基于区块链技术的粮油食品溯源研究进展及展望

2023-05-15 07:56:30葛宏义吴旭阳蒋玉英孙振雨崔光远贾志远
农业工程学报 2023年5期
关键词:粮油食品区块供应链

葛宏义,吴旭阳,蒋玉英,张 元,孙振雨,崔光远,贾志远

·农产品加工工程·

基于区块链技术的粮油食品溯源研究进展及展望

葛宏义1,2,3,吴旭阳1,2,3,蒋玉英1,2,4※,张 元1,2,3※,孙振雨1,2,3,崔光远1,2,3,贾志远1,2,3

(1. 河南工业大学粮食信息处理与控制教育部重点实验室,郑州 450001;2. 河南工业大学河南省粮食光电探测与控制重点实验室,郑州 450001;3. 河南工业大学信息科学与工程学院,郑州 450001; 4. 河南工业大学人工智能与大数据学院,郑州 450001)

粮油食品供应链周期长、结构复杂、利益相关者众多,维护供应链的安全具有挑战性。近年来,特别是在粮食购销领域,存在“以陈顶新”、“转圈粮”、压级压价等现象,已严重威胁到粮食安全。追溯系统是一个能够对产品实施正向、反向和非定向跟踪的产品管理系统,可以连接粮油食品供应链的各个环节,监控原料采集、加工、储运、分销与销售过程,对粮食质量安全有重要保障。传统的追溯体系面临数据中心化、信息不透明、数据容易伪造、极易形成信息孤岛等问题。区块链作为继网络之后的下一代颠覆性技术,具备去中心化、分布式存储、匿名性、数据公开透明、内容不易篡改等新特点,为粮油食品供应链中的产品可追溯性问题带来新的解决方案。该文首先介绍近年来区块链智能合约、共识机制等关键技术的发展和应用,其次,阐述区块链技术应用到粮油食品溯源等领域的研究进展;最后,探讨当前粮油食品区块链溯源在存储、跨域与跨链、系统互操作性和可移植性等方面所面临的挑战,对区块链技术在粮油食品溯源领域中提高存储性能、跨域跨链、可扩展性等方面进行展望,为区块链技术在粮油食品中的创新应用提供参考。

农产品;溯源;区块链;追溯体系;粮油食品;供应链

0 引 言

中国作为农产品贸易大国,近年来,出口农产品质量安全事故时有发生。在世界范围内,各国政府高度关注,并出台法律法规加强对可追溯性的管理,以保障农产品质量安全[1-3]。粮食作为农产品的一个重要分支,粮油食品几乎每天都占据着国人的餐桌,其中谷物是人体矿物质、膳食纤维等营养素的重要食物来源,有助于预防心血管和代谢性疾病等[4]。油性食物可以提供人体所需的脂肪酸[5]。但粮油供应链具有周期长、参与主体多、涉及面广、环境较为复杂等特性,再加上传统溯源体系中数据中心化、供应链数据不透明、易篡改等问题,导致粮油食品安全事件仍然严峻,使中国农业发展面临重大挑战[6-7]。

在粮油食品供应链中,特别是在粮食购销领域,存在诸多因监管力度不足而引起的粮食安全问题。“转圈粮”、“以陈顶新”、“升溢粮”、压级压价等现象已严重影响到中国粮食供给安全[8]。因此,为解决传统粮油食品溯源中存在的问题,急需一种先进的溯源技术应用到粮油食品溯源领域来保障粮油食品安全。

区块链技术是一个跨学科创新技术,狭义的讲,区块链是哈希指针连接到一起的交易区块,广义来说区块链是一种分布式账本存储技术,被誉为下一个“信任的基石”[9-10]。其去中心化、不易篡改等特性可以有效解决传统溯源中存在的问题。中国在区块链溯源领域已有一些应用,其中华为发布的“中国农村沃土云平台”;由京东自己开发的区块链服务平台—智臻链;五常市政府与天猫等开展全方位协作,引进蚂蚁金服区块链追溯科技,使出售的每袋稻谷都有一张专属的“身份证”等[11-12]。

基于当前区块链技术在溯源领域已取得的成果及应用,本文阐述了区块链技术应用到粮油食品溯源等领域的研究进展,探讨了当前粮油食品区块链溯源面临的挑战,对区块链技术在粮油食品溯源领域中的应用潜力进行展望,以期为区块链技术在粮油食品中的创新应用提供参考。

1 区块链概述

2008年,一位名为“中本聪”的学者首次定义了比特币[13]。比特币网络中的信息交流能够在没有其他第三方的情况下完成,其本质是一个分布式数据库系统,包括所有参与成员间共同的交易记录[14-15]。因为每次交易都是由大多数成员间共同确定的,使得虚假交易无法经过集体证实,一旦记录被区块链创建并接受,它就很难被篡改[16-17]。这也是区块链应用到粮油食品溯源领域重要原因之一。针对于不同的应用场景,区块链的发展历程可分1.0-3.0阶段,如表1所示。

表1 区块链1.0-3.0阶段发展历程及应用场景

区块链分为公有链、私有链与联盟链[19-20]。公有区块链一般被看作是“彻底去中心化”的,即指每个节点都能够随时随地加入到网络系统中读取数据、争夺记账权等[21-22]。私有区块链的去中心化水平较低,其权限是由某个机构或者管理者掌控,根据不同的需求对外选择性开放读写权限,适用于特定机构的内部数据管理。联盟链的去中心化程度介于上述2种链之间,其数据只允许联盟成员访问,实现“部分去中心化”功能[23-24]。

图1 区块结构图

区块链具有去中心化、可追溯、不易篡改、匿名性等特征[25-26]。去中心化意味着不是将区块链权限被某一个节点所控制,而是依赖共识机制负责验证和确认,这也使得节点想要篡改数据基本不可能实现[27]。区块基本架构由带有时间戳的链式区块组成,如图1所示,具备极强的可溯源性,匿名性在一定程度上很好保护了用户的隐私[28-29],但区块链不能提供完全的隐私保护,其中每一笔交易都可以被所有节点查看,通过分析每个地址发生的交易,就能发现很多用户之间的关系。

2 区块链与粮油食品溯源

2.1 区块链相关技术研究进展

区块链技术诞生以来,越来越多的研究人员从事相关技术的研究,当前区块链不仅有传统的链式结构,也存在有向无环图(direct acyclic graph, DAG)架构的区块链[30]。区块链关键技术包括分布式存储技术、智能合约、共识机制等,如图2所示。在供应链溯源领域,区块链技术在维护供应链安全、保障数据隐私等方面发挥着至关重要的作用。

图2 区块链相关技术

2.1.1 区块链存储技术

由于区块链技术具有多个网络节点共同记录和存储的特点,随着用户量的增加和数据的高冗余存储,区块链网络越来越拥堵,效率也无法满足要求,区块空间的大小成为了限制区块链发展的瓶颈[31-32]。目前已有不少学者开展基于区块链存储优化的研究,主要有区块链自身存储结构的优化,包括区块链分片技术等,也有部分研究将区块链与星际文件系统(interplanetary file system,IPFS)、云存储等相结合的方式提高存储能力,区块链多链架构缓解存储压力也取得了一些研究成果。无论哪种研究方式,旨在提高区块链技术的存储能力。

