庄曌 曹宏 刁玉晶 王寿世
[摘要]儿童接触丙泊酚可能对神经元造成毒性损伤,并且与其成年后长期认知功能下降有关。其原因可能是由于多种机制诱导的神经细胞凋亡和抑制神经所致,其中microRNAs在这一过程中起着关键作用。本文对microRNAs在丙泊酚诱导的神经毒性作用中的作用和影响进行综述,为精准的脑神经保护提供参考依据。
[关键词]二异丙酚;中枢神经系统药物;神经中毒综合征;微RNAs;综述
[中图分类号]R595.471;R977.9[文献标志码]A[文章编号]2096-5532(2023)03-0466-05
doi:10.11712/jms.2096-5532.2023.59.103[开放科学(资源服务)标识码(OSID)]
[网络出版]https://link.cnki.net/urlid/37.1517.R.20230807.1616.007;2023-08-0809:10:48
RESEARCH PROGRESS ON ROLE OF MICRORNAS IN PROPOFOL-INDUCED NEUROTOXICITY ZHUANG Zhao, CAO Hong, DIAO Yujing, WANG Shoushi(Department of Anesthesiology, Qingdao Central Hospital Affiliated to Qingdao University, Qingdao 266042, China)
[ABSTRACT]Exposure to propofol in children may cause damage to neurons and even a long-term cognitive decline in adulthood. This may involve multiple mechanisms that induce neuronal apoptosis and neural inhibition, in which microRNAs play a key role. This paper reviews the role of microRNAs in propofol-induced neurotoxicity, aiming to provide a basis for precise cerebral neuroprotection.
[KEY WORDS]propofol; central nervous system agents; neurotoxicity syndromes; microRNAs; review
妊娠期女性因为与分娩无关的手术而接触麻醉药的情况每年都有很多,每年也有数以百万计婴幼儿和学龄前儿童因为手术而接触麻醉药[1]。全身麻醉已被证明与中枢神经系统异常发育相关,可能诱发严重的神经毒性影响发育中的大脑,并最终导致长期的神经行为和神经认知障碍[2-3]。麻醉药物诱发儿童神经毒性的可能性引起了对小儿麻醉安全性的担忧。最近,美国食品和药物管理局警告孕妇和儿童非必要不使用麻醉剂,因为需要进一步的研究来阐明这些麻醉剂对发育中的大脑的影响[4]。本文对microRNAs(miRs)在丙泊酚诱导的神经毒性作用中的作用和影响进行综述。
1丙泊酚造成神经毒性的证据
丙泊酚是当前临床麻醉中最常用的静脉药物。近年来,已有研究报道了丙泊酚对幼年动物的神经毒性作用[5-8]。对啮齿动物和非人灵长类动物的临床和临床前研究表明,应用丙泊酚麻醉,特别是在孕晚期或幼儿期,可能诱发严重的神经毒性影响发育中的大脑,并最终导致长期的神经行为和神经认知缺陷[9-10]。
虽然满足手术条件所需的丙泊酚可能是无害的,但长期和反复接触丙泊酚可能会导致认知能力下降[10]。一些被认为与丙泊酚引起的神经毒性有关的机制涉及神经元的凋亡,可能是通过线粒体过度的分裂导致神经元细胞的凋亡从而影响大脑发育[11]。丙泊酚影响大脑发育可能还涉及其他几个过程,包括神经生成、神经元迁移和分化、动作电位的产生和传播、突触生成等[12-14]。因此,神经细胞凋亡可能不是丙泊酚所致的唯一后果。丙泊酚对神经细胞的有害效应的潜在机制很多都已被报道,如钙超载、线粒体分裂和神经营养素表达失调等。
2miRs及其生理意义
