杨明哲,赵子莹,汤华成,,李良玉,彭思念,李志江,3,
(1.黑龙江八一农垦大学食品学院,黑龙江大庆 163319;2.国家杂粮工程技术中心,黑龙江大庆 163319;3.黑龙江省杂粮加工及质量安全工程技术研究中心,黑龙江大庆 163319)
咸味作为人类不可或缺的基本味之一,是人类感知食物风味的重要基础[1],但长时间食用盐过度摄入会引发高血压等心血管疾病[2]。为贯彻落实《“健康中国2030”规划纲要》,许多食盐替代物出现在大众的视野中,如非钠盐、咸味肽、咸味增强肽及风味改良剂等。非钠盐是指与食用盐性质相似,可以呈现咸味的金属盐类[3],但其只能降低食品中部分钠含量,限制了在食品中的应用。风味改良剂可以弥补减盐导致的咸味下降[4],但需要与其他代盐剂结合使用。咸味肽是一种较为理想的食盐代替物[5],不仅能够满足人类对口味的需求,还可补充人体所需氨基酸,可以真正做到“减盐不减咸”。
咸味肽是指通过酶解等工序对富含蛋白质的原料进行提取、由氨基酸组成的、呈咸味的活性多肽[6]。按食物来源可分为动物源、植物源和酵母源等,其中植物源咸味肽是源于植物蛋白的多肽,可应用于食品减盐领域,具有安全性高、应用范围广等优点,是一种极具潜力的食源性活性肽[7]。为拓展植物源咸味肽的研究现状,本文综述了植物源咸味肽的呈味机理、制备技术、分离鉴定技术,并概述了植物源咸味肽的应用,为进一步促进植物源咸味肽的深入研究和食品研发提供理论依据和参考。
2022 版膳食指南将食盐推荐摄入量调整为小于5 g,但目前中国人均每日食盐摄入量为9.3 g[8],因此减盐成为未来食品科技领域的热点。研究表明,长期高钠摄入会提高高血压等心血管疾病的发病率[9]。因此,开发既能满足人体对咸味的需求,同时又能降低钠离子摄入的食盐代替物是非常必要的。咸味肽不仅可以提高人体对咸味的感知,且大部分咸味肽还具有功能特性,是未来食盐代替物发展的必然趋势。Tada 等[10]第一次在酪蛋白水解物中提取出咸味二肽Orn-β-Ala,其咸味强度与NaCl 相当。国内学者对郫县豆瓣酱发酵过程中产生的呈味肽进行分离和鉴定,结果表明其中有六种肽具有咸味或者咸味增强作用[11]。对豌豆蛋白进行深度酶解,所获得的小分子肽具有较明显的咸味[12]。从中国商业发酵豆渣中分离出 4 种呈味肽,其中 EDGEQPRPF具有咸味和增强咸味的作用[13]。不同原料来源的咸味肽咸度及氨基酸序列的差异,导致其在食品中的应用各不相同,动物源咸味肽如从鱼虾中提取的咸味肽制成的产品,海鲜过敏的人群不能食用。以植物为原料制成的咸味肽应用范围广,可以更好地被人体消化利用。由此可见,开发植物源咸味肽产品尤为重要。
天然存在的氨基酸分为L 型和D 型。L 型氨基酸及其盐类大部分呈苦味、甜味,少部分呈咸味、鲜味和酸味,而D 型氨基酸大多呈甜味[14]。咸味肽主要由2 个及2 个以上的L 型氨基酸组成,咸味二肽结构图见图1[15]。
目前,研究发现咸味受体包括瞬时受体电位香草酸亚基(TRPV1)和上皮钠离子通道(ENaCs)两种[16]。当Na+在口腔中达到一定浓度时,会刺激ENaCs 并感受咸味。TRPV1 不仅对Na+敏感,还对其他离子如K+和Ca2+等敏感。ENaCs 由α、β和γ等3 种亚基组成异源三聚体通道(图2),α亚基主要负责Na+进出细胞,β亚基调控Na+转运的速度,γ亚基负责剪切ENaCs 的特定位点而调节其活性[17]。TRPV1 是介导Ca2+和Na+等单价和二价阳离子的一类跨细胞膜非选择性阳离子通道,TRPV1 通道开放后可产生Na+内流,通过介导细胞内Na+浓度来对咸味感受进行调控[18]。总之,两者皆为咸味传感受体,中低盐浓度可以依靠ENaCs 来感受咸味,而高盐浓度可以通过刺激TRPV1 来感受咸味。咸味肽主要靠激活ENaCs 表达咸味。Anand 等[19]证实半胱氨酸和丝氨酸可以作为通道激活蛋白,协助Na+刺激ENaC 受体。
图2 ENaCs 咸味受体通路Fig.2 Pathway of salty taste receptors of ENaCs
