一类考虑吸烟群体间有效接触的时滞戒烟模型

2023-11-17 02:27张伟诗张子振
关键词:吸烟者时滞井冈山

张伟诗,张子振

一类考虑吸烟群体间有效接触的时滞戒烟模型

张伟诗,*张子振

(安徽财经大学管理科学与工程学院,安徽,蚌埠 233030)

研究一类考虑吸烟群体间有效接触的时滞戒烟模型,模型包括六个子群体:不吸烟群体、偶尔吸烟群体、习惯性吸烟群体、吸烟成瘾群体、酗烟群体和戒烟群体。以酗烟者戒烟变为戒烟者需要经历的时间周期时滞为分岔参数,讨论了Hopf分岔的存在性,并计算出模型产生Hopf分岔的时滞临界点,之后对基本再生数进行定量分析,并提出控烟参考策略。最后给出仿真示例验证了所得结果的正确性。

时滞;有效接触率;戒烟模型;Hopf分岔

0 引言

烟草作为世界公共卫生安全最大的威胁之一,在不断地蚕食着吸烟者身体健康的同时,也对周围被迫吸入二手烟的人群造成危害,已经成为世界经济稳定发展的巨大隐患。每年因为吸食烟草而死亡的人数高达800万,其中大约有120万人属于接触二手烟雾的非吸烟者[1]。

据调查发现,吸烟者感染新型冠状病毒的几率要大于不吸烟者,感染后变成重症患者的概率也要远远高于不吸烟者[2-3],疫情的蔓延让人们更加直观地看到烟草对人体健康的伤害。自1970年新加坡颁布了世界上第一部《反吸烟法》规定在公共场所严格禁烟,各国开始利用增税、罚款等措施来限制烟草行业的发展,各国政府对烟草的管控力度和范围越来越大。以中国为例,中国政府在2016年发布的《“健康中国2030”规划纲要》中提出,鼓励政府机关、事业单位、医生和教师等群体发挥控烟引领作用,研究利用税收、价格调节等综合手段,提高控烟成效,并提出到2030年,中国15岁以上的人群吸烟率应低于20%[4]。1984年这个数字为33.9%,2018年则降到了26.6%,其中北京、上海等发达地区15岁以上人群吸烟率已经降至20%以内,但从全国吸烟流行调查结果来看,目前仍与2030年控烟目标存在较大差距[5]。

最近,Alzaid等[18]提出了如下考虑吸烟群体间通过有效接触进行行为传播的戒烟模型:

1 基本再生数和吸烟平衡点

2 局部渐近稳定性和Hopf分岔的存在性

其中,

通过计算可得矩阵(3)的特征方程为

其中,

对实部虚部分别进行代数运算后进行合并,可以得到代数方程

其中,

其中,

因此,可以得到

其中,

3 仿真示例

图1 当时,示例模型(8)的状态轨迹

图2 当时,示例模型(8)的相图

图4 当时,示例模型(8)的相图

4 结论

[1] World Health Organization. WHO report on the global tobacco epidemic 2019: offer help to quit tobacco use[R]. Geneva: World Health Organization, 2019.

[2] Silvano, Gallus A, Lugo G, et al. Double-edged sword and no doubt aboutthe relation between smoking and COVID-19 severity [J].European Journal of Internal Medicine, 2020,77:33-35.

[3] Luke C. Tobacco, tobacco control and covid-19: understanding their associations [J].Archivos de Bronconeumología, 2022, 58 (2):113-114.

[4] 郑榕,崔凤.“健康中国2030”控烟目标的实现与烟草消费税改革路径[J].国际税收,2022, 111(9):57-64.

[5] 中华人民共和国国家卫生健康委员会.中国吸烟危害健康报告2020[M]. 北京: 人民卫生出版社, 2021.

[6] Garsow C C, Salivia G J, Herrera A R. Mathematical models for dynamics of tobacco use, recovery and relapse [M]. Ithaca, NY: Cornell University Press, 2000: 3-5.

[7] Sharomi O, Gumel A B. Curtailing smoking dynamics: a mathematical modeling approach [J]. Applied Mathematics and Computation, 2008, 195(2): 475-499.

[8] Zaman G. Qualitative behavior of giving up smoking model[J]. Bulletin of the Malaysian Mathematical Sciences Society,2011, 34(2):403-415.

[9] Hussain T, Awan A U, Abro K A, et al. A mathematical and parametric study of epidemiological smoking model: adeterministic stability and optimality for solutions [J]. The European Physical Journal Plus, 2021, 136(11): 1-23.

