吉林敦化地区万宝岩组碎屑锆石UPbHf同位素组成:对区域构造演化的制约

2024-01-01 00:00:00关子成裴福萍魏敬洋李鹏屹
吉林大学学报(地球科学版) 2024年4期
关键词:敦化万宝岩组

摘要:为制约古亚洲洋在吉林东部地区的最终闭合时间,本文选取吉林省敦化地区万宝岩组变质粉砂岩为研究对象,开展系统的碎屑锆石微量元素组成和UPbHf同位素研究,确定了万宝岩组的沉积时限和物源区特征,并通过碎屑锆石微量元素获得晚古生代地壳厚度的变化规律,探讨了华北板块北缘东段晚古生代的构造演化历史。万宝岩组由互层的大理岩、变质粉砂岩和变质细砂岩组成,碎屑锆石定年结果显示,万宝岩组最年轻峰值年龄约为316 Ma,此外还存在355、398、1 842和2 360 Ma的峰值年龄。其中,古生代碎屑锆石(409~312 Ma)以具有负的εHf(t)值(-15.32~-1.60)及新太古代—古元古代的TDM2年龄(2 293~1 480 Ma)为特征,侵入万宝岩组闪长岩体的时期为276 Ma。综合研究认为,敦化地区万宝岩组沉积时限为312~276 Ma,即早二叠世时期,其沉积时限和岩石组合特征可与延边地区的庙岭组相对比。万宝岩组中的古生代碎屑锆石来自华北板块太古宙—古元古代结晶基底物质的部分熔融。结合其中古元古代碎屑锆石(62.9%)的大量出现,暗示敦化地区或/和附近地区存在华北板块前寒武纪的结晶基底。通过地壳厚度计算表明,敦化地区和内蒙古地区晚古生代的地壳厚度变化趋势一致,说明二者晚古生代的演化历史趋于同步。约245 Ma地壳厚度达到最大(80 km),暗示了古亚洲洋的最终闭合。

关键词:华北板块北缘;晚古生代;碎屑锆石;UPbHf同位素;地壳厚度;万宝岩组;古亚洲洋

doi:10.13278/j.cnki.jjuese.20230081

中图分类号:P597;P56

文献标志码:A

Supported by the National Natural Science Foundation of China (41972053)" and the" 2022 Graduate Student Innovative Research Program Project of Jilin University (2022196)

UPbHf Isotopic Compositions of Detrital Zircons from Wanbao Formation in Dunhua Area of Jilin:Constraints on Regional Tectonic Evolution

Guan Zicheng,Pei Fuping,Wei Jingyang,Li Pengyi

College of Earth Sciences, Jilin University, Changchun 130061,China

Abstract: In this paper, the metamorphic siltstones of the Wanbao Formation in Dunhua, Jilin Province, were studied. The research included detailed analysis of detrital zircon trace elements and UPbHf isotopes to determine the sedimentary timeframe and source characteristics of the Wanbaoyan Formation. Further, the variation pattern of Late Paleozoic crustal thickness, inferred from detrital zircon trace elements, was used to explore the Late Paleozoic tectonic evolution history of the eastern part of the Northern margin of the North China plate. The Wanbao Formation consists of interbedded marble, metamorphic siltstone and metamorphic fine sandstone. The detrital zircon dating results show that the youngest peak age of the Wanbao Formation is ~316 Ma, in addition to peak ages of 355 Ma, 398 Ma, 1 842 Ma and 2 360 Ma. The Paleozoic detrital zircons (409312 Ma) have negative" εHf(t) values (-15.32-1.60) and a TDM2 age (2 2931 480 Ma) in the Neo-PaleozoicPaleozoic period, with the age of the amphibolite bodies intruding Wanbao Formation is 276 Ma. The comprehensive study concludes that the depositional timeframe of Wanbao Formation in Dunhua area is 312276 Ma, i.e., the Early Permian period, and shares similarities in depositional timeframe and rock assemblage characteristics with the Miaoling Formation in Yanbian area. The Paleozoic detrital zircons in Wanbao Formation are derived from partial melting of materials from the Paleozoic-Tertiary crystalline basement of the North China plate. Furthermore, the prevalence of Precambrian detrital zircons (62.9%) implies the presence of Precambrian crystalline basement of the North China plate in or near the Dunhua area. The crustal thickness calculation shows a similar trend in Late Paleozoic crustal thickness between Dunhua and Inner Mongolia regions, indicating synchronized evolutionary histories. The crust reached its maximum (80 km) thickness at ~245 Ma, suggesting the final closure of the Paleo-Asian Ocean.