味蕾是位于口腔上皮的感受器官。咸味物质与味蕾中味觉感受器细胞中的受体进行特异性结合,通过味觉神经传递,最后由大脑中的味觉中枢表达[20]。咸味肽的呈味机理不仅与受体的特异性结合有关,还与咸味肽的解离程度和所含特殊阳离子有关。咸味肽呈味的关键在于咸味肽电离出阳离子后,阳离子刺激处于细胞膜上的ENaCs 通道后发生相互作用,进而使Ca2+极化。当细胞的内部带正电时,咸味传感受体释放特定的味觉神经介质,通过舌后部的舌咽神经传递到脑干并感受咸味[21]。
咸味肽的呈味特性与其相对分子质量、氨基酸组成、氨基酸序列和空间结构等密切相关。
咸味肽是一种小分子肽,分子量通常小于1000 Da。刘平等[22]考察分子量不同的五种大豆肽的美拉德反应产物对鸡汤风味的影响,结果表明小于1000 Da的大豆肽呈现了较好的咸味增强效果,表现出明显的咸味和鲜味[23]。研究表明,当分子量小于1000 Da时,咸味肽的咸味表现能力最强。因此,在开发应用咸味肽时,应以相对分子量质量较小的肽类为主。
目前发现的咸味肽主要为咸味二肽和咸味三肽,大部分都与谷氨酸、天冬氨酸片段有关。部分咸味肽来源与结构式见表1。
表1 咸味肽来源与结构式Table 1 Origin and structural formula of salty peptides
当咸味肽含3 个氨基酸以上,必须考虑其空间结构[33]。肽链长度的不同会造成空间结构和电荷分布的不同,另外咸味肽结构中羰基、羧基及酸性氨基酸的存在会导致咸味肽一级结构不能解释和预测咸味肽结构和呈味特性的关系。但目前关于咸味肽空间结构与呈味特性的研究相对较少。
综上所述,咸味肽的呈味特性与氨基酸的相对分子质量、组成、序列及空间结构有关,研究咸味肽从咸味肽的构效关系中入手,可以较好的开发咸味肽及其产品。
植物源咸味肽的制备方法主要有化学水解法[34]、酶水解法[35]、生物工程法[36]和微生物发酵法[37];合成方法包括化学合成法中的固相合成法和液相合成方法[38]。制备方法中比较常用的有酶解法及微生物发酵法,化学合成法也被广泛应用于咸味肽的合成中。植物源咸味肽的各种制备方法见表2。
表2 植物源咸味肽制备方法比较Table 2 Comparison of preparation methods of plant-derived salty peptides
4.1.1 化学水解法 化学水解法分为酸水解法和碱水解法。在酸性或碱性的条件下,蛋白质可以发生反应,产生氨基酸[39]。Jeon 等[40]向韩国大酱汤中添加经过酸水解的植物蛋白,结果表明酸水解后的植物蛋白具有明显的增咸作用。蛋白质的化学水解法具有提取快速及彻底的优点,但是时间和水解温度不易控制,并且会引起消旋作用,破坏敏感氨基酸。因此,化学水解法较少应用于生产。
4.1.2 酶水解法 酶水解法是指使用单个或复合蛋白酶在最适条件下水解蛋白质,并获得具有呈味效果的功能肽[41]。使用酶水解后的植物蛋白与还原糖混合制备美拉德反应产物,其产物具有明显的咸味和咸味增强作用[42]。酶水解法具有稳定性好、操作方便、过程可控、专一性强等优点,特别在制备咸味肽方面,可以最大保留咸味肽的风味及营养。因此,酶水解法为制备植物源咸味肽最常用、最安全的方法,被广泛应用于植物源咸味肽的制备。
4.1.3 生物工程法 生物工程法是指对植物基因组分的DNA 片段进行分离,而后此DNA 片段被克隆到适宜的载体,并导入受体细胞,通过细胞表达得到咸味肽[43]。已有报道证实,可采用生物工程法制备咸味二肽Gly-Asp[44]。该方法具有原料价格低廉、咸味肽产率高以及特异性高等优点,但在DNA 重组过程中对灭菌的要求较为严格,并未得到广泛的应用。
