张文娜,朱 浩,王晓东
南京医科大学第一附属医院内分泌科,江苏 南京 210029
随着医疗技术的发展,肥胖人口的寿命得到了大大的延长且肥胖的发生存在青年化的趋势,这使得肥胖人群处于肥胖状态的时间延长,罹患心血管疾病的概率增加[1]。在与高体重指数(body mass index,BMI)相关的死亡病例中,超过2/3 的患者死于肥胖所并发的心血管疾病[2]。肥胖时脂肪组织通过细胞增殖及肥大提高对甘油三酯的储存能力,当肥胖患者体内的脂肪量超出脂肪组织的存储能力时,则会出现异位脂肪沉积、脂肪组织微环境及功能改变等不良变化[3]。脂肪组织按功能与形态不同可分为白色、棕色及米色脂肪,其中白色脂肪与代谢紊乱的发生有着密不可分的关系[4]。而按照解剖定位分类,白色脂肪组织又可分为皮下脂肪与内脏脂肪[5]。而在人体除了脑血管外的心血管周围,尚存在着一种与传统意义上的内脏脂肪具有差异的脂肪组织,称为血管周围脂肪,由于其紧邻血管的独特解剖学特征,其对心血管系统正常功能的维持及心血管疾病的发生发展起着无可替代的作用[6]。在正常人中,其可发挥抗血管收缩、抗炎等保护作用。而在肥胖患者中,其通过旁分泌、内分泌各种脂肪因子及细胞因子,介导免疫炎症发生等机制诱发动脉粥样硬化、高血压、腹主动脉瘤等心血管疾病。通过对血管周围脂肪(perivascular adipose tissue,PVAT)相关的实验室及影像学检查,有助于提高对心血管疾病早期诊断及预防的能力,且通过运动、药物或手术等方式对PVAT进行干预也是改善心血管疾病预后的潜在治疗方法。1 PVAT
脂肪组织,按传统的形态及功能进行分类,可分为白色、棕色及褐色脂肪。白色脂肪作为储能器官,将过剩的能量以甘油三酯的形式保存起来,细胞被一个巨大的单腔脂滴填满,细胞核被挤到细胞边缘,形成独特的“戒指”样的结构。其还可分泌脂联素、瘦素、白介素、肿瘤坏死因子等细胞因子影响代谢平衡[7]。棕色脂肪则主要在非颤栗产热时消耗能量,维持体温。其胞内为多腔性的脂滴,富含线粒体。棕色脂肪高表达解耦连蛋白-1(uncoupling protein-1,UCP-1),将线粒体中氧化呼吸链与电子传递链解偶联,使能量以热量的形式消耗掉[8]。在白色脂肪中还散在分布着一种亦高表达UCP-1、具有多腔样结构的脂肪细胞,称为褐色脂肪。在冷刺激时,其表型向棕色脂肪转变,称为“棕色化”,温度升高时又会有“白色化”的改变[9]。根据解剖位置不同,白色脂肪又被分为皮下脂肪及内脏脂肪。肥胖时,皮下脂肪主要通过细胞增殖进行扩增,而内脏脂肪则通过增加细胞体积而提高对脂肪的储存能力[10]。人体除脑血管以外的大中小血管均被一种特殊的脂肪组织包绕[6],有着不同于白色与褐色脂肪的独特的细胞起源。白色脂肪源于分化簇(cluster of differentiation,CD)CD24+CD31-CD34+血小板衍生生长因子α(platelet derived growth factor α,PDGFRα)+壁细胞,棕色脂肪则起源于生肌因子5(myogenic factor 5,Myf5)+成对框基因(paired box gene,Pax)Pax3+Pax7+肌源性细胞。在Chang 等[11]研究中,敲除了小鼠血管壁平滑肌细胞中的过氧化物酶体激活受体γ(peroxisome proliferators-activated receptor-γ,PPAR-γ)后,小鼠中的PVAT 完全消失,提示PVAT 不同于白色脂肪或棕色脂肪,可能与血管壁平滑肌细胞同源。此外,PVAT 随着解剖定位的改变,其细胞形态也出现相应改变。PVAT 由白色脂肪与棕色脂肪混合组成。电镜观察及组织学研究显示,纵隔中胸主动脉及冠脉周围的脂肪表型更接近于棕色与褐色脂肪,表现为多腔样结构,富含线粒体并高表达UCP-1。而腹盆腔的血管,包括髂、股动脉周围脂肪则由白色脂肪与棕色脂肪共同组成,二者比例接近于1∶1。腹膜后的动脉,包括腹主动脉及肠系膜动脉等则主要由白色脂肪组成PVAT[12]。总体而言,人体PVAT 中仍以白色脂肪为主,棕色脂肪含量较少。由此可见,PVAT在细胞起源、形态上均不同于传统的棕色及白色脂肪。