Key words: Northern margin of the North China plate;Late Paleozoic;detrital zircons;UPbHf isotopes;crustal thickness; Wanbaoyan Formation;Paleo-Asian Ocean

0 引言

中亚造山带是一条古生代时期的巨型造山带,夹持于华北板块和西伯利亚板块之间。古生代时期,中亚造山带东段与古亚洲洋的演化密切相关[13],是古亚洲洋俯冲作用和一系列不同类型的微陆块相互碰撞拼贴的结果[24];中、新生代受到环太平洋构造域及蒙古—鄂霍茨克构造域的叠加[3, 57]。目前,绝大多数学者认为古亚洲洋是沿索伦—西拉木伦—长春—延吉一线发生最终闭合[3, 811]。然而,对于古亚洲洋最终闭合时间仍存在争议,主要包括以下观点:早古生代末[12]、晚泥盆世—早石炭世[1314]、早中二叠世[1516]、早三叠世[1721]、晚三叠世早期[22]等几种观点。

延边敦化地区位于长春—延吉缝合带以南,是解决古亚洲洋俯冲历史的关键地区之一。前人已经对延边地区晚古生代—早中生代火成岩进行了锆石UPb年代学、地球化学及同位素特征的研究[2, 20, 2325],但火成岩在判别构造环境方面存在多解性。本文先对延边敦化地区万宝岩组进行了碎屑锆石LAICPMS UPb年代学及Hf同位素研究,查明了万宝岩组的沉积时限,确定了碎屑锆石的年龄组成及其物源区;然后通过锆石微量元素进行地壳厚度模拟计算,探讨了索伦—西拉木伦—长春—延吉缝合带晚古生代—早中生代的演化历史和古亚洲洋最终闭合的时间。

1 地质背景及样品描述

位处华北板块北缘东段的延边地区广泛分布上石炭统天宝山组和山秀岭组灰岩,以及二叠纪含火山岩地层,同时分布着二叠纪不同时期(早二叠世、中二叠世和晚二叠世)的侵入体(图1a、b)和中生代含火山岩地层以及侵入体。万宝岩组主要分布在敦化的石门子林场、安图的万宝镇一带,其北部可达敦化的朱蛮沟,另在龙井的南部也有零星出露,均呈大小不等的捕虏体分布在不同时代的花岗岩体中,分布面积约50 km2。其岩石组合主要为变质砂岩、变质粉砂岩及硅质条带大理岩等。《吉林省区域地质志》[27]曾将其置于二叠系“庙岭组”或寒武系—奥陶系“黄莺屯组”。陈跃军等[28]通过对万宝镇东侧变质粉砂岩样品中的微古植物分析,最终将该套地层的时代暂置于新元古代,并建立了万宝岩组。该地层的沉积时限缺少同位素定年资料。

本文研究的万宝岩组样品11JHD101采于敦化地区万宝镇太平屯村东(GPS坐标:42°53′54.18″N、128°20′37.02″E)(图1c),岩性为变质粉砂岩,变余粉砂结构,主要组成矿物有石英(约50%)、斜长石(约20%)以及黑云母(约30%)。石英呈粒状,粒径在0.06~0.50 mm之间;斜长石呈板状,可见聚片双晶,粒径在0.08~0.50 mm之间;黑云母呈片状,直径在0.05~1.50 mm之间,呈定向不连续排列,分布在碎屑矿物粒间,应是胶结物和杂基经后期变晶重结晶作用形成(图2)。

2 分析方法

2.1 年代学分析方法

锆石矿物挑选在河北省廊坊市岩拓地质服务有限公司完成。锆石矿物采用标准的重、磁分选技术从全岩样品中提取。首先在双目镜下挑选出晶形较好、无明显裂隙和矿物包体的锆石颗粒;然后将选定的锆石浸入环氧树脂中,冷却凝固后打磨抛光以显示出锆石的内部结构。锆石的透射光、反射光和阴极发光图像的采集工作在中国科学院地质与地球物理研究所完成。锆石UPb测年实验在中国地质大学(武汉)地质过程与矿产资源国家重点实验室完成,应用Agilent 7500a ICPMS仪器上标准测定程序进行,详细的实验原理和流程见文献[2931]。采用锆石标准91500和玻璃标准物质NIST610作外标分别进行同位素和微量元素分馏校正,实验仪器测试的激光束斑直径和频率分别为32"" μm和10 Hz。采用Andersen[32]提出的方法进行同位素比值的矫正,以扣除普通铅的影响。利用Isoplot宏程序进行锆石年龄谐和图的绘制和年龄加权平均计算[33]。单个分析点的同位素比值和同位素年龄的误差(标准偏差)为±1σ,206Pb/238U加权平均年龄以95%的置信度得出。

