刘警阳 刘宗堡 曹兰柱 刘性全 胡赛寅 潘国辉 刘芳
摘 要 河型转化机制研究对于分析河流沉积特征具有重要意义。以中国松花江干流中下游为研究对象,利用Google Earth和Arc GIS软件对河流形态参数进行精细测量,进而对不同河段河型发育特征及转化控制因素进行研究,结果表明:1)松花江干流中下游存在曲流河、辫状河和直流河3种类型,依据地貌特征、平面形态和弯曲度自上而下划分为3段,其中上段为低坡度背景下河流逐渐加宽且植被密度逐渐降低的曲辫共存型河流,中A段为低坡度背景下河流较宽且植被密度高的简单辫状河,中B 段为高坡度背景下河流宽度集中且植被密度低的直流河,下段为高坡度背景下河流宽度频繁变化的复杂辫状河;2)曲流河向辫状河转化控制因素为植被密度降低引起的堤岸抗侵蚀能力减弱,辫状河向直流河转化控制因素为河流被两侧山谷夹持且伴随坡度陡增造成河流下蚀能力增强,直流河向辫状河转化控制因素为支流注入导致流量和输沙量增大;3)建立了松花江干流中下游3种河型转化模式,上段为渐变曲—辫转化,中段为突变辫—直转化,下段为突变直—辫转化。
关键词 河流;河型转化;发育特征;沉积模式;松花江
第一作者简介 刘警阳,男,1997年出生,硕士研究生,储层沉积学,E-mail: liujingyang0306@163.com
通信作者 刘宗堡,男,教授,博士生导师,E-mail: lzbdqpi@163.com
中图分类号 P512.2 文献标志码 A
0 引言
河型转化作为河流沉积学研究的重要内容之一,其是指由于地质地貌条件改变引起的各种河流类型之间的相互转化过程[1-2],而这种转化过程发生在地质历史时期则表现为不同河流体系的沉积演变[3],因此,河型转化在现代水利防治和地下储层预测中均具有重要意义。近年来,随着现代沉积类比、水槽物理模拟、野外露头解剖和沉积数值模拟等技术方法的大量应用,河流地质条件和堤岸边界条件控制河型转化已成为不争的事实[4-6]。河流地质条件中坡度和流量对于河型转化的控制作用最为显著,因为河流形态对构造作用相对敏感[7],而流量改变则会引起水流冲刷能力变化[8-9],进而可以利用坡度与流量的函数定量判别河流类型及其转化[10-11];同时,沉积物供给和水沙条件匹配对河型转化的控制作用也被广泛认知,如钱宁[12]和陆中臣等[13]认为当细粒沉积物增多时曲流河特征增强。相比于河流地质条件,堤岸边界条件则是通过外力作用引起河型发生转化[14-16],如堤岸植被影响水流编织强度和相对流动性,进而控制河流样式[17],这是由于植被根系与泥沙有机组合增强堤岸强度和水流阻力[18-19],特别是不同植被根系对堤岸抗侵蚀性的影响差异较大[20]。同期,关于地质结构、岩石强度和山谷限制对河型转化的控制作用研究也取得了大量进展[21-22]。
目前,河型转化控制因素研究对象主要为大型河流,而对于中小型河流研究却十分薄弱,同时采用的技术手段多以河流地貌学为基础的定性描述,缺少系统性河型转化控制因素的定量分析。本文选取中国东北松花江干流中下游河段,利用Google Earth和Arc GIS软件获取河流卫星影像并对其进行几何形态参数测量,同时结合地质地貌特征和沉积动力学机制,最终建立不同河段河型转化的控制因素。其成果不仅可以应用于河流平面形态预测及水利灾害预防,还可以类比于地下河流相储层沉积体系分析。
1 松花江流域地质概况