4.1.4 微生物发酵法 微生物发酵法是指利用微生物发酵蛋白质底物从而来生产咸味肽的方法[45]。Suzuki 等[25]利用地衣芽孢杆菌对大豆蛋白进行发酵,所得的产物经过γ-谷氨酰转肽酶转化后具有明显的咸味增强作用。该方法不需要使用化学试剂,使用的菌种易培养,培养周期短,而且发酵过程还可以去除底物中存在的高过敏性因子及抗营养因子。但不同的菌种差异较大、发酵过程难以控制等缺点在应用中仍存在限制,有待进一步开发。
化学合成法是指通过氨基酸的缩合反应形成酰胺键来合成咸味肽,主要有液相合成法和固相合成法[46]。目前化学合成法仍为合成呈味肽的首选方法,因为此方法可以合成大量的所需目标肽。
4.2.1 液相合成法 液相合成法作为最早应用于多肽合成的方法,主要分为逐步偶联反应和肽段偶联反应[47]。逐步偶联反应是将多肽链的C 端逐步与氨基酸连接直到整个多肽链完成。肽段偶联反应大多先合成各个所需片段,再将各个所需片段合成目标肽[48]。液相合成法具有成本相对较低、中间产物可以优化等优点,主要用于合成长肽链。因咸味肽大部分为二肽或者三肽,液相合成法并未广泛应用在咸味肽的合成中。
4.2.2 固相合成法 固相合成法是指以共价键的方式将肽链末端的羟基与高分子树脂连接,氨基酸通过缩合反应将脱保护的N 端与第二个氨基酸的活化羧基结合,进行缩合,洗脱,再缩合的重复操作,从而达到目标肽的长度,而后从高分子树脂上裂解下来,分离后纯化,最后获得目标多肽[49]。固相合成法可以根据α-氨基酸保护基不同,可分为Boc 法和Fmoc法。Feng 等[50]通过固相合成法合成Gly-Leu-Pro-Asp 和Gly-His-Gly-Asp 两种咸味肽并添加到鸡肉汤中,可以显著增强鸡肉汤的咸味和鲜味。对比液相合成法,固相合成法操作简便,技术成熟,合成的多肽纯度较高。目前,固相合成法被广泛用于多肽的合成中。
植物源咸味肽的分离纯化通常采用超滤技术、凝胶过滤色谱技术以及高效液相色谱技术等。但只使用一种分离纯化技术很难获得较为纯净的植物源咸味肽,一般采用多种分离纯化技术联用。
5.1.1 超滤技术 超滤技术是指将溶液中的物质通过不同孔径的超滤膜而逐步达到分离纯化及浓缩的技术手段[51]。超滤技术作为一种快速、经济和环保的技术手段,其原理是利用空气压力使物质溶液穿透超滤膜,小于孔径的小分子物质透过超滤膜被收集,大于孔径的大分子物质被截留在超滤膜上,从而完成物质溶液的分离纯化,常用于>10 kDa、5~10 kDa、3~5 kDa、1~3 kDa 及<1 kDa 分子量肽段的分离[52],结合其他分离纯化技术联用得到单一纯化的肽。Kong 等[53]利用超滤技术与其他技术联合使用,成功从大豆种子水解物中分离出咸味肽,该咸味肽可作为味觉增强剂添加到食品中。
5.1.2 凝胶过滤色谱技术 凝胶过滤色谱技术是利用分子筛原理,根据大小分子在不同的时间流出从而达到分离的目的[54]。被分离的咸味肽组分随着流动相在不同时间流出,分子越大越易收集,从而实现咸味肽的分离。Xia 等[55]通过凝胶过滤色谱技术从秀珍菇蛋白水解物中成功分离γ-谷酰胺肽,结果证明,γ-谷酰胺肽可以显著地增加咸味和鲜味。
5.1.3 高效液相色谱技术 高效液相色谱技术是植物源咸味肽分离纯化最常用的技术之一。其原理是利用物质在两相中的分配系数差异,随着流动相的洗脱,不同性质的组分在不同时间流出,进而达到分离纯化的目的[56]。此技术因其分离范围广、分离效果好及选择性好等优势被广泛应用于咸味肽分离纯化中。熊建等[57]使用高效液相色谱技术对酵母源咸味肽进行相对分子量测定,结果表明,酵母抽提物中<1 kDa 肽段的咸味肽显著提升咸味和咸味。
由于咸味肽已成为国内外的研究热点,为促进咸味肽的发展,越来越多的鉴定方法应用于咸味肽中。目前主要的鉴定方法有质谱法、傅里叶变换红外光谱技术、核磁共振技术及分子对接技术等。
5.2.1 质谱法 质谱法是利用磁场和电场将运动中的离子按照其质荷比分离后进行鉴定的方法[58]。因为此方法具有高特异性、灵敏度、鉴定速度快及操作简便等优点,已广泛应用在咸味肽氨基酸序列和相对分子质量鉴定中。利用液相色谱-质谱技术对以大豆为原料的发酵食品中的咸味肽进行定性和定量分析,研究结果表明酱油及大酱等大豆发酵食品中咸味肽的含量最高可达620 μg/g[27]。