过去,人们对PVAT 的认知停留在其对血管壁的支持作用上[13]。而近年来随着脂肪的内分泌功能逐渐得到肯定与重视,人们对PVAT 的功能也有了进一步的了解。Saxton等[14]发现PVAT可以积蓄外来的去甲肾上腺素,发挥一种“海绵效应”,阻止其与血管的接触,使其无法发挥缩血管的功能。血管周围脂肪有着紧邻血管的特殊解剖定位,二者之间没有筋膜,缺失明确的组织界限,使得PVAT可通过血管滋养血管以旁分泌的作用形式直接作用于心血管系统[15]。在生理状态下,PVAT 通过旁分泌及内分泌的作用分泌包括脂联素、脂源性舒张因子、瘦素、肾上腺髓质素、网膜素等具有舒血管效果的脂肪因子保护心血管。脂联素可通过激活钙敏感性钾离子通道发挥抗血管收缩的功能,Cheng等[16]发现在抑制脂联素受体表达后,内皮型一氧化氮合酶(endothelial nitric oxide synthase,eNOS)中5′-单磷酸腺苷依赖的蛋白激酶[adenosine 5′-monophosphate(AMP)-activated protein kinase,AMPK]磷酸化的水平显著下降,一氧化氮生成减少,提示脂联素可通过eNOS舒张血管。关于脂源性舒张因子这一物质的真正面目为何仍存在争议。目前人们认为其通过开放血管平滑肌上的电压依赖性K+通道舒张血管。而硫化氢与棕榈酸甲酯(methyl palmitate,PAME)均可通过激活电压依赖性K+通道来舒张血管,且其释放与脂源性舒张因子一样,均具有Ca2+依赖性,故二者目前被认为是脂源性舒张因子的主要候选分子[17]。瘦素的作用具有两面性,在生理状态下,其可以通过激活蛋白激酶B(protein kinase B,Akt/PKB)通路来激活eNOS,还可通过释放内皮衍生的促超极化因子(endothelium-derived hyperpolarizing factor,EDHF)介导血管内皮舒张。心外脂肪(epicardial adipose tissue,EAT)分泌肾上腺髓质素,其不仅作为血管舒张剂及抗氧化剂发挥作用,还可促进巨噬细胞向M2型极化而发挥抗炎作用[18]。网膜素可通过AMPK、Akt、核因子-kB(nuclear factor-kappa B,NF-kB)等通路发挥抗炎、抗血管硬化等作用[19]。脂肪组织中除了脂肪细胞、间充质干细胞、成纤维细胞等外,还包含如巨噬细胞、嗜酸性粒细胞、淋巴细胞等免疫细胞[20]。生理情况下PVAT中免疫细胞以M2 型巨噬细胞为主,且调节性T 细胞、嗜酸性粒细胞及CD4+辅助T细胞含量亦相对较高,分泌血管紧张素1-7(angiotensin 1-7,Ang1-7)、白介素-4(interleukin-4,IL-4)及IL-18 等抗炎因子抑制PVAT 中炎症的发生[21]。在Chang 等[11]研究中,血管平滑肌PPAR-γ敲除的小鼠不表达PVAT,并出现了血管失温、内皮损伤等现象,诱发动脉硬化,提示PVAT 尚具有保持血管温度、预防动脉硬化的作用。在PVAT 中,还有一类位于心肌表面与心包脏层之间包绕着冠状动脉的脂肪,称为心外脂肪的组织,其除具有内分泌功能外,还有着对心肌能量代谢的缓冲作用[22]。