DAI等[33]为了满足快速增长的存储需求,将网络编码(network coded,NC)和分布式存储(distributed storage,DS)相结合,提出了一个NC-DS存储的区块链框架,该框架在节约存储空间方面取得了显著成绩。XU等[34]为了满足数据量大的应用程序的存储,提出了段区块链概念,使节点存储一个区块链段的副本相比于传统区块链的存储方式,存储需求大大减小。ZHANG等[35]提出了一种基于区块链技术的粮食供应链系统架构,并设计了一种结合链存储的多模式存储机制,该机制在一定程度上减轻区块链存储压力。KUMAR等[36]提供了一个基于IPFS的区块链存放模式,矿工们将事件存放到IPFS分布式档案管理系统内存上,并把从事件中返回的IPFS哈希值放在区块链块中,减缓了区块链存储压力。ZHANG等[37]建立了粮油食品供应链模型,设计了多链存储结构,建立可信溯源机制,解决了传统溯源机制中存在的数据安全性低,共享差等问题。于华竟等[38]提出了基于区块链多链架构的杂粮追溯模型,建立多链数据存储架构,设计了基于监管授权组网建链的网络准入机制,通过智能合约实现数据的链前监管与追溯节点的链上管控,验证了模型的有效性。

2.1.2 智能合约与共识机制

智能合约是区块链基础架构中合约层的重要组成部分,可以作为一种嵌入式脚本语言内置在任何区块链的交易数据和数字资产上,形成一种可编程自动控制执行的系统,在溯源系统中,智能合约的应用也很常见[39-40]。当前区块链智能合约研究主要有智能合约的运行机制、基于智能合约的隐私保护、交易并发执行效率、智能合约安全性等。

WANG等[41]提出了一个基于联盟和智能合约的框架来跟踪农产品供应链的工作流程,实现供应链的可追溯性和可共享性,并尽可能地打破企业之间的信息孤岛,消除对中央机构和代理机构的需要,提高交易记录的完整性、可靠性和安全性。YU等[42]提出了一种利用联盟区块链和智能合约来高效执行农产品交易的方法,从而实现对农产品在整个供应链中的跟踪。KTARI等[43]提出一种使用物联网的多链橄榄油追溯系统,并设计两个智能合约,一个部署到系统参与者的私有区块链,另一个部署到可以访问该系统的公共区块链,实现对橄榄油供应链整条链的溯源。YAKUBU等[44]提出一个稻米供应链框架,该框架能够通过智能合约跟踪和监控稻米供应链中所有利益相关者之间的交易信息,也包含一个客户满意度反馈系统,使所有利益相关者能够获得最新的稻米质量信息,使他们能够作出更明智的供应链决策。

共识机制是整个区块链技术的核心,确保在分布式环境下节点间对系统状态进行的一致性确认,直接决定着整个区块链体系的执行效率。不同共识算法存在不同的优缺点,如工作量证明(proof of work,PoW)算法虽稳定性较好,若出现恶意节点入侵区块链系统,需要付出极大的成本,且其会造成严重的资源浪费和网络性能低[45-46]。因此,不少研究人员开始改进共识算法来提高区块链系统的运行效率,包括引入奖惩机制、委员会节点等,但委员会节点会在一定程度上降低区块链的去中心化能力。

LI等[47]实现了轻量级区块链,提出了基于奖惩策略的PBFT区块链共识机制,根据每个节点的行为,奖惩策略更新节点得分,并对每个节点的状态进行评估,依据每个节点的状态,筛选出参与协商一致过程的节点,然后从这些协商一致节点中投票选出主节点,减少了区块链一致性确认的时间。BRAVO-MARQUEZ等[48]介绍了一种新的分布式共识协议PoL(proof of learning),该算法通过对给定任务的机器学习系统进行排序来实现分布式共识,减少了系统资源的浪费。任守纲等[49]提出一种基于信誉监督机制共识算法(credit-supervisor byzantine fault tolerance,CSBFT),提高联盟链共识机制的安全性和效率,并设计智能合约,自动保存关键溯源信息,与传统溯源平台相比,应用CSBFT算法的溯源平台在溯源信息上链时具有更高的安全性和更小的时延。LI等[50]分析了粮食食品供应链各环节的流程和数据特点,提出了基于主从多链结构的粮食食品区块链可追溯信息管理模型,针对主链设计了基于Raft与改进PoW算法相结合的PLEW共识算法,针对从链设计了基于可信信息度的CI-PBFT共识算法,并与区块链单链结构的交易吞吐量和可追溯效率进行了比较,所设计实现的粮食溯源系统在各方面均优于区块链单链结构。

2.1.3 访问控制与隐私保护

在供应链的管理中,如何维护用户的管理权限、设计适合于供应链的管理策略、做到细粒度访问控制是一个巨大的挑战[51-52]。区块链技术可以为供应链提供一种新的安全身份认证方式,保障数据在用户之间的安全共享。目前,基于区块链的访问控制研究主要有访问权限的管理策略制定、细粒度访问控制的设计与实施、供应链中敏感数据的保护等。

ZHANG等[53]针对当前谷物大米追溯体系所面临的问题,设计了安全可靠的农产品追溯系统的逻辑框架,使用数据加密和灵活的访问控制来保护追溯系统中利益相关者的数据安全共享。TARIQ等[54]为实现橄榄油的细粒度访问追溯,设计一种基于物联网的多链追溯系统,系统中的内部参与者使用私有链,访问系统的用户使用公有链,实现橄榄油溯源数据的安全共享。ZHANG等[55]为了实现溯源数据的细粒度访问控制,利用基于属性加密算法来加密数据。使用密钥管理服务,使数据共享方法无需更新密文即可撤销。总体而言,这些方法实现了隐私保护、可撤销性和去中心化的细粒度访问。

此外,隐私意味着用户信息或数据必须受到保护,在任何情况下未经参与主体同意不能泄露[56]。区块链网络中数据完全公开透明,但是区块链公开透明的特性也会导致用户身份和数据隐私泄露问题[57],其中访问控制在一定程度上也对用户隐私或数据隐私起到一定的保护作用。当前供应链研究中隐私保护主要包含身份隐私保护和数据隐私保护,其中应用混币技术、各种加密算法已成为供应链隐私保护的趋势。

陈邦越[58]设计了基于区块链的水稻全供应链溯源系统,针对敏感数据、隐私数据上链问题,搭建敏感数据溯源模型和区块链隐私数据共享模型,实现在区块链网络中共享隐私数据。范茂顺[59]基于微众银行FISCO区块链框架,采用基格密码的可连接环签名技术替代传统签名技术,实现区块链上用户身份信息的隐私保护。ZHOU等[60]利用了同态加密,隐私共享以及零知识证明技术建立了一种开放可验证的安全性MPC协定,该协定由链上运算阶段和链下预处理阶段2个部分构成,并把该协定整合在超级账本结构的链码中,以保障交易数据的隐私性。WANG等[61]针对大米供应链各个环节建立关键信息分类表,利用各种加密算法保护供应链上企业的敏感数据,满足监管机构高效监管的需要。MALIK等[62]提出了一个隐私保护框架PrivChain,使用零知识证明保护区块链上的敏感数据,PrivChain提供来源和可追溯性,不会向终端消费者或供应链实体透露任何敏感信息,这对于农产品溯源建立隐私保护有很大启发。李莉等[63]针对区块链溯源中数据可追溯与用户隐私保护难以平衡的问题,提出一种区块链可监管双重隐私保护方案,用户选择对数据进行属性加密,实现链上数据的隐私保护。