miRs是一种小型单链非编码RNA,它会对基因表达产生影响[15-16]。基于miRs对RNA表达和翻译的抑制作用,它们在细胞增殖、细胞迁移、细胞死亡、细胞分化、信号转导、基因表达、免疫应答和新陈代谢等重要生物学过程中均发挥重要的作用[15]。为了调节基因的表达,miRs与信使RNA(mRNA)中的一个互补序列相结合,称为3′非翻译区(3′UTR)[17]。似乎miRs调控着高达65%的人类基因的表达水平。一个miR可以调控不同的基因,一个基因可以被几个miR调控,从而导致了一个复杂的网络,所以需要更多的研究来体现其调控的各个方面。许多研究描述了各种人类疾病的miRs失调,如癌症[18]和神经退行性疾病[19]。在大脑中,miRs通过调节mRNA的表达水平,控制着细胞内的各种生理功能,从而调节许多神经生成过程[20]。近年来,基因組学和微阵列分析领域有了快速进展,这使得对miRs的作用和调控的彻底剖析成为可能。miRs已经被证明可以直接调节轴突与树突的生长、突触的生成和神经的生成和凋亡。miRs的表达对发育中和成熟的神经元都至关重要。当受到环境刺激时,miRs的表达出现差异[21]。
一些研究表明,miRs可能通过凋亡信号通路在丙泊酚诱导的神经毒性中发挥关键作用[22]。很多研究证明丙泊酚可以调节和改变miRs的表达。因此,确定这些差异表达的miRs的作用靶点,可能有助于阐明丙泊酚对神经造成影响的特定通路。
3miRs在丙泊酚诱导的神经毒性中的作用
自从miRs被发现后,其在各种重要的生物学途径中的作用引起了人们的广泛关注。目前,世界各地有多个研究中心对miRs在麻醉药引起的神经毒性方面的作用进行了研究。有研究表明,在孕晚期或幼儿期使用丙泊酚可能诱发严重的神经毒性并影响发育中的大脑[9-10]。丙泊酚的神经毒性可能部分是通过影响miRs介导的。
3.1miR-148b-3p
研究发现,核因子κB(NF-κB)是一种多效性因子,它的过量产生与某些人类中枢神经系统疾病有关,如细菌性脑膜炎、多发性硬化症和脑型疟疾等,NF-κB功能的丧失或不足部分破坏了中枢神经系统的完整性[23]。人磷脂酰肌醇三羟基激酶(PI3K)激活的蛋白激酶B(Akt)通过B淋巴细胞瘤-2基因相关启动子(Bad)、Caspase-9、Forkhead和NF-κB的磷酸化抑制细胞凋亡,Akt是一种重要的抗凋亡调节因子[24]。研究发现,在丙泊酚诱导的PC-12细胞中,miRNA-148B-3p的过表达抑制了PI3K和磷酸化蛋白激酶(p-Akt)蛋白的表达,从而促进了NF-κB的表达,导致了神经毒性和神经炎症的发生[25]。
3.2miR-455-3p
miR-455-3p被认为是一种潜在的神经保护因子,能够挽救创伤性脑损伤小鼠的行为缺陷[26]。miR-455-3p还可通过调节淀粉样前体蛋白提高阿尔茨海默病期间神经母细胞瘤细胞的存活率,同时减少细胞凋亡[27]。对丙泊酚诱导的神经元研究发现,人酪氨酸蛋白激酶受体A4(EphA4)表達水平升高,miR-455-3p可以靶向降低丙泊酚诱导的神经元中EphA4的表达[28]。一些研究发现,EphA4的过表达可以加重脑缺血再灌注损伤[29],EphA4表达下调可抑制缺血-再灌注期间神经细胞凋亡,并抑制海马突触功能障碍[30-31]。丙泊酚抑制了miR-455-3p的表达,上调EphA4的表达,从而导致了神经毒性。
3.3miR-21
miR-21具有良好的抗凋亡作用,并在神经元保护中发挥重要作用[32]。一项研究发现,miR-21的过表达可以减轻丙泊酚诱导的人胚胎干细胞来源神经元的细胞死亡,miR-21的敲除加重了丙泊酚的毒性作用。表明miR-21在神经细胞死亡中发挥着重要的作用[33]。信号转导及转录激活因子3(STAT3)本身及其与miR-21表达的改变相结合具有抗凋亡作用[34]。单独暴露于20 mg/L浓度丙泊酚后,STAT3和miR-21的表达显著下调,提示这一途径参与了丙泊酚诱导的细胞死亡[33]。Akt在细胞存活和凋亡中起着重要作用。快速发育生长因子同源蛋白2抗体(sprouty2)是miR-21的直接靶标,可以起到负调节蛋白表达的作用[35]。相关研究发现,sprouty2的表达随着丙泊酚的增加而增加,同时磷酸化丝氨酸/苏氨酸蛋白激酶的表达减少,这表明STAT3/miR-21/sprouty2/Akt通路在丙泊酚神经毒性中起着至关重要的作用[33]。
3.4miR-214