2.2 锆石Hf同位素分析方法

锆石Hf同位素测试在中国科学院地质与地球物理研究所岩石圈演化国家重点实验室完成。测试工作在配有193 nm激光取样系统的Neptune多接收电感耦合等离子体质谱仪(MCICPMS)上进行,仪器测试的运行条件和详细的分析流程见文献[34]。测定时用标准锆石91500作外标,分析时激光束斑直径为44 μm,所用的激光脉冲速率为6 Hz,激光束脉冲能量为100 mJ,对每个分析点的Yb和Hf的校正工作则主要是利用该分析点实测得出的平均值。

此外,基于本文对碎屑锆石UPbHf同位素的研究分析,我们收集了延边地区(索伦—西拉木伦—长春—延吉缝合带以南)已发表晚古生代沉积岩碎屑锆石数据以及二叠纪—三叠纪中酸性火成岩全岩微量地球化学数据。通过这些数据,利用(La/Yb)N[35]和Eu/Eu*[36]进行地壳厚度拟合,并将地壳厚度变化与该区域构造事件对比。

3 分析结果

3.1 锆石UPb年代学

本文对敦化地区万宝岩组变质粉砂岩(11JHD101)进行了LAICPMS碎屑锆石UPb年代学研究,部分锆石的阴极发光(CL)图像见图3,锆石定年结果见表1(>1000 Ma采用207Pb/206Pb的定年结果,<1000 Ma采用206Pb/238U的定年结果)。样品11JHD101中的锆石多为半自形或他形粒状,少数锆石呈次圆状,长直径介于50~120 μm之间,发育岩浆振荡生长环带(图3),除测试点11JHD10104(Th/U=0.09),其余测试点Th/U值介于0.11~1.45之间,暗示它们为岩浆成因。定年结果显示,35个测点的206Pb/238U年龄介于2 408~312 Ma之间,最年轻峰值年龄为316 Ma(图4)。另外还存在355、398、1 842和2 360 Ma的峰值年龄(图5)以及少量336、1 655和2 109 Ma的碎屑锆石。

红色圆圈代表锆石UPb定年的测点位置,黑色圆圈代表锆石Hf同位素的分析位置。

3.2 锆石Hf同位素特征

万宝岩组变质粉砂岩中的碎屑锆石Hf同位素组成见图6,分析结果见表2。样品共计有21个碎屑锆石Hf同位素测点。其中:古元古代锆石(2 370~1 781 Ma)的176Hf/177Hf值介于0.281 118~0.281 631之间,εHf(t)值为-6.39~0.93,Hf同位素二阶段模式年龄(TDM2)为3 298~2 483 Ma;晚古生代锆石(409~312 Ma)的176Hf/177Hf值介于0.282 151~0.282 497之间,εHf(t)值为-15.32~-1.60,Hf同位素二阶段模式年龄(TDM2)为2 293~1 480 Ma。

4 讨论

4.1 敦化地区万宝岩组的沉积时限

前人对敦化地区万宝岩组时代的确定主要依据对地层中微古植物分析,将其时代置于新元古代[27],或将其归于下二叠统庙岭组,但并未对其进行同位素年代学研究。万宝岩组变质粉砂岩中的碎屑锆石具有震荡生长环带,Th/U值介于0.11~1.45之间(1个点除外),暗示它们为岩浆成因。碎屑锆石UPb定年结果表明,最年轻的一组谐和年龄为(312±4)Ma,该年龄代表了万宝岩组沉积的下限年龄,结合本工作组对侵入该地层的闪长岩测年结果(276 Ma,未发表数据),暗示万宝岩组的沉积时限为312~276 Ma,这与1∶20万地质图上将其置于下二叠统庙岭组是一致的,说明万宝岩组沉积于早二叠世时期。另外,万宝岩组典型剖面可见变质细砂岩、变质粉砂岩与大理岩互层,与延边庙岭组岩石组合类似。上述特征说明万宝岩组与延边地区庙岭组在地层时代和岩石组合上可对比,应归于庙岭组。

4.2 敦化地区万宝岩组的沉积物质来源及沉积环境

通过对比碎屑锆石的年龄和Hf同位素组成来确定碎屑岩沉积物质来源的方法已经被广泛接受[39]。已有的研究成果显示,来自华北克拉通的碎屑锆石通常具有新太古代—古元古代的年龄[38]。与之不同的是,位于中亚造山带东部的松嫩—张广才岭地块和兴凯地块上的古生代沉积岩则以含有明显的新元古代锆石年龄为特征[4042]。此外,起源于华北克拉通的古生代锆石通常具有负的εHf(t)值以及新太古代—古元古代的TDM2年龄,然而来自中亚造山带东部的同时代锆石则具有正的εHf(t)值和中元古代古生代的TDM2年龄[38, 43]。基于以上认识,本文对敦化地区万宝岩组的沉积物源进行了分析。

