沈 楠,高珂梦,黄家晖,唐立钧,李天女
南京医科大学第一附属医院核医学科,江苏 南京 210029
帕金森病(Parkinson’s disease,PD)是最常见的运动障碍性疾病,也是第二常见的中枢神经系统退行性疾病,其发病年龄通常为65~70岁[1-2]。2016年全球疾病负担研究报告显示,中国PD 患者数量约占全球PD 患者总数的23%[3]。PD 的临床表现复杂,其运动症状包括运动迟缓、肌强直、静止性震颤以及姿势步态障碍,非运动症状包括感觉障碍、自主神经功能障碍、精神和认知障碍[4-6]。PD的主要发病机制为黑质纹状体多巴胺能通路的进行性退化,黑质致密部(substantia nigra pars compacta,SNpc)神经元大量丢失和多巴胺耗竭,以及以路易小体形式聚集的包涵体形成[7]。
既往对PD 的诊断主要依靠患者的临床表现、病史等,但是由于患者的个体差异,诊断往往不够准确。近年来,神经影像学的发展,特别是磁共振(magnetic resonance,MR)成像和正电子发射计算机断层显像(positron emission tomography/computed tomography,PET/CT)对PD 患者的评估起着至关重要的作用[8]。然而,MR检测病灶的灵敏度不高,CT的软组织分辨率较低,导致单一的MR 和单一的PET/CT并不能很好地解释部分脑部疾病问题。PET/MR 的出现,使得研究者对其发病机制、鉴别诊断、疗效评估的深入探索成为可能,现就PET/MR成像在PD中的应用进行综述。
目前在PD 诊疗的临床实践中最常用的PET 显像包括神经突触多巴胺能显像和葡萄糖代谢显像。此外,β-淀粉样蛋白(amyloid β,Aβ)显像、Tau显像、神经炎症显像也在研究与使用当中。
PD 的运动障碍学会(Movement Disorder Society,MDS)临床诊断标准指出:多巴胺能功能成像正常是PD的绝对排除标准[9],故神经突触多巴胺能显像是非常重要的排除性诊断。目前有3种类型PET显像剂可用于评估黑质纹状体神经元的完整性和功能。
1.1.1 突触前膜多巴胺能显像
①6-18F-氟-L-多巴(6-18F-fluoro-L-DOPA,18FDOPA)是左旋多巴类似物,也是芳香氨基酸脱羧酶(aromatic amino acid decarboxylase,AADC)的假底物,可反映黑质纹状体AADC 的表达,并间接反映突触前神经元的多巴胺合成能力[10]。PD患者多表现为尾状核和壳核的18F-DOPA摄取减低[11],且背侧壳核的摄取减低先于腹侧壳核出现[12]。然而,PD患者的AADC 常发生代偿性上调,故18F-DOPA PET 可能会低估多巴胺神经元丢失的程度,存在一定局限性[10]。②多巴胺转运体(dopamine transporter,DAT)配体可用于评估突触前DAT的变化,当多巴胺神经元功能正常时,将有大量的DAT 与DAT 示踪剂结合,但PD 患者选择性地丢失基底节和黑质的多巴胺神经元,故DAT示踪剂摄取减少通常意味着多巴胺神经元的丧失。许多DAT 示踪剂属于托烷衍生物,它们与DAT的结合率高,与5-羟色胺、去甲肾上腺素受体的结合率低,使得成像时的干扰较小[10]。目前常用于DAT PET成像的有11C-甲基-2β-甲基酯-3β-(4-F-苯基)托烷[11C-labeled 2β-carbomethoxy-3β-(4-fluorophenyl)tropane,11C-CFT]、18F-N-(3-氟丙基)-2β-甲基酯-3β-(4’-碘苯基)去甲基托烷[18F-N-3-fluoroproply-2β-carbomethoxy-3β-(4-iodophenyl)nortropane,18F-FP-β-CIT]、11C-(E)-N-(3-碘丙基-2-烯基)-2β-甲氧基-3β-(4’-甲基苯基)去甲基托烷[11C-(E)-N-(3-iodoprop-2-enyl)-2β-carbomethoxy-3β-(4-methylphenyl)nortropane,11C-PE2I]。与18F-DOPA显像相比,DAT 示踪剂显像的灵敏度更高,可用于PD亚临床诊断[13],研究显示,PD患者DAT 示踪剂显像表现为双侧纹状体摄取减低[14-15]。