已观察到丙泊酚诱导的神经毒性与促炎因子的释放有关[36]。丙泊酚诱导胎鼠海马区神经元促炎因子的释放,这可能导致神经元谷氨酸的产生增加,从而增加细胞凋亡[37]。研究发现,miR-214过表达促进了丙泊酚处理的神经细胞中炎症因子的释放,诱导的神经细胞凋亡,抑制了细胞增殖和细胞周期蛋白D1(cyclinD1)的表达,促进了caspase-3活性和Bax蛋白的表达[38]。
3.5miR-383
MiR-383已在各种类型的癌症、不孕症和其他疾病的病人中发现其下调。它的异位表达已被证明与细胞生长、凋亡和凋亡相关蛋白的表达有关。研究表明,丙泊酚介导miR-383表达下调,Bax/Bcl-2上调,突触后致密蛋白95(PSD-95)和磷酯化环腺苷酸应答元件结合蛋白(p-CREB)表达降低,PI3K/Akt信号通路失活,导致海马神经元凋亡[39]。
3.6miR-582-5p
长时间使用丙泊酚显示出明显的细胞凋亡和β-微管蛋白阳性神经元的减少,不同剂量的丙泊酚对新生小鼠海马神经元均有明显的毒副作用[40-41]。丙泊酚处理后,神经元存活率明显降低,而凋亡相关蛋白的表达明显增加。值得注意的是,丙泊酚以剂量依赖的方式抑制新生小鼠海马神经元细胞miR-582的表达,促进Rho关联含卷曲螺旋结合蛋白激酶1(Rock1)的表达。提示丙泊酚对新生小鼠海马神经元的毒副作用可能与miR-582-5p和Rock1有关[42]。
3.7miR-665
miR-665可以负调控Bcl-2样蛋白11(BCL2L11),通过caspase-3介导的机制参与丙泊酚的神经毒性作用。应用丙泊酚后能显著上调miR-665的表达,而miR-665基因敲除可减轻丙泊酚诱导的人胚胎干细胞(hESC)源性神经元死亡,miR-665的过表达加剧了丙泊酚的毒性作用。
3.8miR-215
有研究表明,miRs与神经系统疾病有关,并且miRs失调在神经毒性中起着重要作用[43-44]。一项研究发现,丙泊酚可以诱导miR-215表达下调,通过上调大型肿瘤抑制因子2(LATS2)表达导致神经细胞的凋亡和氧化应激的发生[45]。此外,miR-215过表达通过靶向LATS2减轻了这一现象。这提示miR-215可能为治疗丙泊酚诱导的发育中神经细胞凋亡提供一个新的治疗靶点。
3.9miR-496
已有研究证明,miR-496在细胞凋亡和神经损伤方面有重要意义[46-48]。脑缺血再灌注损伤后,miR-496在脑组织中的表达减少,它通过抑制Bcl-2样蛋白14(BCL2L14)的表达而减轻脑缺血再灌注损伤[46]。在神经毒物3,3′-亚氨基二丙腈(IDPN)引起的神经毒性过程中,miR-496在脑桥和延髓受到相当程度的抑制[47]。有研究发现,PFC神经元miR-496的改变可能参与了丙泊酚诱导的神经毒性,进一步的实验表明,miR-496过表达可减轻丙泊酚对PFC神经元的神经毒性[48]。提示miR-496可作为神经调节剂调节丙泊酚对PFC神经元的毒性作用。
3.10miR-9-5p
研究表明,小鼠神经干细胞经过丙泊酚处理后miR-9-5p的表达上调,同时caspase-3、Bax等凋亡蛋白表达增加,抗凋亡蛋白Bcl-2表达降低,细胞存活率下降。这些结果提示,丙泊酚似乎是通过miR-9-5p损伤神经干细胞[49]。趋化因子C-X-C-基元受体4(CXCR4)是一种位于细胞膜表面的G蛋白偶联受体。研究发现,CXCR4存在于神经干细胞中,并与趋化因子C-X-C配体12(CXCL12)一起参与维持神经干细胞的特性[50]。研究发现,CXCR4的表达在丙泊酚处理的神经干细胞中明显上调,并且miR-9-5p的过表达也增加了CXCR4在神经干细胞中的表达,提示丙泊酚通过miR-9-5p促进CXCR4的表达[51]。
3.11miR-363-3p
越来越多的研究证明,miR-363-3p对多种神经细胞的凋亡似乎都起到了作用[51-52]。接受丙泊酚麻醉的小鼠海马神经元和暴露在丙泊酚刺激下的SH-SY5Y细胞内的mir-363-3p表达都有上调的改变,促进了神经元的氧化应激和凋亡[51-52]。单磷酸腺苷反应元件结合蛋白(CREB)是真核细胞中的一种核调节因子,在神经元的抗凋亡、突触形成、学习和记忆等方面发挥着重要的调节作用。研究证实,丙泊酚可调节miR-363-3p/creb信号通路,促进SH-SY5Y细胞的氧化应激和凋亡,从而引起神经毒性[52]。
3.12miR-141-3p