万宝岩组的碎屑锆石UPb同位素分析结果显示5组加权平均年龄,分别为316、355、398、1 842和2 346 Ma。316和398 Ma峰期年龄与古洞河—富尔河断裂附近的小河口组峰期年龄一致[37],并且万宝岩组中409~312 Ma的碎屑锆石具有负的εHf(t)值(-15.32~-1.60)以及新太古代—古元古代的TDM2年龄(2 293~1 480 Ma,图6),表明它们源自华北板块古老结晶基底的部分熔融。进一步结合约62.9%古元古代碎屑锆石(1 842和2 346 Ma)的存在,说明敦化地区或其附近存在华北板块前寒武纪基底。

通过前人[27]资料分析,万宝岩组剖面可见变质细砂岩、变质粉砂岩与大理岩互层,该组中大理岩原岩为富白云质、白云质至方解质石灰岩,形成于正常浅海碳酸盐岩台地相沉积。根据本文对万宝岩组的沉积环境判别图解(图7)分析,该岩组落入了伸展环境区域(C区),说明万宝岩组沉积于相对稳定的环境。

4.3 敦化地区晚古生代构造背景及演化历史

关于古亚洲洋在中国东北地区的最终闭合时间问题一直是地学界研究的热点问题之一[23, 12, 17, 2021, 26, 4447]。本文基于敦化地区的碎屑锆石微量元素数据对地壳厚度进行了估算,进一步综合已发表的数据,探讨了研究区的构造演化历史。

已有研究表明,地壳加厚时斜长石不稳定,这会导致岩浆中Eu/Eu*值升高,从中结晶出的锆石继承这一源区特征,而地壳减薄过程则相反[36, 4849]。据此,Tang等[36]通过对大量锆石数据和全岩数据的计算拟合,获得锆石Eu/Eu*值计算地壳厚度的经验公式。基于上述研究,本文对敦化地区万宝岩组和前人[37]已发表的小河口组碎屑岩中的碎屑锆石微量元素数据进行锆石Eu/Eu*值计算(表3),从而模拟了敦化地区晚古生代地壳厚度的变化规律。

图8a显示,360~335 Ma期间,敦化地区经历了地壳加厚,并在335 Ma达到峰值(56 km),335~310 Ma期间地壳厚度经历了明显的减薄。根据板片俯冲角度与上覆板块应力状态之间关系,高角度俯冲或相对古老的大洋板片后撤式俯冲会导致上覆板片处于伸展应力状态,低角度的前进式将导致上覆板块处于挤压加厚应力状态[5051]。笔者认为360~335 Ma期间的地壳加厚可能与大洋板片南向低角度前进式俯冲作用有关;而335~310 Ma期间地壳厚度的减薄暗示由低角度向高角度俯冲转变,上覆板块处于伸展应力状态。上述大洋板片南向俯冲作用导致华北板块北缘古老结晶基底岩石的部分熔融形成火成岩,为万宝岩组提供了晚古生代碎屑锆石物源。敦化地区地壳厚度变化趋势与索伦—西拉木伦基本一致(图8a)[52],暗示着索伦—西拉木伦—长春一带大洋板片南向俯冲的区域构造演化过程是一致的。上述研究成果与吉中地区和延边地区早二叠世大河深组火成岩所反映的大洋板片俯冲环境一致[20]。

敦化地区自约275 Ma开始,地壳开始快速增厚,并持续加厚至约250 Ma,这与研究区及邻区263~239 Ma中酸性岩浆岩[16,24,5355]的(La/Yb)N所得到的地壳厚度变化趋势一致(图8b)(地壳厚度计算公式:H=21.277ln(1.0204(La/Yb)N)[35])。根据图8b中地壳厚度变化趋势,地壳厚度最终于约245 Ma达到峰值,尽管碎屑锆石计算地壳厚度值与全岩(La/Yb)N计算结果存在差异,但根据二者一致的变化趋势,推测地壳厚度在约245 Ma可达到约80 km。综上所述,在310~275 Ma期间大洋板片南向俯冲的角度变陡,最终于约245 Ma古亚洲洋

最终闭合。上述结论也与区域火成岩的地球化学特征相吻合,同时也与区域早三叠世磨拉石建造[5657]以及陆相沉积岩发育相一致[2]。

5 结论

1)锆石UPb年代学研究结果显示,敦化地区万宝岩组沉积时限为312~276 Ma,即早二叠世。万宝岩组的沉积时限和岩石组合可与延边地区庙岭组对比,建议归入庙岭组。

2)万宝岩组碎屑锆石最年轻峰值年龄约为316 Ma,此外还存在355、398、1 842和2 360 Ma的峰值年龄,古生代碎屑锆石εHf(t)值介于-15.32~-1.60之间,TDM2年龄介于2 293~1 480 Ma之间,表明敦化地区或其邻区存在华北板块的前寒武纪结晶基底。

3)综合区域火成岩及碎屑锆石数据,敦化地区约360 Ma开始处于大洋板片南向俯冲的环境,约245 Ma地壳达到最大厚度(约80 km),暗示古亚洲洋的最终闭合。

参考文献(References):

[1] Sengr A M C,Natal’in B A,Burtman V S. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia[J]. Nature,1993,364:299307.

