曹南斌 吕志敏
【摘 要】 对一类Filippov系统的边界平衡点分岔进行分析,并证明Filippov系统发生边界平衡点分岔的条件,最后呈现Filippov系统对应的分岔图。
【关键词】 Filippov系统;边界平衡点分岔;分岔图
Boundary Equilibrium Bifurcation of Filippov Systems
Cao Nanbin, Lv Zhimin
( Hebei GEO University, Shijiazhuang 050031, China)
【Abstract】 In this paper, the stability of equilibrium point and boundary equilibrium bifurcation of a class of Filippov systems is studied, and the paper proves the condition for the existence of boundary equilibrium bifurcation of Filippov systems. Finally, the paper presents the corresponding bifurcation diagrams by numerical simulation.
【Key words】 Filippov systems; boundary equilibrium bifurcation; bifurcation diagram
〔中圖分类号〕 O152 〔文献标识码〕 A 〔文章编号〕 1674 - 3229(2023)01- 0013- 03
2 分岔图
在[p=1,b1=1]情形下对系统(2)进行数值模拟。当[b2=2]时,随着不连续边界的移动,可得系统F1的平衡点与不连续边界发生碰撞,产生伪平衡点,这样的分岔称为Persistence分岔,见图1a。系统F2的平衡点和一个存在的伪平衡点与不连续边界发生碰撞,最后都消失了,这样的分岔称为Non-smooth fold分岔,见图1b。当[b2=0]时,系统F1与系统F2随着不连续边界的移动,出现一族伪平衡点,最后都消失,这样的分岔称为退化分岔。在这一部分仅仅给出了系统F1的分岔图,见图2。当[b2=-2]时,随着不连续边界的移动,系统F1中的平衡点和伪平衡点与不连续边界发生碰撞,最后两类平衡点都消失,这样的分岔称为Non-smooth fold分岔,见图3a。系统F2中的平衡点与不连续边界发生碰撞变成边界平衡点,最后变成伪平衡点,这样的分岔称为 Persistence 分岔,见图3b。
3 结语
本文给出了一类具有一条变化不连续边界的Filippov系统,讨论了系统的边界平衡点分岔。
[参考文献]
[1] Giannakopoulos F, Pliete K. Planar systems of piecewise linear differential equations with a line of discontinuity[J]. Nonlinearity, 2001, 14(6): 1611.
[2]Bernardo M, Budd C, Champneys A R, et al. Piecewise-smooth dynamical systems: theory and applications[M]. Springer Science Business Media, 2008.
[3] Kuznetsov Y A , Rinaldi S , Gragnani A . One-Parameter Bifurcations in Planar Filippov Systems[J].INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS,2003, 13(8):2157-2188.
[4] Di Bernardo M, Pagano D J, Ponce E. Nonhyperbolic boundary equilibrium bifurcations in planar Filippov systems: a case study approach[J]. International Journal of Bifurcation and chaos, 2008, 18(5): 1377-1392.