最近的研究结果表明,miRs表达的变化在不同的疾病发展过程中起重要作用,包括神经系统疾病在多种刺激物诱导的细胞凋亡中起重要作用[39,53]。miRs在调节P53上调凋亡调节因子(PUMA)表达和调节细胞存活方面的作用已经得到充分证实[54]。一项研究结果显示,在人胚胎干细胞中miR-206、PUMA和caspase-3在暴露于丙泊酚后表达显著上调,miR-206可以负向调控丙泊酚诱导的PUMA和裂解caspase-3表达,敲除PUMA可抑制丙泊酚诱导的细胞死亡和裂解caspase-3激活,但不影响丙泊酚诱导的miR-206上调,这表明miR-206/PUMA通路参与了丙泊酚诱导的细胞死亡[55]。
3.13miR-132
一些早期的研究已经表明,麻醉后的记忆障碍可能会导致海马树突棘功能障碍,而树突棘作为学习和记忆功能的结构基础已经被认识了相当长的时间[56]。最近的研究发现,miR-132已被证明在海马神经元的形态发生中发挥关键作用,特别是在介导树突生长和棘突形成方面[57]。一项研究显示,反复丙泊酚麻醉导致miR-132表达水平显著下调,海马区树突棘数量减少,最终导致学习和记忆功能的障碍[58]。
3.14miR-34a
miR-34a的特点是促进肿瘤细胞的凋亡,是p53的下游靶点[59]。研究发现,miR-34a在调节海马神经元凋亡中有重要作用,miR-34a及其靶mRNA被认为是通过MAPK/ERK信号通路调节神经元凋亡的关键开关,miR-34a可能是术后认知功能障碍的潜在治疗靶点[60]。
4小结
综上所述,miRs参与了丙泊酚诱导的神经毒性,后者甚至会导致认知功能障碍和记忆障碍。但是,关于miRs在丙泊酚诱导的神经毒性中的作用的人体研究数据很少。一些体外实验,无法在人体内复制,也无法对人类脑组织进行取材分析。下一步的研究方向应该更多地关注miRs表达失衡及其后续靶点如何参与诱导神经毒性。每天都有人因为手术或者需要长时间的镇静而应用丙泊酚,所以了解这种机制至关重要。
[參考文献]
[1]KUCZKOWSKI K M. The safety of anaesthetics in pregnant women[J]. Expert Opinion on Drug Safety, 2006,5(2):251-264.
[2]JEVTOVIC-TODOROVIC V. Exposure of developing brain to general anesthesia: what is the animal evidence[J]? Anesthe-siology, 2018,128(4):832-839.
[3]VUTSKITS L, XIE Z C. Lasting impact of general anaesthesia on the brain: mechanisms and relevance[J]. Nature Reviews Neuroscience, 2016,17(11):705-717.
[4]STOCKWELL S. FDA anesthesia warning for pregnant women, children[J]. The American Journal of Nursing, 2017,117(4):18.
[5]CHIDAMBARAN V, COSTANDI A, DMELLO A. Propofol: a review of its role in pediatric anesthesia and sedation[J]. CNS Drugs, 2015,29(7):543-563.
[6]YANG B, LIANG G, KHOJASTEH S, et al. Comparison of neurodegeneration and cognitive impairment in neonatal mice exposed to propofol or isoflurane[J]. PLoS One, 2014,9(6):e99171.
[7]GUO P P, HUANG Z B, TAO T, et al. Zebrafish as a model for studying the developmental neurotoxicity of propofol[J]. Journal of Applied Toxicology, 2015,35(12):1511-1519.