[2] Li J Y. Permian Geodynamic Setting of Northeast China and Adjacent Regions: Closure of the Paleo-Asian Ocean and Subduction of the Paleo-Pacific Plate[J]. Journal of Asian Earth Sciences,2006,26(3/4):207224.

[3] Wu F Y,Sun D Y,Ge W C, et al. Geochronology of the Phanerozoic Granitoids in Northeastern China[J]. Journal of Asian Earth Sciences,2011,41(1):130.

[4] Xiao W J,Windley B F,Huang B C,et al. End-Permian to Mid-Triassic Termination of the Accretionary Processes of the Southern Altaids: Implications for the Geodynamic Evolution, Phanerozoic Continental Growth, and Metallogeny of Central Asia [J]. International Journal of Earth Sciences,2009,98(6):11891217.

[5] 邵济安,唐克东,詹立培,等. 一个古大陆边缘的再造及其大地构造意义:延边地质研究新进展[J]. 中国科学:B辑:化学 生命科学 地学,1995,5(5):548555.

Shao Ji’an,Tang Kedong,Zhan Lipei,et al. Reconstruction of an Ancient Continental Margin and Its Geotectonic Significance-New Advances in Yanbian Geological Research[J]. Chinese Science: Series B: Chemistry Life Sciences Geology,1995,5(5):548555.

[6] Xu W L,Ji W Q,Pei F P,et al. Triassic Volcanism in Eastern Heilongjiang and Jilin Provinces,NE China:Chronology, Geochemistry, and Tectonic Implications[J]. Journal of Asian Earth Sciences,2009,34(3):392402.

[7] Xu W L,Pei F P,Wang F,et al. Spatial-Temporal Relationships of Mesozoic Volcanic Rocks in NE China: Constraints on Tectonic Overprinting and Transformations Between Multiple Tectonic Regimes[J]. Journal of Asian Earth Sciences,2013,74:167193.

[8] Xiao W J,Windley B F,Hao J,et al. Accretion Leading to Collision and the Permian Solonker Suture, Inner Mongolia, China: Termination of the Central Asian Orogenic Belt[J]. Tectonics,2003,22(6):1069.

[9] Xiao W J,Kusky T,Safonova I,et al. Tectonics of the Central Asian Orogenic Belt and Its Pacific Analogues[J]. Journal of Asian Earth Sciences,2015,113:16.

[10] Wu F Y,Wilde S A,Zhang G L,et al. Geochronology and Petrogenesis of the Post-Orogenic Cu-Ni Sulfide-Bearing Mafic-Ultramafic Complexes in Jilin Province, NE China[J]. Journal of Asian Earth Sciences,2004,23(5):781797.

[11] Wilde Simon A. Final Amalgamation of the Central Asian Orogenic Belt in NE China:Paleo-Asian Ocean Closure Versus Paleo-Pacific Plate Subduction: A Review of the Evidence [J]. Tectonophysics,2015,662:345362.

[12] 赵春荆, 彭玉鲸, 党增欣, 等. 吉黑东部构造格架及地壳演化[M]. 沈阳:辽宁大学出版社,1996.

Zhao Chunjing,Peng Yujing,Dang Zengxin,et al. Tectonic Framework and Crustal Evolution of Eastern Jilin and Heilongjiang Province[M]. Shenyang:Liaoning University Press,1996.

[13] 唐克东. 中朝陆台北侧褶皱带构造发展的几个问题[J]. 现代地质,1989,3(2):195204.

Tang Kedong. Several Issues in the Tectonic Development of the Northern Fold Belt of the Central Korean Land Platform [J]. Modern Geology, 1989,3(2): 195204.

[14] 邵济安,唐克东,王成源,等. 那丹哈达地体的构造特征及演化[J]. 中国科学:B 辑,1991,21(7):744751.

Shao Ji’an,Tang Kedong,Wang Chengyuan,et al. Tectonic Features and Evolution of the Nadanhada [J]. Science in China:Series B, 1991,21(7):744751.

[15] 冯光英, 刘燊, 钟宏,等. 吉林晚古生代榆木川基性岩的地球化学特征及其岩石成因[J]. 地球化学, 2010,39(5):427438.

Feng Guangying,Liu Shen,Zhong Hong,et al. Geochemical Characteristics and Petrogenesis of Late Paleozoic Mafic Rocks from Yumuchuan, Jilin Province [J]. Geochimica,2010,39(5):427438.

[16] Liu S,Hu R Z,Gao S,et al. Zircon UPb Age and SrNdHf Isotope Geochemistry of Permian Granodiorite and Associated Gabbro in the Songliao Block, NE China and Implications for Growth of Juvenile Crust[J]. Lithos,2010,114(3/4):423436.