2.1.4 区块链+物联网

由于区块链技术的迅速发展,有效缓解了传统供应链追溯的问题,但在实际应用中存在无法保证供应链溯源数据在上链之前的准确性,有人为篡改的可能性[64]。物联网技术能有效避免这一问题。将区块链技术与物联网技术相结合能够更好把控供应链在溯源过程中数据采集、数据传输到数据应用的真实性,真正实现从“农田到餐桌”全区链条溯源[65]。目前供应链中应用到的物联网技术主要有传感器技术、RFID等。

刘丹等[66]将物联网和区块链结合起来建立农产品溯源系统,通过物联网设备进行信息采集,应用ZigBee技术、二维码技术等,实现了对农产品的全过程追溯。XU等[67]基于区块链的特点,应用物联网技术,建立城市水果可追溯模型,实现水果品质全过程的真实记录和跟踪,有效提高智慧城市的服务水平。WU等[68]将区块链技术、机器学习和RFID相结合,搭建了基于机器学习的区块链物联网茶叶可追溯系统,确保链上信息的真实性,实现了对茶叶供应链的全程可追溯。MONDAL等[69]建立一个基于区块链和物联网的架构,RFID提供数据的唯一标识,有助于实施质量监控;区块链体系结构有助于创建每个实例的食品包装防篡改数字数据库,并对此架构进行了详细的安全分析。

2.2 粮油食品区块链溯源研究进展

2.2.1 粮油食品供应链管理

在新冠疫情、俄乌冲突的大背景下,全球粮食供应链也面临前所未有的挑战。面对突发事件,粮食应急调度效率低、不及时的问题较为严重;各种粮油食品原料和成品的供应受到威胁,全球市场粮油食品价格有所上涨[70]。中国作为粮食生产大国,要切实保障粮食质量安全和供应链安全,一个可靠的粮油食品供应链管理体系,对人民群众生命健康和社会和谐发展具有重要意义。当前基于区块链的粮油食品供应链管理包括国家粮油主管部门、各级粮油主管部门,利用新一代信息化技术建立粮油食品溯源平台,实现穿透式监管,避免“转圈粮”、“升溢粮”、“以陈顶新”、压级压价等现象发生;针对粮油食品供应链溯源,主要是对溯源数据的管控,确保数据的真实性和可靠性;对参与主体的管理主要是用户身份认证、跨域与跨链的访问控制等。通过部署智能合约、建立可信的管理机制与监督机制,确保整条供应链的安全。

PENG等[71]基于多链协同管理供应链,对大米供应链信息管控进行研究,构建“区块链+子链”供应链模型,设计可信链机制、多级子链加密机制、可信监督机制和分层共识机制,这些机制共同服务于大米供应链溯源数据管理。ALKHUDARY等[72]针对橄榄油供应链中存在的有关质量和欺诈等问题,提出区块链与物联网和智能合约相结合的架构,保障橄榄油质量安全和供应链安全管理。

2.2.2 传统粮油食品供应链溯源

在传统粮油食品溯源系统中,大部分溯源系统是内部溯源,虽然传统溯源系统结合了物联网技术,如图3a所示,但还存在以下几方面的问题:

1)信息不对称,出现严重的信息孤岛问题[73]。供应商在各个环节中维护着自己所在节点的生产信息,使供应商内部产生了中心化的数据库结构,各节点间信息衔接更加困难,追溯过程耗费大量时间。

2)信息易被篡改。传统粮油食品供应链是一个中心化的溯源体系,企业可能存在为了利益而修改粮油食品关键追溯信息。

3)追溯条码可复制[74]。传统粮油食品追溯条码并不是唯一的,每个环节都可能会有一个追溯条码,有被复制的可能,造成粮油食品掺假的问题。

4)难以确认责任主体。在粮油食品发生质量安全问题时,由于传统追溯体系的复杂性,很难实现精准和快速确认责任主体。

图3 粮油食品追溯不同框架

2.2.3 基于区块链的粮油食品供应链溯源

区块链的可追溯性,可以满足追踪粮油食品信息的需求[75]。区块链技术一开始并没有和其他技术结合应用到追溯领域,只是作为一种单一的技术,把追溯的各个环节数据上传到区块链网络[76],如图3b所示。但人为上传数据存在被篡改的可能,使得上链的数据从源头开始就不真实,这与区块链之所以能应用到追溯体系相悖论。

之所以对粮油食品供应链溯源,其目的为保障整个粮油食品供应链安全。粮油作为农产品的一个重要分支,是人们日产生活中的必需品。但不同品类的农产品溯源工作也存在一定差异。其中粮油食品供应链周期长,参与主体多,在溯源过程中会注重溯源数据的真实性、溯源工作的效率以及供应链各个环节内部的规范化[77]。果蔬在生长过程中存在喷洒农药等情况,会侧重源头溯源信息的透明度[78];奶制品由于保存时间不宜过长,会注重溯源工作的时效性[79];烟草受严格国家管控,其重点为烟草供应商的身份认证和溯源数据标准性[80];冷链食品由于在物流仓储环节有相关要求,更加侧重物流和仓储信息更新的及时性与溯源信息查询效率[81]。

PENG等[82]分析了大米供应链中溯源数据特点以及在不同并行区块链中存储的不同类型的数据,提出一种基于“数据加密+智能合约+中继链”的跨链数据管理机制,以及一种适用于多链共识算法,通过仿真实验,该模型具有较好的安全性、跨链效率和可扩展性。董云峰等[83]构建了基于区块链的粮油食品供应链模型,解决了当前追溯系统中心化程度高、信息孤岛等问题,在此基础上,开发了粮油食品供应链原型系统,并应用实际场景论证模型的可行性和有效性。

2.2.4 基于区块链+物联网的粮油食品供应链溯源

为了解决源头数据不真实的问题,往往是区块链技术和物联网技术一起应用到供应链溯源系统中[84],如图3c所示。其中较多溯源系统应用传感技术、射频识别技术等通信技术。

区块链技术不仅应用于粮油食品领域,在金融、工业物联网等领域应用也较为广泛[85]。虽然都是利用区块链技术赋能相关领域,但不同领域结合区块链技术的侧重点有所不同。在粮油食品溯源领域,涉及主体多,每个环节的数据类型不同,且都有大量的非结构化数据,如何利用上链技术将每个环节的非结构化数据上链是一个巨大挑战。另外,数据存储压力在粮油食品区块链溯源中也是一个显著问题。在金融区块链领域,非结构化数据较少,更多利用区块链技术防篡改、去中心化等特征保障数据安全、降低服务成本。在工业物联网领域中,更加侧重用保障网络安全和提高整个工业流程效率,其中区块链共识机制替代中心认证机制,整个网络节点无需第三方信任平台,上链数据需网络节点达成共识才可被记录,降低网络被攻击的可能性,保护整个工业物联网的安全[86-87]。