松花江是黑龙江在中国境内的最大支流,流域面积557 200 km2,涵盖黑龙江、吉林、辽宁和内蒙古四个省区。松花江南源(正源)发源于长白山天池,全长约1 930 km;北源嫩江发源于大兴安岭伊勒呼里山,是松花江最大支流,与南源松花江在吉林省松原市三岔河口交汇后向东流出统称松花江干流,最终注入黑龙江。根据松花江干流流域地形及水系特征,可划分为上游、中游和下游,松原市—哈尔滨市为上游,哈尔滨市—佳木斯市为中游,佳木斯市—同江市为下游。松花江流域范围内共分布5座重要水文测量站,分别为扶余站、江桥站、大赉站、哈尔滨站和佳木斯站(图1a)。
本次研究区域为松花江干流中下游河段(以下统称河段),河段西南起哈尔滨市巴彦县,东北至佳木斯市同江市,全长约560 km。河段位于北温带季风气候区,为湿润—半湿润气候,年平均降水量在500 mm左右,全年降水量的70%~80%集中在6—9月,该时间段是河段的洪水多发期,洪峰一般出现在每年的8月[23]。河段内堤岸植被丰富,在哈尔滨市、通河县等相对低纬度区域植被类型为沼泽和浅滩植被;依兰县、汤原县等山区的植被类型为阔叶林和少量栽培植被;随着纬度增加,在佳木斯市和同江市区域植被类型转变为大量栽培植被和少量针叶林。河段的年径流量主要来自大气降水,在河段中下游有牡丹江、汤旺河和梧桐河等支流汇入。河段平均年径流量为627.6×108 m3,年输沙量为1 251.8×104 t[24],主要径流量和输沙量集中在每年6—11 月,分别占全年的64%~88% 和89%~98%。总之,河段流经松嫩平原、山前过渡带和三江平原,河流地貌特征多样,兼具平原河流和山区河流特征;河段内河流宽度变化范围较大、形态类型多样和弯曲指数较低,多数条件下发育辫状河,局部具有曲流河和曲辫共存特征,仅在山前过渡带处有直流河发育。
2 数据来源和方法
2.1 河流形态参数选取及有效测量
采用Google Earth和Arc GIS软件对河段河流几何形态及地貌特征等参数进行精细测量,河流形态参数是指能够反映河流平面几何形态的数值,包括河流的宽度和弯曲度等;地貌特征参数是指反映河流动力学特征的数值,包括植被密度和河流坡降等,其中部分工程数据来源于2019年中国河流泥沙公报,同时测量区域选取原则是避开人为影响河段且卫星图像清晰(图2a)。
2.1.1 河流宽度
河流宽度是反映河流平面形态的重要参数,同时河流宽度的变化能够反映构造作用、物源供给、气候条件和基准面升降等因素对河流形态的综合影响[25]。为了对河流宽度进行精细测量,在河流宽度变化幅度较小和测量区间较长的区域,每间隔5km 进行一次宽度测量,在河流宽度变化较大和测量区间较短的区域,每隔1.5 km或2 km进行一次宽度测量,并在目标河段内进行多次的河流宽度测量求取其平均值。根据不同河段的河流形态特征,宽度测量的方法略有差别:曲流河段和直流河段只测量主河流宽度,曲流河的串沟河道与废弃河道不在河流宽度计算范围内;简单辫状河段的测量要计算沙坝宽度,因其沙坝数量少且形态单一,测量相对简单;复杂辫状河段的测量同样要计算沙坝宽度,但其沙坝数量多且相对分散,在测量时要注意沙坝边界和河流边界的区别,复杂辫状河段通常存在多条细小支流,支流宽度不纳入河流宽度范围(图2b)。
2.1.2 植被密度
植被密度能够指示河流演化过程的动力学机制,特别是它能改变河岸的力学性质,植被根系可以增强土壤内聚力从而提升河岸的抗剪强度来对抗水流侵蚀[26]。本次研究定义植被密度为一定范围河段内植被发育长度与河段总长度比值。利用Arc GIS软件的“最大似然分类”方法,通过中高分辨率卫星图像获取测量区域的植被覆盖率,进而计算河流沿岸植被密度,植被密度测量河段应与宽度测量河段相一致。测量时应注意植被是河岸植被,而不是江心岛和沙坝上的植被(图2c)。
2.1.3 弯曲度和坡度
弯曲度为河道长度与河谷长度之比,定义为:
S = L/D (1)
式中:S 为河段弯曲度,无量纲;L 为河道长度,m;D 为河谷长度,m。