[8]KAJIMOTO M, ATKINSON D B, LEDEE D R, et al. Propofol compared with isoflurane inhibits mitochondrial metabolism in immature swine cerebral cortex[J]. Journal of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism, 2014,34(3):514-521.
[9]CREELEY C, DIKRANIAN K, DISSEN G, et al. Propofol-induced apoptosis of neurones and oligodendrocytes in fetal andneonatal rhesus macaque brain[J]. British Journal of Anaes-thesia, 2013,110(Suppl 1): i29-i38.
[10]GAO J, PENG S J, XIANG S Q, et al. Repeated exposure to propofol impairs spatial learning, inhibits LTP and reduces CaMKIIα in young rats[J]. Neuroscience Letters, 2014,560:62-66.
[11]TWAROSKI D M, YAN Y S, ZAJA I, et al. Altered mitochondrial dynamics contributes to propofol-induced cell death in human stem cell-derived neurons[J]. Anesthesiology, 2015,123(5):1067-1083.
[12]HUANG J, JING S, CHEN X, et al. Propofol administration during early postnatal life suppresses hippocampal neurogenesis[J]. Molecular Neurobiology, 2016,53(2):1031-1044.
[13]JEVTOVIC-TODOROVIC V. General anesthetics and neurotoxicity: how much do we know[J]? Anesthesiology Clinics, 2016,34(3):439-451.
[14]POPI J, PEI V, MILANOVI D, et al. Induction of TNF-α signaling cascade in neonatal rat brain during propofol anesthesia[J]. International Journal of Developmental Neuroscience: the Official Journal of the International Society for Developmental Neuroscience, 2015,44:22-32.
[15]OLCUM M, TUFEKCI K U, GENC S. microRNAs in genetic etiology of human diseases[M]//miRNomics. New York: Humana, 2022:255-268.
[16]TFEKCI K U, ONER M G, MEUWISSEN R L J, et al. The role of microRNAs in human diseases[J]. Methods in Molecular Biology (Clifton, N J), 2014,1107:33-50.
[17]ALI SYEDA Z, LANGDEN S S S, MUNKHZUL C, et al. Regulatory mechanism of microRNA expression in cancer[J]. International Journal of Molecular Sciences, 2020,21(5):1723.
[18]HUSSEN B M, HIDAYAT H J, SALIHI A, et al. micro-RNA: a signature for cancer progression[J]. Biomedicine & Pharmacotherapy, 2021,138:111528.
[19]CHU A J, WILLIAMS J M. Astrocytic microRNA in ageing, inflammation, and neurodegenerative disease[J]. Frontiers in Physiology, 2022,12:826697.
[20]NAMPOOTHIRI S S, RAJANIKANT G K. Decoding the ubiquitous role of microRNAs in neurogenesis[J]. Molecular Neurobiology, 2017,54(3):2003-2011.
[21]LIN D, LIU J Y, HU Z H, et al. Neonatal anesthesia exposure impacts brain microRNAs and their associated neurodevelopmental processes[J]. Scientific Reports, 2018,8(1):10656.
[22]SUN W C, LIANG Z D, PEI L. Propofol-induced rno-miR-665 targets BCL2L1 and influences apoptosis in rodent developing hippocampal astrocytes[J]. NeuroToxicology, 2015,51:87-95.
[23]HUANG H, HUANG Q J, WANG F X, et al. Cerebral ischemia-induced angiogenesis is dependent on tumor necrosis factor receptor 1-mediated upregulation of α5β1 and αVβ3 integrins[J]. Journal of Neuroinflammation, 2016,13(1):227.
[24]ZUO D Y, LIN L, LIU Y M, et al. Baicalin attenuates ke-tamine-induced neurotoxicity in the developing rats: involvement of PI3K/Akt and CREB/BDNF/bcl-2 pathways[J]. Neurotoxicity Research, 2016,30(2):159-172.
[25]WANG M Y, SUO L Y, YANG S, et al. CircRNA 001372 reduces inflammation in propofol-induced neuroinflammation and neural apoptosis through PIK3CA/Akt/NF-κB by miRNA-148b-3p[J]. Journal of Investigative Surgery: the Official Journal of the Academy of Surgical Research, 2021,34(11):1167-1177.
[26]GUO S W, ZHEN Y W, ZHU Z Q, et al. Cinnamic acid rescues behavioral deficits in a mouse model of traumatic brain injury by targeting miR-455-3p/HDAC2[J]. Life Sciences, 2019,235:116819.