当游离脂肪酸(free fatty acid,FFA)水平过高时,EAT 可将FFA 储存起来,避免高浓度FFA对冠脉的损害,并可在心肌缺血、能量供应不足时释放存储的FFA,保证心肌细胞的能量供应[23]。除了上述功能外,PVAT 尚具有在各种因素刺激下进行细胞表型转化的能力。尽管部分PVAT有着类似褐色脂肪的形态,其却并不具备如褐色脂肪一样的表型转化的动态活性,在高脂饮食时不会有“白色化”改变[15],有利于抵抗肥胖的发生。与此不同的是,现有研究表明PVAT 中的白色脂肪可在包括寒冷、药物等不同因素的诱导下出现“棕色化”改变。轻度的冷刺激可改变PVAT 代谢状态,促进其表型改变。包括铁硫簇结构域(iron sulfur domain 1 protein,CDGSH/mitoNEET)、UCP-1 等的线粒体及棕色脂肪相关蛋白在肥胖及动脉硬化患者中表达量下降,而通过使用骨形成蛋白、全反式维A酸等干预手段,则可观察到PVAT 棕色化程度增加与动脉硬化等心血管不良结局发生的减少,表明PVAT具有“棕色化”的能力且在冠心病的发生发展中其“棕色化”程度减低,提示PVAT 具有通过“棕色化”而起到保护心血管的功能[12,24]。
肥胖时,PVAT分泌血管舒张因子的能力降低,研究表明,PVAT 体积与脂联素水平呈反比。脂联素表达下降,导致血管舒张能力减弱,引起高血压、动脉硬化等改变[25]。Juan 等[26]研究指出,与对照组相比,瘦素处理组的细胞中内皮素(endothelin,ET)受体的表达量增高了2.3 倍,且ET 与受体的结合明显增强,提示瘦素可通过增强ET 效果而收缩血管。另外,瘦素作用于中枢可兴奋交感神经而增强血管收缩功能[27]。瘦素水平与脂肪体积呈正比,在肥胖等病理情况下,内皮eNOS系统遭到破坏,瘦素除通过EDHF 介导血管内皮舒张的能力下降,而其通过交感神经收缩血管的能力不受影响,故在高瘦素血症作用下肥胖患者的血管舒张功能受损[28]。网膜素的表达量与血糖及血胰岛素水平呈反比[29],肥胖患者合并胰岛素抵抗时,高胰岛素血症使网膜素水平降低,诱导动脉硬化。
当机体处于肥胖状态时,脂肪组织通过脂肪细胞的增殖增生扩大来储存过多的脂质。而脂肪组织中的新生血管发育慢于其扩增速度,导致脂肪组织供氧不足,诱导缺氧诱导因子(hypoxia inducible factor-1α,HIF-1α)的产生,并进一步募集炎症细胞,导致炎症细胞浸润[30]。研究表明,高脂饮食诱导了抗原提呈细胞上Toll 样受体(Toll-like receptors,TLR)的表达,使一系列趋化因子、炎症因子的表达增加从而介导免疫炎症的发生[31]。过多的脂滴亦可促进内质网氧化应激并激活c-Jun 氨基末端激酶(c-Jun N-terminal kinase,JNKs)与NF-κB 炎症信号通路,诱导细胞凋亡,当细胞残骸清理的速度落后于其凋亡速度时,炎症小体便会被激活,诱导炎症发生[32]。过去认为血管壁炎症细胞浸润是由血管腔内开始的一个由内而外以脂质氧化为核心的过程。然而近年来有关炎症细胞自血管外膜由外而内浸润的理论被不断提出。PVAT与血管外膜间没有筋膜及明确的组织界限,且PVAT 中存在着相当数量的免疫细胞,其中淋巴细胞的数量更是达到了内膜淋巴细胞的80 倍,提示PVAT 在血管壁炎症细胞浸润中具有重要作用[33](图1)。肥胖时,PVAT中淋巴细胞转换为分泌促炎因子的Th1辅助细胞介导炎症的发生。Th1 细胞分泌IL-1β、肿瘤坏死因子(tumor necrosis factor α,TNF-α)、单核细胞趋化蛋白-1(monocyte chemoattractant protein-1,MCP-1)、IL-6等促炎因子,同时抗炎因子的分泌减少[34],进一步募集炎症细胞,加剧了炎症细胞浸润。