弯曲度是除河流宽度外最能直接反映河流几何形态的参数,表示独立河湾或一定长度河段的蜿蜒程度,河流弯曲度的改变揭示了堤岸抗侵蚀性和河流宽度的变化。一般情况下,弯曲度高的河段,河流宽度较小;而弯曲度小的河段,河流宽度较大。虽然弯曲度与河流宽度之间存在一定关系,但弯曲度具有较大的波动性[27],要建立两者之间的定量关系难度较大。
坡度为两点之间海拔高差与两点直线距离之比,定义为:
s = ΔH/D (2)
式中:s 为河段坡度,无量纲;ΔH 为河段海拔高差,m;D 为河段直线距离,m。
坡度是反映河段地形起伏的地貌特征参数,在河流沉积学研究中,坡度特指河流坡降,用来指示河段单位长度内自上游向下游的海拔高差。受多期构造作用影响,相比于其他参数,坡度是较难测定的变量,因此需要进行大范围的海拔高度测量并采用多次测量的平均值。
2.2 河流分段
为了深入探究河型转化的控制因素,依据河流的地貌特征、平面形态和弯曲度对河流进行分段,如松花江干流中下游沿流向依次为平原—低丘陵地貌、山区地貌和平原地貌。Rust[28]提出的曲流河、直流河、辫状河和网状河分类方案及判别标准,最终将研究河段细分为3段4亚段:上段为巴彦县至通河县,发育曲流河和辫状河,为曲辫过渡河段;中段为通河县至汤原县,该段流经山前过渡带,河流弯曲度极低,其中依兰县西侧为坡降小的辫状河,依兰县东侧为坡降大的直流河,因此将中段进一步细分为中A亚段(通河县—依兰县)和中B亚段(依兰县—汤原县);下段为桦川县—同江市,河流弯曲度较低,为辫状河特征(图1b~d、表1)。
3 不同河段河型发育特征
3.1 上段河型发育特征
上段位于松花江干流中游,具有曲流河和辫状河特征,河流平均弯曲度为1.17,在曲流段河湾的最大弯曲度达2.62,辫状段河弯的最小弯曲度仅为1.01(图1b)。上段地形坡降平缓,平均坡度为7.9×10-5,河流左岸为平原和低丘陵,河流右岸为大片平原,是明显的平原—低丘陵地貌,植被类型为浅色低矮的沼泽滩地。2019年径流量为470.8×108 m3,输沙量为481×104 (t 哈尔滨水文站),最终在上段选择测量点27处,每段长5 km,测量总长度达185 km。上段河流宽度介于458.9~966.7 m,平均宽度为737.4 m,宽度峰值介于800~900 m,占测量河流总数的41%,同时从上游至下游河流宽度呈逐渐增大的趋势(图3a)。上段植被覆盖率总体较低,植被密度介于0.05~0.57,其中植被密度小于0.3的河段约占63%,且具有自上游向下游先快速减小再缓慢减小的趋势(图3b)。
3.2 中段河型发育特征
中段与上段同属松花江干流中游,但河流几何形态特征与上段截然不同。中段流经山前过渡带,是明显的山区地貌,以依兰县为分界点,两侧河流的几何形态存在很大差异。上游中A段是简单辫状河,坡降较小,平均坡度为8.3×10-5,平均弯曲度为1.05,最大弯曲度仅为1.11;下游中B段是典型直流河,坡降较陡,平均坡度为2.0×10-4,最大弯曲度仅为1.06。在中段共选取测量点52处,中A段和中B段各26处,每段长2 km或1.5 km,测量长度达120 km(图1c)。
中段河流宽度分布有两个集中范围,分别在1 300~1 900 m和500~700 m,在其范围内的河流宽度约占总测量河段的35%和41%,在频率分布直方图上呈近双峰特征(图4a)。中A 段河流宽度介于726.7~2 280.53 m,平均宽度为1 556.7 m,河流宽度分布有两个明显峰值,总体上呈先增大、后减小、再增大和再减小的过程,表明河流宽度变化较大;中B段河流宽度介于486.7~797.2 m,平均宽度为617.8 m,宽度范围相对集中,平均绝对误差仅为51.4 m,表明河流宽度范围变化较小,且中B段河宽趋势线呈近直线形态。中段河流植被密度较高,植被密度在0.3~0.7之间的河段占总测量河段的71%,同时植被密度自上游向下游具有缓慢减小的趋势,中A段植被密度明显高于中B段,如中A段植被密度最大值为0.94(平均值为0.69),中B段植被密度最大值为0.68(平均值为0.45)(图4b)。