1.1.2 突触间隙多巴胺能显像
20 世纪80 年代,人们发现丁苯那嗪(tetrabenazine,TBZ)的作用机制与Ⅱ型囊泡单胺转运体(vesicular monoamine transporter,VMAT)在大脑中的结合有关,它能与VMAT 高度特异性结合,且受抗PD药物影响较小,脑内不同区域的结合能力与单胺类神经元的分布区域一致。11C-二氢丁苯那嗪{[11C](+)-dihydrotetrabenazine,[11C](+)-DTBZ}、18F-9-氟丙基-(+)-二氢丁苯那嗪[18F-9-fluoroproply-(+)-dihydrotetrabenazine,18F-AV-133]是较常用的两种VMAT2 显像剂,PD 患者的[11C](+)-DTBZ、18F-AV-133显像均表现为双侧尾状核、壳核摄取减低[16]。
1.1.3 突触后膜多巴胺能显像
突触前黑质纹状体多巴胺的丢失可能导致继发性突触后受体表达发生改变,可能表现为上调,也可能表现为丢失[17]。目前应用较为广泛的多巴胺D1 受体显像剂为11C-SCH 29930、11C-SCH 39166,多巴胺D2受体显像剂为11C-雷氯必利(11C-raclopride)、11C-依替必利(11C-eticlopride)等。以11C-雷氯必利为例,在未经治疗的PD 患者中,纹状体11C-雷氯必利摄取增加,表明患者多巴胺受体上调,但经过多巴胺治疗,纹状体11C-雷氯必利摄取下降,说明多巴胺受体发生下调[18]。突触后膜多巴胺能显像能直观地显示突触后多巴胺受体的密度及变化情况,有助于PD早期诊断[19],但一些抗PD药物的使用会影响它们与多巴胺受体的结合[20],故存在一定局限性。
葡萄糖是大脑最重要的能源物质,18F-脱氧葡萄糖(18F-fluoro-2-deoxyglucose,18F-FDG)是葡萄糖的类似物,18F-FDG PET是目前应用最为广泛的脑内葡萄糖代谢成像技术。脑内葡萄糖代谢与局部神经的完整性和密度密切相关,18F-FDG的摄取会随着神经功能障碍的加重而减少。多巴胺能显像仅能提示多巴胺能神经元受损,但不能区分帕金森综合征,而18F-FDG 相关代谢模式可对其进一步鉴别。近年来,18F-FDG PET 检测PD 相关网络模式(PD related pattern,PDRP)在PD 的早期诊断中起到了一定作用。Teune 等[21]对20 例早期PD 患者进行了18F-FDG PET扫描,确定了PDRP,即双侧前额叶和双侧后顶叶、枕叶(特别是患侧的对侧)等相关大脑皮质代谢减低,而双侧苍白球、双侧壳核、双侧丘脑、脑桥、双侧小脑、双侧初级运动皮质和辅助运动区代谢相对增加。
随着疾病的进展,部分PD 患者会发展成为帕金森病痴呆(Parkinson’s disease dementia,PDD),PDD与阿尔茨海默病(Alzheimer’s disease,AD)在病理上高度重叠,包括Aβ组成的老年斑和过度磷酸化的Tau蛋白组成的神经元纤维缠结[22],因此Aβ显像和Tau 显像可用于PDD 诊断。11C-匹兹堡化合物B[2-(4-N-11C-methylaminophenyl)-6-hydroxybenzothiazole,11C-PIB]特异性结合大脑淀粉样蛋白,Gomperts等[23]研究发现,PDD 患者楔前叶11C-PIB 摄取增加。苯丙咪唑-嘧啶类的放射性标记衍生物18F-AV-1451已被证实可与Tau聚集体结合,Smith等[24]发现PDD患者黑质18F-AV-1451摄取减少。
证据支持由小胶质细胞和星形胶质细胞介导的神经炎症参与了PD 的发病和发展[25],故神经炎症成像也可用于PD的诊断。线粒体转运蛋白(translocator protein,TSPO)在小胶质细胞中表达,因此可作为体内神经炎症的生物标志物[26]。一项研究表明,PD患者双侧中脑的TSPO示踪剂摄取明显高于健康对照组[27]。但神经炎性反应是许多神经退行性疾病的病理改变之一,非PD特异性改变,故神经炎症显像缺乏一定的特异性。