XU等[88]提出了区块链和工业物联网连接器应用于粮油溯源的概念,基于这一理念,构建了可靠的粮油质量安全追溯模型。最后,设计了可靠的小麦质量安全追溯样机系统,并验证了模型的系统实现。LU等[89]提出了一种基于区块链和物联网的食品防伪溯源系统。该系统利用区块链技术存储食品生产、销售和运输过程中的溯源数据,同时,通过物联网技术保证区块链源数据的真实可靠,该系统具有更高的安全性和更低的通信成本。

3 挑战与发展方向

3.1 挑 战

3.1.1 数据上链存储压力大

粮油食品供应链参与主体多,有大量的溯源数据,其中包含结构化溯源数据和非结构化溯源数据。区块链自身存储性能不足已无法满足整条供应链溯源数据的存储,容易遇到存储瓶颈。在视频溯源数据上链存储中,特别是粮油食品供应链中粮库视频监管数据,无论是从图像质量还是视频分辨率,国家对其有较高的要求,导致视频数据占有较大的存储空间,其上链存储对整条粮油食品供应链来说是一个巨大的挑战。

3.1.2 系统操作性和可移植性差

目前很多行业都应用了区块链技术,在粮油食品供应链中,参与主体较多,在部分供应链溯源系统中没有标准协议可以让它们互相协作和集成,这不利于粮油食品区块链的发展。尽管开发人员可以用不同的平台编写代码,但存在一些区块链网络孤立的情况,难以满足系统之间的交互。此外,一部分供应链系统由于没有标准化的管理策略与高效的转化机制,系统移植性差,无法保证移植后的系统仍具备与其他系统的互操作性。

3.1.3 粮油食品溯源监管难度大

粮油食品供应链具有周期长、利益相关者众多、结构复杂的特点。对于监管部门来说,粮油食品供应链中每个环节的监管方式与监管内容存在不同,收购环节是对粮食质量数据的监测,仓储环节则是对粮食存储环境进行监测,因监管力度不足存在的“转圈粮”、“升溢粮”“以陈顶新”、压级压价等粮食安全问题已严重影响到粮油食品供应链的安全。除粮油食品外,不同农产品溯源工作也存在一定的差异,监管的重心也有所不同,对不同的农产品监管力度也不易掌控。

3.1.4 跨域与跨链实施困难

粮油食品供应链中利益相关者众多,存在诸多可信域,一些可信域彼此之间互不信任,如何将这些可信域之间建立信任,满足用户跨域访问,对粮油食品供应链来说是一个挑战。目前在粮油食品供应链中,单链的跨域访问已有一些研究成果[90-91]。随着供应链中参与主体的增多,单链在粮油食品供应链中可能已无法满足用户的需求。跨链技术存在智能合约不通用、用户身份可能存在重复等问题,对粮油食品区块链而言,跨域与跨链实施较为困难。

3.2 发展方向

3.2.1 提高粮油食品区块链的存储性能和可扩展性

在整个粮油食品供应链溯源中有大量的溯源数据需要上链存储,其中包含一些非结构化的视频数据。区块链在自身存储方面存在缺陷,当前已有不少学者提出不同的方法来提高区块链存储能力,但多数方法会增加粮油食品供应链的成本开销,其中也存在链下数据库存储数据丢失或者损坏的可能性。如何构建一个适合于粮油食品供应链的高容量、安全共享的存储架构是一个重要课题。其次,区块链可扩展性差和吞吐量低一直以来都是一个比较难解决的问题[92]。比特币网络每秒能处理的交易数量约为7笔,以太坊约网络约为20笔交易,而传统网络Visa可以处理1 700~2 000笔交易[93-94]。有向无环图(direct acyclic graph, DAG)架构的区块链技术是不同于传统区块链的一种分布式账本技术,其具有系统延展性高和交易速度快的明显优势,但安全性和一致性相对传统区块链还有待验证[95]。当前DAG架构的区块链已在数据管理[96-97]、数据安全[98-99]、6G网络服务[100-101]等领域有所应用,其在供应链溯源领域研究相对较少,因此,加大对DAG架构区块链在粮油食品供应链溯源的研究也是势在必行。

3.2.2 加强粮油食品供应链常态化穿透式监管

粮油食品供应链周期长,参与主体多,对各个环节实现全方位的监管难度较大,特别是在粮食购销领域因监管力度不够出现的粮食安全问题。将区块链技术应用到粮油食品溯源领域可以减少供应链监管缺失缺位的问题,其去中心化可以实现对粮油食品供应链中质量安全的实时监控,确保溯源数据的安全性和完整性;共识机制也可以提高粮食安全监管的效率。如何利用区块链技术建立粮油食品供应链常态化穿透式监管机制,是未来粮油食品溯源领域的一个重要研究方向。

3.2.3 融合区块链+IoT+人工智能

相比粮油食品溯源架构中将区块链技术与物联网技术结合,其他前沿技术与区块链结合应用到溯源架构的研究较少。融合区块链、IoT、人工智能,应用到粮油食品供应链是一个重要研究方向。将机器学习应用到粮油食品区块链共识算法领域,通过建立模型将共识节点聚类,加快共识节点的选取,提高溯源系统的效率;利用深度学习优化访问控制策略,解决用户之间的访问策略冲突问题;利用人工智能算法对粮油区块链中智能合约进行安全分析和漏洞检测,确保合约执行结果的完整性和可靠性。

3.2.4 面向多系统的跨域与跨链访问

在粮油食品区块链溯源中,如何利用区块链技术在各个可信系统之间建立低成本的信任机制,满足不同用户之间跨域访问需求,在粮油食品区块链未来发展中是一个重要的研究方向。但是,粮油食品区块链中有大量的溯源数据需要管理和维护,仅仅通过单链来实现所有数据管理较为困难,那么多链并行协同管理各系统溯源数据势在必行。因此,如何解决多链之间智能合约不匹配、用户访问策略冲突,在未来粮油食品区块链溯源研究中也是一个重要研究课题。

4 总 结

传统的粮油食品追溯体系存在着数据中心化、信息不透明、数据共享困难、溯源成本高等问题,且监管部门对粮油食品溯源信息并不能实施全方位的监管,在粮食购销领域出现“转圈粮”、“升溢粮”、“以陈顶新”、压级压价等粮食安全问题。区块链具有其去中心化、防止伪造、数据透明化和可溯源性等优点,结合物联网技术保证链上数据的真实性和完整性,实现对粮油食品供应链全链条的追溯与监管,确保粮油食品供应链安全。本文总结了区块链技术应用到粮油食品溯源等领域的研究进展,指出当前粮油食品区块链溯源面临的挑战,并对区块链技术在粮油食品溯源领域中的应用潜力进行展望,为区块链技术在粮油食品中的创新应用提供有益参考。

[1] LIU J G, ZHANG H M, ZHEN L. Blockchain technology in maritime supply chains: Applications, architecture and challenges[J/OL]. International Journal of Production Research, 2021: 1-17. https://doi.org/10.1080/00207543.2021. 1930239.

[2] ETEMADI N, BORBON-GALVEZ Y, STROZZI F, et al. Supply chain disruption risk management with blockchain: A dynamic literature review[J]. Information, 2021, 12(2): 70.