[17] 孙德有, 吴福元, 张艳斌,等. 西拉木伦河—长春—延吉板块缝合带的最后闭合时间:来自吉林大玉山花岗岩体的证据 [J]. 吉林大学学报(地球科学版),2004,34(2):17481.

Sun Deyou,Wu Fuyuan,Zhang Yanbin,et al. The Final Closing Time of the West Lamulun River-Changchun-Yanji Plate Suture Zone Evidence from the Dayushan Granitic Pluton, Jilin Province[J]. Journal of Jilin University (Earth Science Edition),2004,34(2):174181.

[18] 张炯飞. 延边地区渤海地块与兴凯地块之间古缝合带的初步研究[J]. 吉林地质, 1997, 16(2): 3037.

Zhang Jiongfei. A Preliminary Study on the Paleosuture Zone Between the Xingkai Block and the Pohai Block in the Yanbian Area [J]. Jilin Geology,1997,16(2):3037.

[19] 郗爱华,任洪茂,张宝福,等. 吉林中部呼兰群同位素年代学及其地质意义[J]. 吉林大学学报(地球科学版),2003,33(1):1518.

Xi Aihua,Ren Hongmao,Zhang Baofu, et al. Isotopic Chronology of the Hulan Group and Its Geological Significance in the Central Jilin Province[J]. Journal of Jilin University (Earth Science Edition),2003,33(1):1518.

[20] 曹花花,许文良,裴福萍,等. 华北板块北缘东段二叠纪的构造属性:来自火山岩锆石UPb年代学与地球化学的制约 [J]. 岩石学报,2012,28(9):27332750.

Cao Huahua,Xu Wenliang,Pei Fuping,et al. Permian Tectonic Evolution of the Eastern Section of the Northern Margin of the North China Plate: Constraints from Zircon UPb Geochronology and Geochemistry of the Volcanic Rocks[J]. Acta Petrologica Sinica, 2012,28(9):27332750.

[21] Cao H H,Xu W L, Pei F P,et al. Zircon UPb Geochronology and Petrogenesis of the Late Paleozoic-Early Mesozoic Intrusive Rocks in the Eastern Segment of the Northern Margin of the North China Block[J]. Lithos,2013,170:191207.

[22] 辛玉莲, 任军丽, 彭玉鲸,等. 中国东北兴蒙—吉黑造山带造山作用结束的标志:来自晚三叠世磨拉石(大地构造相)的证据[J]. 地质与资源,2011,20(6):413419.

Xin Yulian,Ren Junli,Peng Yujing,et al. Ending of the Mountain-Building Movement of Xing’an-Mongolian-Ji-Hei Orogenic Belt in Northeast China:Evidence from Late Triassic Molasse(Geotectoinc Phase)[J].Geology and Resources,2011,20(6):413419.

[23] Cao H H,Xu W L,Pei F P,et al. Permian Tectonic Evolution in Southwestern Khanka Massif: Evidence from Zircon UPb Chronology, Hf Isotope and Geochemistry of Gabbro and Diorite[J]. Acta Geologica Sinica,2011,85(6):13901402.

[24] Wang Z J,Xu W L,Pei F P,et al. Geochronology and Geochemistry of Middle Permian-Middle Triassic Intrusive Rocks from Central-Eastern Jilin Province, NE China: Constraints on the Tectonic Evolution of the Eastern Segment of the Paleo-Asian Ocean[J]. Lithos,2015,238: 325.

[25] Bi J H,Ge W C,Yang H,et al. Age, Petrogenesis, and Tectonic Setting of the Permian Bimodal Volcanic Rocks in the Eastern Jiamusi Massif, NE China [J]. Journal of Asian Earth Sciences,2017,134:160175.

[26] Wu F Y,Zhao G C,Sun D Y,et al. The Hulan Group: Its Role in the Evolution of the Central Asian Orogenic Belt of NE China[J]. Journal of Asian Earth Sciences,2007,30(3/4):542556.

[27] 吉林省地质矿产局.吉林省区域地质志[M]. 北京:地质出版社,1988.

Jilin Bureau of Geology and Mineral Resources. Regional Geology""" of Jilin Province[M]. Beijing:Geological Publishing House,1988.

[28] 陈跃军,路孝平,纪春华,等. 关于敦化—安图一带的“砂板岩夹大理岩”地层时代的重新厘定及万宝岩组的建立[J]. 吉林地质,2000,19(3):15.

Chen Yuejun,Lu Xiaoping,Ji Chunhua,et al.Redefinition of the Stratigraphic Age of “Sand Slate Interbedded with Dacite” in the Dunhua-Antu Area and the Establishment of the Wanbao Formation[J]. Jilin Geology,2000,19(3):15.