临床上颅脑MR常用于对大脑解剖结构的改变进行评估。常规MR对早期诊断PD存在一定难度,但是随着磁敏感加权成像(susceptibility weighted imaging,SWI)、磁共振扩散加权成像(diffusion weighted imaging,DWI)、功能性磁共振成像(functional magnetic resonance imaging,fMRI)等新兴MR成像序列的出现,使其对PD 的诊断准确率得到了提高,为临床诊治工作提供了更多依据。黑质小体-1是PD 多巴胺能神经元缺失最主要和最早的部位,由于黑质小体-1铁沉积增加,其顺磁性增加,SWI呈低信号,“燕尾征”消失[28],因此高场强SWI 对黑质小体-1信号的评估可以作为一种简单的PD 诊断影像标志物。DWI能够评估水分子的随机运动,磁共振弥散张量成像(diffusion tensor imaging,DTI)则可以提供方向信息,均为神经退行性疾病微结构变化的量化指标。一项研究认为壳核DWI 高信号在区分PD 和帕金森型多系统萎缩(multiple system atrophy-P,MSA-P)方面具有很高的敏感性和特异性[29],另一项研究在用高分辨率DTI技术研究丘脑核团投射纤维完整性时,发现PD 患者的丘脑腹外侧核的各向异性分数(fractional anisotropy,FA)值显著降低[30]。fMRI已被广泛用于研究PD患者的大脑功能网络连接障碍,Hacker 等[31]研究发现,与19 例对照组受试者的fMRI 相比,13 例晚期PD 患者的纹状体与丘脑、中脑、桥脑和小脑的相关性显著降低,在大脑皮层的感觉-运动区、视觉区以及边缘上回也存在局部功能连接的改变。
目前PET/MR成像技术可以在一次扫描中同时获取PET和MR图像,将MR成像的解剖和功能信息与PET 放射性示踪剂的特异性相结合,除了评估大脑新陈代谢和解剖学变化外,还可以同时评估大脑的神经化学反应和大脑活动,提高了时空一致性[32-33]。更先进的MR序列利用内源性对比剂来研究生理(如水扩散)、功能(如血氧水平依赖性对比剂)和新陈代谢(如各种代谢物的相对浓度),它们可以与PET 相结合,实现多模态成像,提供更多额外的信息,提高诊断与评估的效能,例如PET/MR与磁共振血管造影(magnetic resonance angiography,MRA)的同步研究、PET/MR 与无创性MR 血流灌注测量的同步研究等[34-35]。
PD 治疗有效性取决于在造成神经元不可逆损伤之前及时开展治疗,PET/MR 成像可通过大脑的结构和功能信息来进行PD的早期诊断。此外,PET显像剂和MR 成像的组合有助于研究PD 不同病理之间的区域和时间的交叉关系,包括出现的顺序和病理生理变化的定量和相关性评估等[36]。Porter等[37]总结了早期PD的DAT和MR多模式成像特点,发现两者互补大大地提高了PD 早期诊断的准确性和特异性。脑PET/MR 成像在改善和简化PD 诊断方面有很大潜力,它能够将解剖信息集成到PET 数据中、对PET 数据进行部分容积校正和运动校正以及量化PET显像剂的摄取,可通过结合PD的潜在风险因素和发生认知问题的预期时间来改善预后。
PD 和其他非典型帕金森综合征的症状存在交叉重叠,临床表现难以鉴别,如路易体痴呆(dementia with Lewy bodies,DLB)、多系统萎缩(multiple system atrophy,MSA)、进行性核上麻痹(progressive supranuclear palsy,PSP)和皮质基底节变性(corticobasal degeneration,CBD)[38]。PET/MR可通过PET相关代谢模式联合MR解剖信息(包括体积改变、灌注信息等)进行进一步鉴别。Barthel等[39]使用18F-FDG PET/MR对2例帕金森综合征患者进行研究:单一的DAT 单光子发射计算机断层扫描(single photon emission computed tomography,SPECT)并不能鉴别二者,均表现为纹状体摄取减低;而在进行PET/MR成像后,发现其中1例在MR 图像中显示脑萎缩,并在18F-FDG PET成像中显示纹状体和丘脑的葡萄糖代谢减低,此病例诊断为PSP,另一病例则在PET/MR上未见明显异常结构及代谢改变,诊断为PD。孙逊等[40]对24 例PD 患者、10 例MSA 患者和6 例PSP 患者的18F-FDG PET/MR检查进行了回顾性分析,发现葡萄糖代谢水平与脑血流灌注量在特定感兴趣脑区的分布特点有助于帕金森综合征的鉴别诊断。由此可见,PET/MR 对于帕金森综合征的鉴别诊断具有独特的价值。