[3] KUMVENJI D C E, CHAMBA M V M, LUNGU K. Effectiveness of food traceability system in the supply chain of local beef and beef sausages in Malawi: A food safety perspective[J]. Food Control, 2022, 137: 108839.

[4] CHUNG S W, HWANG J T, PARK S H. Physiological effects of bioactive compounds derived from whole grains on cardiovascular and metabolic diseases[J]. Applied Sciences, 2022, 12(2): 658.

[5] XU Y, LI J, ZHAO J, et al. Hempseed as a nutritious and healthy human food or animal feed source: A review[J]. International Journal of Food Science & Technology, 2021, 56(2): 530-543.

[6] 吴晓彤,柳平增,王志铧. 基于区块链的农产品溯源系统研究[J]. 计算机应用与软件,2021,38(5):42-48.

WU Xiaotong, LIU Pingzeng, WANG Zhihua. Traceability system of agricultural products based on blockchain[J].Computer Applications and Software, 2021, 38(5): 42-48. (in Chinese with English abstract)

[7] JAGTAP S, TROLLMAN H, TROLLMAN F, et al. The Russia-Ukraine conflict: Its implications for the global food supply chains[J]. Foods, 2022, 11(14): 2098.

[8] 中国纪委国家监委. 中央纪委国家监委公开通报十起粮食购销领域违纪违法典型案例[EB/OL]. 2023-01-29[2023-02-12]. https://www.ccdi.gov.cn/toutiaon/202301/t20230129_243305.html.

[9] DUAN J, ZHANG C, GONG Y, et al. A content-analysis based literature review in blockchain adoption within food supply chain[J]. International Journal of Environmental Research and Public Health, 2020, 17(5): 1784.

[10] ETEMADI N, VAN GELDER P, STROZZI F. An ism modeling of barriers for blockchain/distributed ledger technology adoption in supply chains towards cybersecurity[J]. Sustainability, 2021, 13(9): 4672.

[11] LIU P. Investment decisions of blockchain-based anti-counterfeiting traceability services in a high-quality fresh supply chain of china[J]. Agriculture, 2022, 12(6): 829.

[12] JOO J, HAN Y. An evidence of distributed trust in blockchain-based sustainable food supply chain[J]. Sustainability, 2021, 13(19): 10980.

[13] BUDISH E B. The economic limits of Bitcoin and anonymous, decentralized trust on the blockchain[J]. University of Chicago, Becker Friedman Institute for Economics Working Paper, 2022(83): 1-56.

[14] RUAN P, DINH T T A, LOGHIN D, et al. Blockchains vs. distributed databases: Dichotomy and fusion[C]//Proceedings of the 2021 International Conference on Management of Data, New York, USA: ACM Conference, 2021: 1504-1517.

[15] LIAO D, DONG X, XU Z, et al. An efficient storage architecture based on blockchain and distributed database for public security big data[C]//International Conference on Computer Science, Engineering and Education Applications. Springer, Cham, 2022: 350-362.

[16] LI X, WU L, ZHAO R, et al. Two-layer adaptive blockchain-based supervision model for off-site modular housing production[J]. Computers in Industry, 2021, 128: 103437.

[17] ZHANG Y, WANG T, YUEN K V. Construction site information decentralized management using blockchain and smart contracts[J]. Computer‐Aided Civil and Infrastructure Engineering, 2022, 37(11): 1450-1467.

[18] CHENG H K, HU D, PUSCHMANN T, et al. The landscape of blockchain research: Impacts and opportunities[J]. Information Systems and e-Business Management, 2021, 19(3): 749-755.

[19] 钱建平,范蓓蕾,史云,等. 基于区块链的农产品可信追溯系统框架构建[J]. 中国农业信息,2019,31(3):48-57.

QIAN Jianping, FAN Beilei, SHI Yun, et al. The structure of credible traceability system for agricultural products based on blockchain[J]. China Agricultural Informatics, 2019, 31(3): 48-57. (in Chinese with English abstract)

[20] KERESZTES É R, KOVÁCS I, HORVÁTH A, et al. Exploratory analysis of blockchain platforms in supply chain management[J]. Economies, 2022, 10(9): 206.

[21] SAI A R, BUCKLEY J, FITZGERALD B, et al. Taxonomy of centralization in public blockchain systems: A systematic literature review[J]. Information Processing & Management, 2021, 58(4): 102584.

[22] FENG H, WANG X, DUAN Y, et al. Applying blockchain technology to improve agri-food traceability: A review of development methods, benefits and challenges[J]. Journal of Cleaner Production, 2020, 260: 121031.

[23] RATTA P, KAUR A, SHARMA S, et al. Application of blockchain and internet of things in healthcare and medical sector: Applications, challenges, and future perspectives[J/OL]. Journal of Food Quality, 2021: 7608296. https://doi.org/ 10.1155/2021/7608296.

[24] 郭上铜,王瑞锦,张凤荔. 区块链技术原理与应用综述[J]. 计算机科学,2021,48(2):271-281.

GUO Shangtong, WANG Jinrui, ZHANG Fengli. Summary of principle and application of blockchain[J]. Computer Science, 2021, 48(2): 271-281. (in Chinese with English abstract)

[25] BHUTTA M N M, KHWAJA A A, NADEEM A, et al. A survey on blockchain technology: Evolution, architecture and security[J]. IEEE Access, 2021, 9: 61048-61073.

[26] 伍德伦,饶元,许磊,等.农产品区块链信息可信评估差异化共享模型设计与实现[J]. 农业工程学报,2022,38(11):309-317.

WU Delun, RAO Yuan, XU Lei, Design and implementation of the trusted evaluation and differentiated sharing model for agricultural blockchain information[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(11): 309-317. (in Chinese with English abstract)

[27] DEMESTICHAS K, PEPPES N, ALEXAKIS T, et al. Blockchain in agriculture traceability systems: A review[J]. Applied Sciences, 2020, 10(12): 4113.

[28] FENG Q, HE D, ZEADALLY S, et al. A survey on privacy protection in blockchain system[J]. Journal of Network and Computer Applications, 2019, 126: 45-58.

[29] SHAO W, JIA C, XU Y, et al. Attrichain: Decentralized traceable anonymous identities in privacy-preserving permissioned blockchain[J]. Computers & Security, 2020, 99: 102069.

[30] WU H Y, YANG X, YUE C, et al. Chain or DAG? Underlying data structures, architectures, topologies and consensus in distributed ledger technology: A review, taxonomy and research issues[J]. Journal of Systems Architecture, 2022: 102720.

[31] WANG Z, WANG L, XIAO F, et al. A traditional Chinese medicine traceability system based on lightweight blockchain[J]. Journal of medical Internet research, 2021, 23(6): e25946.

[32] 杨信廷,王明亭,徐大明,等. 基于区块链的农产品追溯系统信息存储模型与查询方法[J]. 农业工程学报,2019,35(22):323-330.

YANG Xinting, WANG Mingting XU Daming, et al. Data storage and query method of agricultural products traceability information based on blockchain[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(22): 323-330. (in Chinese with English abstract)

[33] DAI M, ZHANG S, WANG H, et al. A low storage room requirement framework for distributed ledger in blockchain[J]. IEEE Access, 2018, 6: 22970-22975.