[10] Sikander W, Khan U, Ahmed U, et al. Optimal solutions for a bio mathematical model for the evolution of smoking habit [J]. Results in Physics, 2017, 7:510-517.

[11] Ullah R, Khan M, Zaman G, et al. Dynamical features of amathematical model on smoking [J]. Journal of Applied Environmental and Biological Sciences, 2016, 6(1):92-96.

[12] Rahman G, Agarwal R P, Din Q. Mathematical analysis of giving up smoking model via harmonic mean type incidence rate [J]. Applied Mathematics and Computation, 2019,354(8):128-148.

[13] Zhang X K, Zhang Z Z, Tong J Y, et al. Ergodicity of stochastic smoking model and parameter estimation [J]. Advances in Difference Equations, 2016, 274(1): 1-20.

[14] Rahman G, Agarwal R P, Liu L L, et al. Threshold dynamics and optimal control of an age-structured giving up smoking model [J]. Nonlinear Analysis: Real World Applications, 2018, 43(10): 96-120.

[15] Zeb A, Hussain S, Algahtani O, et al. Global aspects of age-structured cigarette smoking model [J]. Mediterranean Journal of Mathematics, 2018, 15(2): 1-11.

[16] Alrabaiah H, Zeb A, Alzahrani E, et al. Dynamical analysis of fractional-order tobacco smoking model containing snuffing class [J].Alexandria Engineering Journal, 2021,60(4): 3669-3678.

[17] Ucar S, Ucar E, Ozdemir N, et al. Mathematical analysis and numerical simulation for asmoking model with Atangana-Baleanu derivative [J].Chaos, Solitons & Fractals, 2019, 118(7): 300-306.

[18] Alzaid S S, Alkahtani B S T. Global analysis of different compartments in a giving-up smoking model[J]. Fractals,2022,30(5):1-12.

[19] 蒲武军.一类多时滞反应扩散HBV病毒模型的动力学分析[J].井冈山大学学报:自然科学版,2021,42(6):8-13.

[20] 练清清,裴鑫萍,陈云珊,等.具有双Allee效应的时滞扩散捕食-食饵模型的时空动力学[J].井冈山大学学报:自然科学版, 2021,42(6):1-7.

[21] 汤小松.具有群体效应和时滞的扩散捕食-食饵系统的Hopf分支[J].井冈山大学学报:自然科学版, 2017,38 (1):18-24.

[22] Hassard B D, Kazarinoff N D, Wan Y H. Theory and applications of Hopf bifurcation [M]. Cambridge, UK: Cambridge University Press, 1981:190-205.

A DELAYED QUIT SMOKING MODEL CONSIDERING EFFECTIVE CONTACT BETWEEN SMOKING GROUPS

ZHANG Wei-shi,*ZHANG Zi-zhen

(School of Management Science and Engineering, Anhui University of Finance and Economics, Bengbu, Anhui 233030, China)

A delayed quit smoking model considering effective contact between smoking groups is investigated. The model includes six compartments: non-smokers, occasional smokers, habitual smokers, addicted smokers, chain smokers, and quit smokers. The existence of Hopf bifurcation is discussed by taking the time delay due to the period experienced by chain smokers to quit smokers as the bifurcation parameter, and critical point of the delay for the occurrence of Hopf bifurcation is calculated, followed by a quantitative analysis of the basic reproduction number, and propose a reference strategy for tobacco control. Finally, a simulation example is given to verify the correctness of the results in the paper.

delay; effective contact rate; giving up smoking model; Hopf bifurcation

1674-8085(2023)05-0015-07

O175.12

A

10.3969/j.issn.1674-8085.2023.05.004

2022-07-17;

2022-09-02

国家自然科学基金项目(12001001);安徽省高校自然科学研究重点项目(KJ2021A0486)

*张子振(1982-),男,山东聊城人,教授,博士,主要从事动力系统稳定性、分岔等研究(E-mail:zzzhaida@163.com).

猜你喜欢
吸烟者时滞井冈山
井冈山诗五首
带有时滞项的复Ginzburg-Landau方程的拉回吸引子
吸烟者更易腰腹肥胖
吸烟显著增加患2型糖尿病风险
井冈山抒怀
No Smoking请勿吸烟
一阶非线性时滞微分方程正周期解的存在性
一类时滞Duffing微分方程同宿解的存在性
每天1根烟,心脏病风险增3倍
时滞倒立摆的H∞反馈控制