[29] Liu Y S,Hu Z C,Gao S,et al. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LAICPMS Without Applying an Internal Standard[J]. Chemical Geology, 2008,257(1/2):3443.

[30] Liu Y S,Gao S,Hu Z C,et al. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: UPb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths[J]. Journal of Petrology,2010,51(1/2):537571.

[31] Liu Y S,Hu Z C,Zong K Q,et al. Reappraisement and Refinement of Zircon UPb Isotope and Trace Element Analyses by LAICPMS[J]. Chinese Science Bulletin,2010,55(15):15351546.

[32] Andersen. Correction of Common Lead in UPb Analyses that Do Not Report 204Pb[J]. Chemical Geology,2002,192(1/2):5979.

[33] Ludwig K R. User’s Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel[M]. Berkeley;

California Berkeley Geochronology Center Special Publication, 2003.

[34] Wu F Y,Yang Y H,Xie L W,et al. Hf Isotopic Compositions of the Standard Zircons and Baddeleyites Used in UPb Geochronology[J]. Chemical Geology,2006,234(1/2):105126.

[35] Profeta L,Ducea M N,Chapman J B,et al. Quantifying Crustal Thickness over Time in Magmatic Arcs[J]. Scientific Reports,2015,5(1):1778617792.

[36] Tang M,Ji W Q,Chu X, et al. Reconstructing Crustal Thickness Evolution from Europium Anomalies in Detrital Zircons[J]. Geology,2021,49(1):7680.

[37] Zhou Z B,Pei F P,Wang Z W,et al. Using Detrital Zircons from Late Permian to Triassic Sedimentary Rocks in the South-Eastern Central Asian Orogenic Belt (NE China) to Constrain the Timing of the Final Closure of the Paleo-Asian Ocean[J]. Journal of Asian Earth Sciences,2017,144:82109.

[38] Yang J H,Wu F Y,Shao J A,et al. Constraints on the Timing of Uplift of the Yanshan Fold and Thrust Belt, North China[J]. Earth and Planetary Science Letters,2006,246(3/4):336352.

[39] Gehrels G. Detrital Zircon UPb Geochronology Applied to Tectonics[J]. Annual Review of Earth and Planetary Sciences,2014,42: 127149.

[40] Meng E,Xu W L,Pei F P,et al. Detrital-Zircon Geochronology of Late Paleozoic Sedimentary Rocks in Eastern Heilongjiang Province, NE China: Implications for the Tectonic Evolution of the Eastern Segment of the Central Asian Orogenic Belt[J]. Tectonophysics,2010,485(1/2/3/4):4251.

[41] Wang F,Xu W L,Gao F H,et al. Precambrian Terrane Within the Songnen–Zhangguangcai Range Massif, NE China: Evidence from U–Pb Ages of Detrital Zircons from the Dongfengshan and Tadong Groups[J]. Gondwana Research,2014,26:402413.

[42] Chen C,Ren Y S,Zhao H L,et al. Permian Age of the Wudaogou Group in Eastern Yanbian:Detrital Zircon UPb Constraints on the Closure of the Palaeo-Asian Ocean in Northeast China[J]. International Geology Review,2014,56(14):17541768.

[43] Yang H,Ge W C,Zhao G C,et al. Late Triassic Intrusive Complex in the Jidong Region, Jiamusi-Khanka Block, NE China: Geochemistry, Zircon UPb Ages, LuHf Isotopes, and Implications for Magma Mingling and Mixing[J]. Lithos,2015,224:143159.

[44] Zhang Y B,Wu F Y,Wilde S A,et al. Zircon UPb Ages and Tectonic Implications of" Early Paleozoic’ Granitoids at Yanbian, Jilin Province, Northeast China[J]. Island Arc,2004,13(4):484505.

[45] Wang Z J,Xu W L,Pei F P,et al. Geochronology and Provenance of Detrital Zircons from Late Palaeozoic Strata of Central Jilin Province, Northeast China: Implications for the Tectonic Evolution of the Eastern Central Asian Orogenic Belt[J]. International Geology Review,2015,51(2):211228.

[46] 徐备,赵盼,鲍庆中,等. 兴蒙造山带前中生代构造单元划分初探[J]. 岩石学报,2014,30(7):18411857.

Xu Bei,Zhao Pan,Bao Qingzhong,et al. Preliminary Study on the Pre-Mesozoic Tectonic Unit Division of Xing’an-Mongolia Orogenic Belt (XMOB)[J]. Acta Petrologica Sinica,2014,30(7):18411857.

[47] Xu B,Zhao P,Wang Y,et al. The Pre-Devonian Tectonic Framework of Xing’an-Mongolia Orogenic Belt (XMOB) in North China[J]. Journal of Asian Earth Sciences,2015,97:183196.