[34] XU Y, HUANG Y. Segment blockchain: A size reduced storage mechanism for blockchain[J]. IEEE Access, 2020, 8: 17434-17441.

[35] ZHANG X, SUN P, XU J, et al. Blockchain-based safety management system for the grain supply chain[J]. IEEE Access, 2020, 8: 36398-36410.

[36] KUMAR R, TRIPATHI R. Implementation of distributed file storage and access framework using IPFS and blockchain[C]//2019 Fifth International Conference on Image Information Processing (ICIIP). Shimla, India: IEEE, 2019: 246-251.

[37] ZHANG X, LI Y, PENG X, et al. Information traceability model for the grain and oil food supply Chain based on trusted identification and trusted blockchain[J]. International Journal of Environmental Research and Public Health, 2022, 19(11): 6594.

[38] 于华竟,徐大明,罗娜,等.杂粮供应链区块链多链追溯监管模型设计[J]. 农业工程学报,2021,37(20):323-332.

YU Huajing, XU Daming, LUO Na, et al. Design of the blockchain multi-chain traceability supervision model for coarse cereal supply chain[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(20): 323-332. (in Chinese with English abstract)

[39] SALAH K, NIZAMUDDIN N, JAYARAMAN R, et al. Blockchain-based soybean traceability in agricultural supply chain[J]. IEEE Access, 2019, 7: 73295-73305.

[40] LIU X, BARENJI A V, LI Z, et al. Blockchain-based smart tracking and tracing platform for drug supply chain[J]. Computers & Industrial Engineering, 2021, 161: 107669.

[41] WANG L, XU L, ZHENG Z, et al. Smart contract-based agricultural food supply chain traceability[J]. IEEE Access, 2021, 9: 9296-9307.

[42] YU C T, ZHAN Y Z, LI Z Y. Using blockchain and smart contract for traceability in agricultural products supply chain[C]//2020 International Conference on Internet of Things and Intelligent Applications (ITIA). Zhenjiang, China: IEEE, 2020: 1-5.

[43] KTARI J, FRIKHA T, CHAABANE F, et al. Agricultural lightweight embedded blockchain system: A case study in olive oil[J]. Electronics, 2022, 11(20): 3394.

[44] YAKUBU B M, LATIF R, YAKUBU A, et al. RiceChain: secure and traceable rice supply chain framework using blockchain technology[J]. PeerJ Computer Science, 2022, 8: e801.

[45] 靳世雄,张潇丹,葛敬国,等. 区块链共识算法研究综述[J]. 信息安全学报,2021,6(2):85-100.

JIN Shixiong, ZHANG Xiaodan, GE Jingguo, et al. Overview of blockchain consensus algorithm[J]. Journal of Information Security, 2021, 6(2): 85-100. (in Chinese with English abstract)

[46] 景旭,刘滋雨,秦源泽. 基于区块链中继技术的集群式农产品供应链溯源模型[J]. 农业工程学报,2022,38(11):299-308.

JING Xu, LIU Ziyu, Qin Yuanze. Traceability model of cluster agricultural product supply chains based on blockchain relay technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(11): 299-308. (in Chinese with English abstract)

[47] LI C, ZHANG J, YANG X, et al. Lightweight blockchain consensus mechanism and storage optimization for resource-constrained IoT devices[J]. Information Processing & Management, 2021, 58(4): 102602.

[48] BRAVO-MARQUEZ F, REEVES S, UGARTE M. Proof-of-learning: A blockchain consensus mechanism based on machine learning competitions[C]//2019 IEEE International Conference on Decentralized Applications and Infrastructures (DAPPCON). Newark, CA, USA: IEEE, 2019: 119-124.

[49] 任守纲,何自明,周正己,等.基于CSBFT区块链的农作物全产业链信息溯源平台设计[J]. 农业工程学报,2020,36(3):279-286.

REN Shougang, HE Ziming, ZHOU Zhengji, et al. Design and implementation of information tracing platform for crop whole industry chain based on CSBFT-Blockchain[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(3): 279-286. (in Chinese with English abstract)

[50] LI Y, ZHANG X, ZHAO Z, et al. Research on grain food blockchain traceability information management model based on master-slave multichain[J/OL]. Computational Intelligence and Neuroscience, 2022: 7498025. https://doi.org/10.1155/2022/7498025.

[51] GAO H, MA Z, LUO S, et al. BSSPD: A blockchain-based security sharing scheme for personal data with fine-grained access control[J/OL]. Wireless Communications and Mobile Computing, 2021: 6658920. https://doi.org/10.1155/2021/ 6658920.

[52] LU X, FU S, JIANG C, et al. A fine-grained IoT data access control scheme combining attribute-based encryption and blockchain[J]. Security and Communication Networks, 2021: 5308206. https://doi.org/10.1155/2021/5308206.

[53] ZHANG G, CHEN X, FENG B, et al. Research on a safe and reliable agricultural product traceability system driven by permissioned blockChain technology[C]//The International Conference on Image, Vision and Intelligent Systems (ICIVIS 2021). Singapore: Springer, 2022: 955-966.

[54] TARIQ F, KHAN Z A, SULTANA T, et al. Leveraging fine-grained access control in blockchain-based healthcare system[C]//International Conference on Advanced Information Networking and Applications. Caserta, Italy, Springer, Cham, 2020: 106-115.

[55] ZHANG L, KAN H, XU Y, et al. Revocable data sharing methodology based on SGX and blockchain[C]//International Conference on Network and System Security. Tianjin, China: Springer, Cham, 2021: 61-78.

[56] LEI M, XU L, LIU T, et al. Integration of privacy protection and blockchain-based food safety traceability: potential and challenges[J]. Foods, 2022, 11(15): 2262.

[57] HASSAN M U, REHMANI M H, CHEN J. Privacy preservation in blockchain based IoT systems: Integration issues, prospects, challenges, and future research directions[J]. Future Generation Computer Systems, 2019, 97: 512-529.

[58] 陈邦越. 基于区块链的水稻全供应链溯源系统设计与实现[D]. 长春:吉林农业大学,2021.

CHEN Bangyue. Design and Implementation of A Blockchain-Based Whole Supply Chain Traceability System for Rice[D]. Changchun:Jilin Agricultural University, 2021. (in Chinese with English abstract)

[59] 范茂顺. 基于区块链的隐私保护农产品溯源系统研究与实现[D]. 哈尔滨:哈尔滨工业大学,2021.

FAN Maoshun. Research and Implementation of Privacy-Preserving Agricultural Product Traceability System Based on Blockchain[D]. Harbin: Harbin Institute of Technology, 2021. (in Chinese with English abstract)

[60] ZHOU J, FENG Y, WANG Z, et al. Using secure multi-party computation to protect privacy on a permissioned blockchain[J]. Sensors, 2021, 21(4): 1540.

[61] WANG J, ZHANG X, XU J, et al. Blockchain-based information supervision model for rice supply chains[J]. Computational Intelligence and Neuroscience, 2022: 2914571. https://doi.org/10.1155/2022/2914571.

[62] MALIK S, DEDEOGLU V, KANHERE S S, et al. Privchain: Provenance and privacy preservation in blockchain enabled supply chains[C]//2022 IEEE International Conference on Blockchain, Espoo, Finland: IEEE, 2022: 157-166.