MCP-1 除了诱导巨噬细胞的浸润外,还可使血管平滑肌细胞转入以合成为主的状态,促进血管新生内膜的形成,导致血管壁硬化[35]。肥胖时PVAT 内的巨噬细胞在Th1细胞因子的作用下向M1型转变,促进炎症发生,损伤血管内皮。同时,肥胖患者PVAT中CD8+T 细胞、Th1 细胞及B2 淋巴细胞升高,而Treg、CD4+辅助T细胞及嗜酸性粒细胞的含量降低。Nishimura等[36]研究发现肥胖时PVAT中CD8+T细胞浸润先于巨噬细胞浸润。剔除CD8+T细胞后,浸润的巨噬细胞中M1 型含量明显下降,坏死细胞与巨噬细胞形成的“冠状结构”也显著减少,提示肥胖时,PVAT可通过CD8+T细胞募集巨噬细胞并诱导其向M1型分化而介导免疫炎症发生。EAT 除具有旁分泌作用外,尚可将FFA 及脂肪因子分泌入冠脉管壁,且这一作用仅限于小动脉和毛细血管内皮,分泌物几乎不进入体循环,称为“血管内分泌”作用。而当肥胖患者合并冠脉硬化并发展至晚期时,EAT 的旁分泌作用变得难以渗透入血管壁,此时“血管内分泌”便起主要作用而进一步作用于冠脉小动脉及毛细血管内皮,加重冠脉硬化程度[18]。
图1 血管周围脂肪在生理及病理状态下的表现Figure 1 Alternation between physiological and pathological condition
综上,在肥胖时,PVAT将失去其生理状态下的抗炎及抗收缩作用。其分泌抗血管收缩脂肪因子的能力降低,管周微环境中免疫组分的改变,促炎因子增多,免疫浸润加剧等共同作用,导致血管紧张性增高、内皮细胞受损,从而诱导包括高血压、冠脉硬化及腹主动脉瘤等心血管疾病的发生。
动脉粥样硬化是动脉内膜内脂质堆积、炎症浸润并伴有斑块形成的慢性血管病,而冠状动脉硬化形成的不稳定斑块破裂是造成急性冠脉综合征的最主要原因[37]。Yerramasu 等[38]发现,EAT 的体积每增大10 cm3,冠脉钙化积分进展的概率提高12%,且冠状动脉左主干周围脂肪的体积与斑块扩展的程度呈正相关,而BMI 等体测数据则无这样的提示功能[39]。且Ito 等[40]研究提示EAT 体积的增大能够提示冠脉钙化积分为0 时的阻塞性斑块的存在。Okubo等[41]提出了冠状动脉周围脂肪厚度比率的概念,即冠状动脉与心包之间脂肪的垂直厚度或行PCI部位的冠状动脉与心脏表面之间的垂直厚度比上同一血管中无斑块部位的脂肪厚度。在纠正了吸烟、BMI等影响因素后,厚度比率大于1.19是斑块破裂的独立危险因素,而斑块破裂导致血中促凝血因子与斑块中的血栓形成物质接触,促进血栓形成,这一机制导致的急性心肌梗死占总发病率的2/3[42]。除体积外,Lee等[43]研究指出,肥胖时,PVAT的密度高低提示着组织微环境中免疫炎症的水平,且其密度与动脉总斑块体积呈正比。此外,PVAT 表型的改变对冠脉硬化的预后亦具有预测价值,Hedgire等[44]在对1 403例患者进行回顾性分析后发现心外脂肪中“fat stranding”表型的出现与血肌钙蛋白升高及心室壁异常运动有关,可作为高风险斑块破裂的预测指标。即便是对于冠脉支架植入术后的患者,PVAT亦具有相当大的诊疗意义,Qin等[45]通过对冠脉支架植入后再狭窄患者与对照组PVAT的脂肪衰减指数(fat attenuation index,FAI)的比较发现,再狭窄患者的FAI 显著高于对照组,提示其具有预测冠脉支架术后再狭窄发生可能性的作用。故相较于传统的评估动脉斑块及硬化的指标,PVAT 相关的测量指标可使我们更好地评估冠脉危险事件发生的可能性及预后水平。
