刘书剑
面对以等腰直角三角形为背景证明线段相等的几何题,同学们可以利用截长补短、翻折、轴对称等几何变换形式,巧引辅助线,综合运用轴对称、等腰三角形、全等三角形等相关知识求解. 现通过下面这道典型题多种变式的不同解法进行说明.
典例呈现
例 如图1,等腰直角三角形ABC中,点D是BC的中点,连接AD,过点D作AD的垂线DE,过点C作AC的垂线CE,DE和CE相交于点E,连接AE. 求证:AD = DE.
解析:取AB的中点F,连接DF,如图2.
∵△ABC是等腰直角三角形,
∴AB = BC,∠B = 90°,∠ACB = 45°.
∵AF = BF = [12AB],BD = CD = [12BC],
∴AF = BF = BD = DC, ∴△BFD是等腰直角三角形,
∴∠BFD = 45°,∴∠AFD = 135°.
∵AD⊥ED,∴∠ADE = 90°,∴∠ADB + ∠EDC = 90°.
∵在Rt△ABD中,∠BAD + ∠ADB = 90°,∴∠BAD = ∠EDC.
∵∠DCE = ∠ACB + ∠ACE = 135°,∴∠AFD = ∠DCE,
∴△AFD ≌△DCE(ASA),∴AD = DE.
变式演练
变式1 当点D是边BC边上任意一点(除B,C外)时,求证:AD = DE.
解法1 :截长补短法
∵在AB上截取BF = BD,连接DF,如图3.
∴△BDF是等腰直角三角形,
∴∠BFD = 45°,∴∠AFD = 135°.
∵△ABC是等腰直角三角形,
∴AB = BC,∠B = 90°,∠ACB = 45°,
∴AB - BF = BC - BD,即AF = DC.
∵AD⊥ED,∴∠ADE = 90°,∴∠ADB + ∠EDC = 90°.
∵∠BAD + ∠ADB = 90°,∴∠BAD = ∠EDC.
∵∠DCE = ∠ACB + ∠ACE = 135°,∴∠AFD = ∠DCE,
∴△AFD ≌△DCE(ASA),∴AD = DE.
解法2:翻折法——轴对称性
延长AB和EC,相交于点A',连接A'D,如图4.
∵△ABC是等腰直角三角形,∴AB = BC,∠ABC = 90°,
∴∠ACB = 45°,∴∠BCA' = 45°,
∴△BA'C是等腰直角三角形,易证△ABC ≌ △A'BC,
∴BC垂直平分AA',∴AD = A'D,∴∠BAD = ∠BA'D.
∵AD⊥ED,∴∠ADE = 90°,∴∠ADB + ∠EDC = 90°.
∵∠BAD + ∠ADB = 90°,∴∠BAD = ∠EDC,∴∠BA'D = ∠EDC.
∵∠BA'D + ∠DA'C = 45°,∠EDC + ∠DEC = 180° - ∠DCE = 45°,
∴∠DA'E = ∠DEA',∴A'D = DE.
∵A'D = AD,∴AD = DE.
反思:解法1類比例题的解法,是特殊点到一般点的转化,其将中点的性质转化为线段的和差关系AB - BF = BC - BD;解法2是从轴对称性——中垂线的角度思考问题的.
变式2:当点D在线段BC的延长线上时,上述结论还成立吗?
解法1:在线段BA的延长线上截取AF = CD,连接FD,如图5.
易得BF = BD,∴△BDF是等腰直角三角形,∴∠F = 45°.
∵∠ACB = 45°, ∴∠ECD = 45°,∠F = ∠ECD.
∵∠FAD = ∠ABC + ∠ADB = 90° + ∠ADB,
∠CDE = ∠ADE + ∠ADB = 90° + ∠ADB,
∴∠FAD = ∠CDE, ∴△FAD ≌ △CDE(ASA),
∴AD = DE,即当D在线段BC的延长线上时,结论仍成立.
解法2:延长AB,EC相交于点A',连接A'D,如图6.
易证△ABC ≌ △A'BC,∴BC垂直平分AA',
∴AC = A'C,∴∠CAB = ∠CA'B,
∴AD = A'D,∴∠BAD = ∠BA'D,∴∠DAC = ∠DA'C.
∵∠AFC = ∠EFD,∠CAF + ∠AFC = ∠E + ∠EFD = 90°,
∴∠CAF = ∠E,∴∠CA'D = ∠E,∴A'D = DE,∴AD = DE.
即当点D在BC的延长线上时,上述结论仍成立.