[63] 李莉,杜慧娜,李涛. 基于群签名与属性加密的区块链可监管隐私保护方案[J]. 计算机工程,2022,48(6):132-138.

LI Li, DU Huina, LI Tao. Blockchain supervisable privacy protection scheme based on group signature and attribute encryption[J].Computer Engineering, 2022, 48(6): 132-138. (in Chinese with English abstract)

[64] 钱建平,吴文斌,杨鹏. 新一代信息技术对农产品追溯系统智能化影响的综述[J]. 农业工程学报,2020,36(5):182-191.

QIAN Jianping, WU Wenbin, YANG Peng. Review on agricultural products smart traceability system affected by new generation information technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(5): 182-191. (in Chinese with English abstract)

[65] 李佳利,陈宇,钱建平,等. 融合HACCP体系的农产品区块链追溯系统精准上链机制改进[J]. 农业工程学报,2022,38(20):276-285.

LI Jiali, CHEN Yu, QIAN Jianping, et al. Improvement of the precise up-chain mechanism of the agricultural products blockchain traceability system integrating the HACCP system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(20): 276-285. (in Chinese with English abstract)

[66] 刘丹,窦津津,胡建斌. 基于“区块链+物联网”融合的农产品溯源系统[J]. 软件工程,2021,24(7):39-42.

LIU Dan, DOU Jinjin, HU Jianbin. Agricultural product traceability system based on integration of “blockchain + internet of things”[J]. Software Engineering, 2021, 24(7): 39-42. (in Chinese with English abstract)

[67] XU C, CHEN K, ZUO M, et al. Urban fruit quality traceability model based on smart contract for Internet of Things[J]. Wireless Communications and Mobile Computing, 2021: 9369074. https://doi.org/10.1155/2021/9369074.

[68] WU Y, JIN X, YANG H, et al. Blockchain-based internet of things: Machine learning tea sensing trusted traceability system[J]. Journal of Sensors, 2022: 8618230. https://doi.org/10.1155/2022/8618230.

[69] MONDAL S, WIJEWARDENA K P, KARUPPUSWAMI S, et al. Blockchain inspired RFID-based information architecture for food supply chain[J]. IEEE Internet of Things Journal, 2019, 6(3): 5803-5813.

[70] JAGTAP S, TROLLMAN H, TROLLMAN F, et al. The Russia-Ukraine conflict: Its implications for the global food supply chains[J]. Foods, 2022, 11(14): 2098.

[71] PENG X, ZHANG X, WANG X, et al. Multi-Chain collaboration-based information management and control for the rice supply chain[J]. Agriculture, 2022, 12(5): 689.

[72] ALKHUDARY R, BRUSSET X, NASERALDIN H, et al. Enhancing the competitive advantage via blockchain: an olive oil case study[J]. IFAC-PapersOnLine, 2022, 55(2): 469-474.

[73] ZHANG X, SUN P, XU J, et al. Blockchain-based safety management system for the grain supply chain[J]. IEEE Access, 2020, 8: 36398-36410.

[74] PENG W, YI L, FANG L, et al. Secure and traceable copyright management system based on blockchain[C]//2019 IEEE 5th International Conference on Computer and Communications (ICCC). Chengdu, China: IEEE, 2019: 1243-1247.

[75] AIELLO G, ENEA M, MURIANA C. The expected value of the traceability information[J]. European Journal of Operational Research, 2015, 244(1): 176-186.

[76] 潘慧萍,李宝安,吕学强,等. 湘冷链——基于区块链的冷链溯源系统[J]. 食品与机械,2021,37(9):145-152.

PAN Huiping, LI Baoan, LV Xueqiang, et al. Hunan cold chain: Cold chain traceability system based on blockchain[J]. Food & Machinery, 2021, 37(9): 145-152. (in Chinese with English abstract)

[77] GARCÍA-OLIVEIRA P, FRAGA-CORRAL M, PEREIRA A G, et al. Solutions for the sustainability of the food production and consumption system[J]. Critical Reviews in Food Science and Nutrition, 2022, 62(7): 1765-1781.

[78] GHOSH S, PUDALE S. Traceable and reliable food supply chain through blockchain-based technology in association with marginalized farmers[M]// New York: Apple Academic Press, 2022: 431-457.

[79] VARAVALLO G, CARAGNANO G, BERTONE F, et al. Traceability platform based on green blockchain: An application case study in dairy supply chain[J]. Sustainability, 2022, 14(6): 3321.

[80] CHEN C L, LIM Z Y, LIAO H C, et al. A traceable and verifiable tobacco products logistics system with gps and rfid technologies[J]. Applied Sciences, 2021, 11(11): 4939.

[81] BAMAKAN S M H, MOGHADDAM S G, MANSHADI S D. Blockchain-enabled pharmaceutical cold chain: Applications, key challenges, and future trends[J]. Journal of Cleaner Production, 2021, 302: 127021.

[82] PENG X, ZHANG X, WANG X, et al. Research on the cross-chain model of rice supply chain supervision based on parallel blockchain and smart contracts[J]. Foods, 2022, 11(9): 1269.

[83] 董云峰,张新,许继平,等. 基于区块链的粮油食品全供应链可信追溯模型[J]. 食品科学,2020,41(9):30-36.

DONG Yunfeng, ZHANG Xin, XU Jiping, et al. Blockchain- based traceability model for grains and oils whole supply Chain[J]. Food Science, 2020, 41(9): 30-36. (in Chinese with English abstract)

[84] 李旭东,杨千河,姚竟发,等. 基于区块链的农产品溯源技术研究综述[J]. 江苏农业科学,2022,50(6):16-24.

LI Xudong, YANG Qianhe, YAO Jingfa, et al. Study on traceability technology of agricultural products based on blockchain: A review[J]. Jiangsu Agricultural Science, 2022, 50(6): 16-24. (in Chinese with English abstract)

[85] MALIK N, ALKHATIB K, SUN Y, et al. A comprehensive review of blockchain applications in industrial Internet of Things and supply chain systems[J]. Applied Stochastic Models in Business and Industry, 2021, 37(3): 391-412.

[86] LATIF S, IDREES Z, E HUMA Z, et al. Blockchain technology for the industrial Internet of Things: A comprehensive survey on security challenges, architectures, applications, and future research directions[J]. Transactions on Emerging Telecommunications Technologies, 2021, 32(11): e4337.

[87] GORKHALI A, CHOWDHURY R. Blockchain and the evolving financial market: A literature review[J]. Journal of Industrial Integration and Management, 2022, 7(1): 47-81.

[88] XU J, HAN J, QI Z, et al. A reliable traceability model for grain and oil quality safety based on blockchain and industrial internet[J]. Sustainability, 2022, 14(22): 15144.

[89] LU Y, LI P, XU H. A Food anti-counterfeiting traceability system based on Blockchain and Internet of Things[J]. Procedia Computer Science, 2022, 199: 629-636.

[90] SUN S, DU R, CHEN S, et al. Blockchain-based IoT access control system: Towards security, lightweight, and cross-domain[J]. IEEE Access, 2021, 9: 36868-36878.