5.2.2 傅里叶变换红外光谱技术 傅里叶变换红外光谱技术利用红外吸收光谱的谱峰位置来鉴定咸味肽,可以根据咸味肽不同结构产生不同的特征吸收带,以此确定咸味肽的二级结构[59]。利用傅里叶变换红外光谱技术成功鉴别出咸味肽的二级结构[60]。傅里叶变换红外光谱技术具有成本低、鉴定损失少、制样简单等优点,应用于鉴定咸味肽。
5.2.3 核磁共振技术 随着核磁共振技术的广泛应用,该技术已经成为蛋白多肽分析的主要技术之一[61]。已有报道利用核磁共振技术可以成功鉴定出多肽的结构[62]。目前,核磁共振技术已逐渐成为蛋白质多肽鉴定的主要技术之一,未来此技术可以应用与鉴定咸味肽的氨基酸序列和咸味肽混合物中各组分的含量的测定中。
5.2.4 分子对接技术 分子对接技术是呈味肽与受体蛋白进行特异性结合,进而识别出咸味肽氨基酸的序列,是一种快速且准确的新型鉴定技术[63]。目前,已经有T1R1/T1R3[64]及TMC4[65]等受体应用于咸味肽鉴定。Shan 等[66]将酵母抽提物与T1R1/T1R3 进行特异性结合,结果表明,KLLLLPKP、GGISTGNLN、LVKGGLIP 和SSAVK 具有咸味及咸味增强作用,其中GGISTGNLN 的咸味阈值为157.47 mg/L。Shen等[67]利用TMC4 对酵母抽提物中的咸味肽进行鉴定,进一步确定PN、NSE、NE、SPE 为咸味肽。综上所述,利用受体蛋白可以大大提高咸味肽的可识别性,作为一种新型技术可以进一步提高咸味肽的开发及应用。
植物源咸味肽作为咸味肽中的一种,不仅可以增强咸味感知,还具有一定的功能特性,效果优于非钠盐和风味改良剂。随着咸味肽的不断发展,目前已经应用在咸味香精、增咸烹饪盐及咸味增强剂等方面。
自20 世纪80 年代开始,我国咸味香精的研究已经过快速发展,目前在咸味香精领域已经处于世界前列[68]。目前,利用美拉德反应制备咸味香精已成为研究重点,其制备的咸味香精与调制香精相比,具有香气饱满及口感细腻等优点。咸味香精是植物蛋白酶解后产生的咸味肽与还原糖的美拉德反应产物。以大豆粕酶解液为原料,通过美拉德反应制备咸味香精,并利用高效液相色谱和气相色谱-质谱对咸味香精进行分析,检测出癸醛、2-癸酮、2-己基呋喃等物质,对肉香味的生成具有重要作用[69]。
为响应国家低钠减盐的号召,利用咸味肽可以增强咸味的特点开发的增咸烹饪盐已经成为了一种新的趋势。咸味肽可以提高食用盐的咸度,因此可以减少食盐中的钠含量,进而减少因过度摄入钠离子导致的高血压等心血管疾病。当前已有产品将酵母源咸味肽、水果有机酸按照一定比例加入精制食盐中,其咸度在精制食盐的基础上提高30%,做到真正的减盐不减咸[70]。
咸味增强剂是利用酶解技术制备的具有咸鲜风味,并且具有营养保健的功能,可用于开发功能性食品。王欣等[71]利用0.1%的木瓜蛋白酶对哈氏仿对虾蛋白进行酶解,得到的咸味肽咸度能将10 mmol/L提高到55 mmol/L。同时也有研究使用木瓜蛋白酶酶解淘汰蛋鸡来获得咸味肽,结果表明,咸味肽可以将50 mmol/L NaCl 的咸度提高26.2%[72]。
咸味肽作为具有一定的增咸、增鲜作用的天然咸味剂,在响应国家低钠减盐号召的同时,也满足消费者对天然产品的需求,因此开发咸味肽产品,受到了众多消费者的欢迎。我国作为农业大国,拥有丰富的农业资源,但对植物源咸味肽的探究相对较少。目前,关于植物源咸味肽的制备及应用过程中需要解决以下问题:a.目前对于植物源咸味肽的呈味机理、构效关系、制备鉴定及应用方面仍需进一步深入;b.如何基于鉴定技术客观反映不同制备方法产出的植物源咸味肽的呈味效果;c.目前制备植物源咸味肽的成本较高,应探索出更简便、高效的制备技术。植物源咸味肽不仅可以降低人体钠离子的摄入量,而且还具有一定的咸度,可以在一定条件下起到代替食用盐的作用,同时可以降低人体高血压等心血管疾病的发病率,植物源咸味肽的开发与应用具有广阔的前景。