[27]KUMAR S, REDDY A P, YIN X L, et al. Novel microRNA-455-3p and its protective effects against abnormal APP processing and amyloid beta toxicity in Alzheimers disease[J]. Biochimica et Biophysica Acta Molecular Basis of Disease, 2019,1865(9):2428-2440.
[28]ZHU X J, LI H F, TIAN M, et al. miR-455-3p alleviates propofol-induced neurotoxicity by reducing EphA4 expression in developing neurons[J]. Biomarkers, 2020,25(8):685-692.
[29]CHEN F B, LIU Z Y, PENG W, et al. Activation of EphA4 induced by EphrinA1 exacerbates disruption of the blood-brain barrier following cerebral ischemia-reperfusion via the Rho/ROCK signaling pathway[J]. Experimental and Therapeutic Medicine, 2018,16(3):2651-2658.
[30]LI J G, LIU N H, WANG Y, et al. Inhibition of EphA4 signaling after ischemia-reperfusion reduces apoptosis of CA1 pyramidal neurons[J]. Neuroscience Letters, 2012,518(2):92-95.
[31]FU A K, HUNG K W, HUANG H Q, et al. Blockade of EphA4 signaling ameliorates hippocampal synaptic dysfunctions in mouse models of Alzheimers disease[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014,111(27):9959-9964.
[32]BULLER B, LIU X S, WANG X L, et al. microRNA-21 protects neurons from ischemic death[J]. The FEBS Journal, 2010,277(20):4299-4307.
[33]TWAROSKI D M, YAN Y S, OLSON J M, et al. Down-re-gulation of microRNA-21 is involved in the propofol-induced neurotoxicity observed in human stem cell-derived neurons[J]. Anesthesiology, 2014,121(4):786-800.
[34]SHEN X H, HAN Y J, ZHANG D X, et al. A link between the interleukin-6/Stat3 anti-apoptotic pathway and microRNA-21 in preimplantation mouse embryos[J]. Molecular Reproduction and Development, 2009,76(9):854-862.
[35]FENG Y H, WU C L, SHIAU A L, et al. microRNA-21-mediated regulation of Sprouty2 protein expression enhances the cytotoxic effect of 5-fluorouracil and metformin in colon cancer cells[J]. International Journal of Molecular Medicine, 2012,29(5):920-926.
[36]AN K, SHU H, HUANG W, et al. Effects of propofol on pulmonary inflammatory response and dysfunction induced by cardiopulmonary bypass[J]. Anaesthesia, 2008,63(11):1187-1192.
[37]ZHOU C H, ZHU Y Z, ZHAO P P, et al. Propofol inhibits lipopolysaccharide-induced inflammatory responses in spinal astrocytes via the toll-like receptor 4/MyD88-dependent nuc-lear factor-κB, extracellular signal-regulated protein Kinases1/2, and p38 mitogen-activated protein kinase pathways[J]. Anesthesia and Analgesia, 2015,120(6):1361-1368.
[38]GUO X K, CHENG M H, KE W Q, et al. microRNA-214 suppresses propofol-induced neuroapoptosis through activation of phosphoinositide 3-kinase/protein kinase B signaling by targeting phosphatase and tensin homolog expression[J]. International Journal of Molecular Medicine, 2018,42(5):2527-2537.
[39]WANG X L, DING G Y, LAI W, et al. microRNA-383 upregulation protects against propofol-induced hippocampal neuron apoptosis and cognitive impairment[J]. Experimental and Therapeutic Medicine, 2018,15(4):3181-3188.
[40]LIU F, LIU S L, PATTERSON T A, et al. Protective effects of xenon on propofol-induced neurotoxicity in human neural stem cell-derived models[J]. Molecular Neurobiology, 2020,57(1):200-207.
[41]JIANG L L, YANG F Y, ZHAO Q, et al. microRNA-665 mediates propofol-induced cell apoptosis in human stem cell-derived neurons[J]. Bioengineered, 2019,10(1):493-500.
[42]ZHANG Z J, XU Y, CHI S Y, et al. microRNA-582-5p reduces propofol-induced apoptosis in developing neurons by targeting ROCK1[J]. Current Neurovascular Research, 2020,17(2):140-146.