[91] ZHANG H, CHEN X, LAN X, et al. BTCAS: A blockchain-based thoroughly cross-domain authentication scheme[J]. Journal of Information Security and Applications, 2020, 55: 102538.

[92] MAZLAN A A, DAUD S M, SAM S M, et al. Scalability challenges in healthcare blockchain system: A systematic review[J]. IEEE Access, 2020, 8: 23663-23673.

[93] YAQOOB I, SALAH K, JAYARAMAN R, et al. Blockchain for healthcare data management: opportunities, challenges, and future recommendations[J/OL]. Neural Computing and Applications, 2021: 1-16. https://link.springer.com/article/ 10.1007/s00521-020-05519-w.

[94] KHAN U, AN Z Y, IMRAN A. A blockchain ethereum technology-enabled digital content: Development of trading and sharing economy data[J]. IEEE Access, 2020, 8: 217045-217056.

[95] FERRARO P, KING C, SHORTEN R. On the stability of unverified transactions in a DAG-based distributed ledger[J]. IEEE Transactions on Automatic Control, 2019, 65(9): 3772-3783.

[96] YANG W, DAI X, XIAO J, et al. LDV: A lightweight DAG-based blockchain for vehicular social networks[J]. IEEE Transactions on Vehicular Technology, 2020, 69(6): 5749-5759.

[97] CHEN W, YANG X, ZHANG H, et al. Big data architecture for scalable and trustful DNS based on sharded DAG blockchain[J]. Journal of Signal Processing Systems, 2021, 93: 753-768.

[98] LU Y, HUANG X, ZHANG K, et al. Blockchain empowered asynchronous federated learning for secure data sharing in internet of vehicles[J]. IEEE Transactions on Vehicular Technology, 2020, 69(4): 4298-4311.

[99] JAYABALAN J, JEYANTHI N. Scalable blockchain model using off-chain IPFS storage for healthcare data security and privacy[J]. Journal of Parallel and Distributed Computing, 2022, 164: 152-167.

[100] XIE J, ZHANG K, LU Y L, et al. Resource-efficient DAG blockchain with sharding for 6G networks[J]. IEEE Network, 2021, 36(1): 189-196.

[101] ZHANG H, LENG S, WU F, et al. A DAG blockchain-enhanced user-autonomy spectrum sharing framework for 6G-enabled IoT[J]. IEEE Internet of Things Journal, 2021, 9(11): 8012-8023.

Research progress and prospect of grain and oil food traceability based on blockchain technology

GE Hongyi1,2,3, WU Xuyang1,2,3, JIANG Yuying1,2,4※, ZHANG Yuan1,2,3※, SUN Zhenyu1,2,3, CUI Guangyuan1,2,3, JIA Zhiyuan1,2,3

(1.,,,450001,; 2.,,450001,; 3.,,450001,; 4.,,450001,)

Grains and oils have been one of the most important branches of agricultural products in the basic necessity of daily life. The safety accidents of cereal and oil food occur frequently in recent years, leading to a gradual weakening of the consumers' trust in cereal and oil food quality and supply chain. There is a long cycle in the supply chain of cereals, oils, and foodstuffs, particularly for the complex structure and many stakeholders. It is still challenging to maintain the safety of the supply chain, especially in the field of grain purchase and sale. There are some risks to food security, such as "topping new with old", "revolving grain", and pressure on grade and price. The traceability system can serve as the product management to implement forward, reverse, and non-directional tracking of products, in order to connect all aspects of grain, oil, and food distribution. As such, an important guarantee can be provided for the quality and safety in the process of raw material collection, manufacturing, processing, storage, and transportation, as well as distribution and sales. The traditional traceability system cannot fully meet the large-scale production in recent years, such as data centralization, opaque information, easy data falsification, and easy formation of information silos. Blockchain can be taken as a next-generation disruptive technology after the Internet, with new features such as decentralization, distributed storage, anonymity, open and transparent data, and content not easily tampered with, bringing new solutions to product traceability in the grain and oil food supply chain. The article first introduced the basic meaning of blockchain technology, and then listed the development stages of blockchain 1.0-3.0, including the characteristics and application scenarios of each stage. Blockchain technology was summarized in the blockchain traceability field of grain and oil food over the past five years, with emphasis on the different architectures. The progress of blockchain-related technology was described in such fields as grain and oil food traceability, including combining blockchain and Internet of Things (IoT) technologies. The traceability system was then optimized for the blockchain storage performance for the traceability system. The basic architecture of blockchain was applied to the grain and oil food traceability, including blockchain alone and the blockchain + IoT. Some differences and difficulties were proposed to apply the blockchain in the field of grain, oil, and foodstuffs traceability, compared with the financial and industrial IoT fields. Traceability was used for the different categories of agricultural products. The current challenges were elaborated, in terms of storage performance, interoperability, traceability system portability, supervision difficulty, cross-chain, and cross-domain. The blockchain storage performance enhanced the blockchain scalability and throughput, and then integrated blockchain+IoT+artificial intelligence, as well as the cereal and oil food blockchain in the cross-domain and cross-chain. An outlook was given on the future field of cereal and oil food traceability. The finding can also provide a strong reference for the innovative application of blockchain technology in cereal and oil food.

agricultural products; traceability; blockchain; traceability system; grain and oil food; supply chain

10.11975/j.issn.1002-6819.202209205

TP301

A

1002-6819(2023)-05-0214-10

葛宏义,吴旭阳,蒋玉英,等. 基于区块链技术的粮油食品溯源研究进展及展望[J]. 农业工程学报,2023,39(5):214-223.doi:10.11975/j.issn.1002-6819.202209205 http://www.tcsae.org

GE Hongyi, WU Xuyang, JIANG Yuying, et al. Research progress and prospect of grain and oil food traceability based on blockchain technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(5): 214-223. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.202209205 http://www.tcsae.org

2022-09-26

2023-02-24

国家自然科学基金项目(61975053, 62271191);河南工业大学粮食信息处理与控制教育部重点实验室开放基金项目(KFJJ2020103, KFJJ2021102);河南省自然科学基金项目(222300420040);河南省高校科技创新人才支持计划项目(22HASTIT017, 23HASTIT024);河南省重大公益专项(201300210100)

葛宏义,博士,副教授,研究方向为先进传感技术、区块链技术。Email:gehongyi2004@163.com

蒋玉英,博士,副教授,研究方向为智能信息处理。Email:jiangyuying11@163.com

张元,教授,博士生导师,研究方向为智能信息与信号处理、电磁波探测技术。Email:zhangyuan@haut.edu.cn

猜你喜欢
粮油食品区块供应链
海外并购绩效及供应链整合案例研究
《粮油食品科技》办刊理念视觉表达
区块链:一个改变未来的幽灵
科学(2020年5期)2020-11-26 08:19:12
为什么美中供应链脱钩雷声大雨点小
英语文摘(2020年9期)2020-11-26 08:10:14
区块链:主要角色和衍生应用
科学(2020年6期)2020-02-06 08:59:56
中粮集团有限公司:努力打造粮油食品行业人才培养高地
益邦供应链酣战“双11”
益邦供应链 深耕大健康
区块链+媒体业的N种可能
传媒评论(2018年4期)2018-06-27 08:20:12
读懂区块链