腹主动脉瘤是一类多病因所致的进行性的腹主动脉直径不可逆扩张的疾病,其起病隐匿,瘤体破裂所致的病死率高达80%[46]。在腹主动脉瘤的进展中,主动脉壁的结构愈发薄弱,现在认为,免疫细胞浸润、血管平滑肌细胞减少及细胞外基质改变在其中起主要作用[47]。由于其早期症状隐匿,目前缺乏对腹主动脉瘤有效的早期诊断手段。肥胖时,PVAT 作为腹主动脉的三级淋巴器官,其炎症水平增加,抗血管收缩作用降低,诱导腹主动脉瘤发生。相比正常人的腹主动脉,腹主动脉瘤患者的腹主动脉旁血管周围脂肪(A-PVAT)体积更大,是腹主动脉瘤破裂的独立危险因素[48]。Wang 等[49]通过对正常人及腹主动脉瘤患者的A-PVAT进行测序发现其主要差异基因富集在中性粒细胞趋化及IL-17信号相关通路上,进一步证实了PVAT 炎症在腹主动脉瘤发生中起作用,发现PVAT 来源的FOS 基因表达水平可作为腹主动脉瘤早期诊断的生物指标。同样,Guo 等[50]通过加权基因共表达网络分析也证明了腹主动脉瘤患者PVAT 炎症水平高于正常人,且提出PVAT中EGR1与KLF4基因的表达对腹主动脉瘤具有诊断意义。除A-PVAT对动脉瘤产生具有影响外,Huang等[51]近期提出,胸主动脉旁血管周围脂肪(T-PVAT)对腹主动脉瘤具有潜在的治疗意义,相比A-PVAT,T-PVAT 的表型更接近于棕色脂肪,胸主动脉瘤不仅在发生率上低于腹主动脉瘤,其进展速度亦显著慢于腹主动脉瘤。Huang等[51]在将TPVAT移植到腹主动脉周围后发现腹主动脉平滑肌细胞自噬水平显著下降,延缓了腹主动脉瘤的发展。因此,PVAT 炎症在腹主动脉瘤的发生发展中起着重要作用,通过对其产生的相关生物标志进行测定,可提高对隐匿性腹主动脉瘤的诊断水平,且对其表型进行促棕色化改变亦可作为腹主动脉瘤非手术治疗的潜在靶点。
在肥胖及其代谢相关合并症等病理状态下,PVAT功能的转化是其促心血管疾病发展的核心变化,而通过对这一过程的干预,有助于改善肥胖相关心血管疾病的预后。Adachi等[52]发现,当血管内皮出现损伤时,PVAT会出现局部性的棕色化改变,抑制炎症发生,当通过抑制PRDM16 表达阻断棕色化后,其炎症水平及血管重塑改变均加重,提示通过促进PVAT 棕色化改变,其对血管可产生一种“外-内”的保护机制。进一步研究表明这一机制与神经调节蛋白4(neuregulin 4,NRG4)作用于ErbB4基因受体、从而促进PVAT内巨噬细胞向M2型极化有关,这为人为促进PVAT 棕色化改变提供了可能方法。除通过细胞表型改变外,Aghamohammadzadeh等[53]在对肥胖患者进行代谢减重手术后发现,减重手术后,患者在体重无明显改变的情况下,其脂联素及一氧化氮生成活性均增强,炎症水平显著下降,PVAT的抗血管收缩活性得到了充分改善,且这一作用不依赖于血管内皮,而与脂联素水平密切相关。Shi 等[54]在对患者进行为期6 周的有氧运动后发现PVAT中交感神经分布及循环去甲肾上腺素水平均有显著下降,PVAT中,胶原纤维蛋白量下降而弹性蛋白水平增高,提示有氧运动具有改善PVAT 组成、增强其抗血管收缩能力的作用。
世界肥胖人口比重的增加及其带来的一系列负面影响使得人们开始进一步关注脂肪组织的功能,随着对其功能的深入了解,发现了一类特殊的、不能单纯的归结为白色、棕色或褐色脂肪的脂肪类型,即PVAT。由于其紧邻血管的独特位置,使得其发挥的内分泌、旁分泌及免疫调控等作用更有效地作用于心血管系统。其在肥胖时介导慢性炎症,损伤血管内皮,从而诱导动脉硬化、斑块形成、腹主动脉瘤等心血管疾病。对其进行相关的实验室及影像学检查并提早进行干预有助于提高心血管疾病的诊疗能力。在心血管疾病作为当今疾病谱主流的社会环境下,研究与其密切相关的PVAT,有助于从根源了解心血管疾病的发生发展机制并对其采取一系列干预措施,提高人们的生活质量。