease:recommendations from the National institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease[J]. Alzheimers Dement,2011,7(3):280-292.

[44] SCHEEF L,SPOTTKE A,DAERR M,et al. Glucose metabolism,gray matter structure,and memory decline in subjective memory impairment[J]. Neurology,2012,79(13):1332-1339.

[45] DONG Q Y,LI T R,JIANG X Y,et al. Glucose metabolism in the right middle temporal gyrus could be a potential biomarker for subjective cognitive decline:a study of a Han population[J]. Alzheimers Res Ther,2021,13(1):74.

[46] GONZALEZ-ESCAMILLA G,ATIENZA M,GARCIA-SOLIS D,et al. Cerebral and blood correlates of reduced functional connectivity in mild cognitive impairment[J]. Brain Struct Funct,2016,221(1):631-645.

[47] CERAMI C,DODICH A,IANNACCONE S,et al. A biomarker study in long-lasting amnestic mild cognitive impairment[J]. Alzheimers Res Ther,2018,10(1):42.

(收稿日期" 2023-04-22)

猜你喜欢
颞叶皮质海马
海马
基于基因组学数据分析构建肾上腺皮质癌预后模型
皮质褶皱
迎秋
睿士(2020年11期)2020-11-16 02:12:27
记性不好?因为久坐“伤脑”
海马
“海马”自述
额颞叶痴呆伴肌萎缩侧索硬化1例
行为变异型额颞叶痴呆诊断标准的进展
海马