PD 的主要发病机制为黑质纹状体多巴胺能通路的进行性退变,其大脑灰质(gray matter,GM)体积和密度也发生进行性萎缩。研究发现,早期PD 患者左侧壳核、额下回和岛叶的GM体积较低,右侧枕叶和双侧小脑后叶的GM体积较高,中晚期PD患者左侧小脑后叶、枕叶和右侧辅助运动区GM 体积较低,左侧颞中回GM体积较高[41]。特定的GM结构变化与PD 多巴胺能损失模式或许存在相关性。Choi等[42]使用了18F-FP-CIT PET/MR 研究PD 患者,提示多巴胺能退变相关的GM密度减低主要存在于前纹状体,与多巴胺能退变相关的GM 密度增高主要存在于后纹状体;而皮层GM 密度与纹状体多巴胺减少之间的相关性,在小脑、海马旁回、额叶皮质中表现为正相关,在颞叶和枕叶皮质中则呈负相关。最终结果表明PD 的整体结构变化与纹状体多巴胺能环路退化之间存在密切关系。PET/MR 为PD 发病机制的研究提供了一种新的影像学手段,有助于进一步研究PD发病机制。
目前PD 的主要治疗方式仍是提高脑内多巴胺浓度或刺激多巴胺受体的药物(如左旋多巴等),但这些药物仅能改善PD 的运动症状,并不能减缓或阻止神经退化过程,且长时间使用会产生一系列不良反应。近年来,针对PD 特定功能障碍的分子通路,出现了丘脑底核(subthalamic nucleus,STN)损毁术、基因治疗等新的治疗方法[43]。STN 的过度活动是PD状态的一个公认特征。一项研究表明,STN切开术能有效治疗PD患者的运动症状,并能改善患者的认知状态和抑郁等情绪[44]。Rodriguez-Rojas 等[45]使用18F-FDG PET/MR 研究了8 例PD 患者在单侧磁共振引导聚焦超声(magnetic resonance-guided focused ultrasound,MRgFUS)STN 切开术术前和术后3 个月的FDG 代谢结果显示,治疗后3 个月患者的总体运动评分和对侧运动评分均有显著改善,病变部位存在显著的FDG代谢下降,包括STN和邻近的背内侧白质区域,并向内侧延伸,包括部分红核。此外,在基线时(即治疗前),6 例患者的PDRP表达升高,而MRgFUS STN 切开术后该6 例患者的PDRP 表达显著降低,此代谢网络的改变与统一PD评定量表的运动评分变化显著相关。18F-FDG PET/MR为研究MRgFUS STN切开术对PD患者代谢网络的直接影响提供了研究条件,为术后患者症状改善的机制研究提供了影像学依据。在PD 的基因治疗中,酪氨酸羟化酶和AADC催化酪氨酸合成多巴胺,近年来,已有多种载体系统被用于传递这些酶的多个基因,如AADC的腺相关病毒(adeno-associated virus,AAV)载体的组合等[46]。Seo 等[47]研究了18FDOPA PET/MR在量化PD患者腺相关病毒2型-芳香族氨基酸脱羧酶(AAV2-AADC)基因治疗后AADC表达水平中的应用,对2 例接受AAV2-AADC 壳核输注治疗的PD 患者进行了治疗前后的18F-DOPA PET/MR 检查,结果显示使用AAV2-AADC输注的患者其壳核18F-DOPA显像剂分布显著增加,18F-DOPA PET/MR为检测PD患者AAV2-AADC基因治疗试验中的AADC表达水平提供了一种定量分析方法。
目前PET/MR成像技术可在一次扫描中同时获取PET和MR图像,将MR的解剖和功能信息与PET放射性示踪剂的特异性相结合,结合了PET 和MR在时间和空间上的精确配准,真正实现了多模态成像,为PD 从分子到临床水平的研究提供了全面的影像学依据,为PD 进一步诊疗提供了新的研究手段和更准确的诊断方法。随着设备、技术的不断完善和进步,PET/MR 必将在PD的诊疗和研究中发挥更加广泛的作用。