[43]ASIKAINEN S, RUDGALVYTE M, HEIKKINEN L, et al. Global microRNA expression profiling of Caenorhabditis elegans Parkinsons disease models[J]. Journal of Molecular Neuroscience, 2010,41(1):210-218.
[44]KAUR P, ARMUGAM A, JEYASEELAN K. microRNAs in neurotoxicity[J]. Journal of Toxicology, 2012,2012:870150.
[45]TANG F, ZHAO L L, YU Q, et al. Upregulation of miR-215 attenuates propofol-induced apoptosis and oxidative stress in developing neurons by targeting LATS2[J]. Molecular Medicine (Cambridge, Mass), 2020,26(1):38.
[46]YAO X X, YAO R, YI J P, et al. Upregulation of miR-496 decreases cerebral ischemia/reperfusion injury by negatively regulating BCL2L14[J]. Neuroscience Letters, 2019,696:197-205.
[47]OGATA K, KUSHIDA M, MIYATA K, et al. Alteration of microRNA expressions in the pons and medulla in rats after 3,3′-iminodipropionitrile administration[J]. Journal of Toxicologic Pathology, 2016,29(4):229-236.
[48]MAO Z M, WANG W J, GONG H X, et al. Upregulation of miR-496 rescues propofol-induced neurotoxicity by targeting rho associated coiled-coil containing protein kinase 2 (ROCK2) in prefrontal cortical neurons[J]. Current Neurovascular Research, 2020,17(2):188-195.
[49]ZHANG W X, LIU Q, ZHU H, et al. Propofol induces the apoptosis of neural stem cells via microRNA-9-5p/chemokine CXC receptor 4 signaling pathway[J]. Bioengineered, 2022,13(1):1062-1072.
[50]HO S Y, LING T Y, LIN H Y, et al. SDF-1/CXCR4 signaling maintains stemness signature in mouse neural stem/progenitor cells[J]. Stem Cells International, 2017,2017:2493752.
[51]JIANG C S, LOGAN S, YAN Y S, et al. Signaling network between the dysregulated expression of microRNAs and mRNAs in propofol-induced developmental neurotoxicity in mice[J]. Scientific Reports, 2018,8(1):14172.
[52]YAO Y, ZHANG J J. Propofol induces oxidative stress and apoptosis in vitro via regulating miR-363-3p/CREB signalling axis[J]. Cell Biochemistry and Function, 2020,38(8):1119-1128.
[53]CHIPUK J E, GREEN D R. PUMA cooperates with direct activator proteins to promote mitochondrial outer membrane permeabilization and apoptosis[J]. Cell Cycle, 2009,8(17):2692-2696.
[54]DING S L, WANG J X, JIAO J Q, et al. A pre-microRNA-149 (miR-149) genetic variation affects miR-149 maturation and its ability to regulate the Puma protein in apoptosis[J]. The Journal of Biological Chemistry, 2013,288(37):26865-26877.
[55]LI Y, JIA C X, ZHANG D L, et al. Propofol-induced neurotoxicity in hESCs involved in activation of miR-206/PUMA signal pathway[J]. Cancer Biomarkers: Section A of Disease Markers, 2017,20(2):175-181.
[56]NUNZI M G, MILAN F, GUIDOLIN D, et al. Dendritic spine loss in hippocampus of aged rats. Effect of brain phosphatidylserine administration[J]. Neurobiology of Aging, 1987,8(6):501-510.
[57]PATHANIA M, TORRES-REVERON J, YAN L, et al. miR-132 enhances dendritic morphogenesis, spine density, synaptic integration, and survival of newborn olfactory bulb neurons[J]. PLoS One, 2012,7(5):e38174.
[58]ZHANG S, LIANG Z D, SUN W C, et al. Repeated propofol anesthesia induced downregulation of hippocampal miR-132 and learning and memory impairment of rats[J]. Brain Research, 2017,1670:156-164.
[59]KOFMAN A V, LETSON C, DUPART E, et al. The p53-microRNA-34a axis regulates cellular entry receptors for tumor-associated human herpes viruses[J]. Medical Hypotheses, 2013,81(1):62-67.
[60]LI G F, LI Z B, ZHUANG S J, et al. Inhibition of micro-RNA-34a protects against propofol anesthesia-induced neuroto-xicity and cognitive dysfunction via the MAPK/ERK signaling pathway[J]. Neuroscience Letters, 2018,675:152-159.
(本文編辑周晓彬)