[48] Tang M,Chu X,Hao J,et al. Orogenic Quiescence in Earth’s Middle Age[J]. Science,2021,371:728731.

[49] Green T H. Anatexis of Mafic Crust and High Pressure Crystallization of Andesite[M]. Andesites:Orogenic Andesites and Related Rocks,1982:465487.

[50] 朱日祥,徐义刚. 西太平洋板块俯冲与华北克拉通破坏[J]. 中国科学:地球科学,2019,49(9):13461356.

Zhu Rixiang,Xu Yigang. Subduction of the Western Pacific Plate and Disruption of the North China Craton[J]. Scientia Sinica Terrae,2019,49(9):13461356.

[51] 郑永飞,徐峥,赵子福,等. 华北中生代镁铁质岩浆作用与克拉通减薄和破坏[J]. 中国科学:地球科学,2018,48(4):379414.

Zheng Yongfei,Xu Zheng,Zhao Zifu,et al. Mesozoic Magmatic Magmatism and Kraton Thinning and Destruction in North China[J]. Scientia Sinica Terrae,2018,48(4):379414.

[52] 于静文,王志伟,朱泰昌,等. 二连浩特北部石炭纪地壳演化过程:来自哈拉图庙群火山碎屑岩锆石UPbHf同位素的制约[J]. 吉林大学学报(地球科学版),2022,52(4):11531173.

Yu Jingwen,Wang Zhiwei,Zhu Taichang,et al. Carboniferous Crustal Evolution in Northern Erenhot: Constraint from Zircon UPbHf Isotopes of Volcanoclastic Rocks in Halatumiao Group[J]. Journal of Jilin University (Earth Science Edition),2022,52(4):11531173.

[53] Guo F,Huang M W,Zhao L. NdHfO Isotopic Evidence for Subduction-Induced Crustal Replacement in NE China[J]. Chemical Geology,2019,525:125142.

[54] 关庆彬,李世超,张超,等. 兴蒙造山带南缘东段和龙地区Ⅰ型花岗岩锆石UPb定年、地球化学特征及其地质意义[J]. 岩石学报,2016,32(9):26902706.

Guan Qingbin,Li Shichao,Zhang Chao,et al. Zircon UPb Dating, Geochemistry and Geological Significance of the IType Granites in Helong Area,the Eastern Section of the Southern Margin of Xing-Meng Orogenic Belt[J]. Acta Petrologica Sinica,2016,32(9):26902706.

[55] 李承东,张福勤,苗来成,等. 吉林色洛河晚二叠世高镁安山岩SHRIMP锆石年代学及其地球化学特征[J]. 岩石学报,2007,23(4):767776.

Li Chengdong,Zhang Fuqin,Miao Laicheng,et al. Zircon SHRIMP Geochronology and Geochemistry of Late Permian HighMg Andesites in Seluohe Area, Jilin Province, China[J]. Acta Petrologica Sinica,2007,23(4):767776.

[56] 彭玉鲸,齐成栋,周晓东,等. 吉黑复合造山带古亚洲洋向滨太平洋构造域转换:时间标志与全球构造的联系[J]. 地质与资源,2012,21(3):261265.

Peng Yujing,Qi Chengdong,Zhou Xiaodong,et al. Transition from Paleo-Asian Ocean Domain to Circum-Pacific Ocean Domain for the Ji-Hei Composite Orogenic Belt:Time Mark and Relationship to Global Tectonics[J]. Geology and Resources,2012,21(3):261265.

[57] 魏敬洋,裴福萍,周皓, 等. 延边开山屯地区二叠纪地质体的构造属性:侵入岩及碎屑锆石证据[J]. 岩石学报,2020,36(3):759780.

Wei Jingyang,Pei Fuping,Zhou Hao,et al. Tectonic Nature of Permian Terrane in the Kaishantun Area, Yanbian: Evidence from Intrusive Rocks and Detrital Zircons[J]. Acta Petrologica Sinica,2020,36(3):759780.

猜你喜欢
敦化万宝岩组
无锡万宝纺织机电有限公司
纺织机械(2023年5期)2023-12-15 09:25:24
银川市地下水赋存条件及动态特征
基于FKM标准的敦化抽蓄电站转子磁极疲劳强度分析
大电机技术(2021年6期)2021-12-06 02:52:42
敦化抽水蓄能电站不良地质段施工技术方法
名城绘(2018年12期)2018-10-21 13:08:58
“万宝之争”及其思考
中国盐业(2018年23期)2018-03-30 01:29:36
敦化市农村集体产权制度改革试点工作情况调查报告
愿世界更美好
优雅(2017年8期)2017-08-08 06:09:37
淮南潘集深部勘查区15-2孔工程地质岩组划分
白音华煤田三号露天矿区水文地质条件分析
企业导报(2016年8期)2016-05-31 18:38:37
笔尖上的万宝龙