3.3 下段河型发育特征
下段位于松花江干流下游,具有明显的辫状河特征,对比中A段简单辫状河,下段河流形态复杂,河流中沙坝众多且大多被植被覆盖。河流总体较为平直,最大弯曲度仅为1.39。下段流经三江平原,最终在同江市注入黑龙江,河流两岸地势平坦,但河流坡降较陡,平均坡度为1.4×10-4,植被类型为暗绿色的栽培植被和少量针叶林。下段有众多支流汇入,如汤旺河、倭肯河和牡丹江等,造成年径流量与年输沙量远远超过上段和中段。2019年径流量为985.6×108 m3,输沙量为1 820×104 t(佳木斯水文站)。在下段共选取测量点42 处,每段长5 km,测量长度达210 km,其中考虑人为因素未选取佳木斯市区河段进行测量(图1d)。
下段河流开阔,河流宽度介于1 184.1~2 682.6 m,平均宽度1 726.5 m,宽度峰值介于1 200~2 000 m,占测量河流总数的74%。下段河流宽度范围变化较大,有4个宽度明显增大的区域,这说明下段河流形态十分复杂(图5a)。下段流经高纬度地区,植被密度总体较低且无明显变化趋势,77%的测量河段植被覆盖率介于0.2~0.5,平均植被密度为0.39(图5b)。
4 不同河型转化控制因素研究
4.1 稳定河型向不稳定河型转化
经典河流沉积学理论认为河流河型自上游向下游依次为辫状河、曲流河和网状河,其代表了河流能量消耗趋于稳定的动态过程。河流蕴含能量的多少决定了河流稳定性,进而可以将河流类型划分为稳定河流和不稳定河流。河流稳定性评价参数包括纵向稳定性和横向稳定性[29],纵向稳定性反映河床纵向的变形程度,表示泥沙和水流运动之间的对抗关系[30],横向稳定性则反映河流横向的摆动幅度,其与河岸的抗侵蚀能力密切相关[31]。当水沙匹配关系平衡和河岸抗侵蚀能力强时发育稳定河流,其蕴含能量低,在没有其他因素干扰下河型保持不变,如曲流河和直流河;当水沙匹配关系不平衡和河岸抗侵蚀能力低时发育不稳定河流,其蕴含能量高,此时河型容易发生转化,如辫状河。类比于地下河流相储层预测,明确河型转化机制对于认清矿产资源的分布规律具有重要意义,如不稳定河流能量高、水动力强和底负载沉积物多,砂体厚度大且分布广泛,容易形成优质储层;相反,稳定河流能量低、水动力弱和悬浮沉积物多,砂体厚度薄且分布零散,导致储层储集规模较小。
松花江干流中下游出现了曲流河、直流河向辫状河的转化,具有稳定河流向不稳定河流转化的特征,这也印证了河流形态并不受河流位置的影响,只要满足河流发育条件即可以发生有序的河型转化,如Leopold et al.[32]指出辫状河转化过程与坡度变陡有关,王随继[33]也提出河流比降增大是稳定河流向不稳定河流转化的控制因素。同样构造作用也可以改变沉积环境和基准面位置来控制河型转化[34];此外,从河流动力学角度出发,曲—辫转化可看作河流能量过剩的综合表现,是水流能量变化与河岸边界条件之间的动态平衡[35]。
4.1.1 曲流河向辫状河转化控制因素
河段上段具有曲流河向辫状河的转化特征,在相邻河湾内,兼有曲流河边滩和辫状河心滩特征,是明显的曲辫共存河段。上段上游发育曲流河的废弃河道和串沟河道;上段下游发育辫状河,河流侧向侵蚀能力减弱,随着沙坝出现河流开始变宽,当沙坝发育到一定规模时河流开始分叉。通过对上段河流宽度和植被密度的测量,利用最小二乘法进行拟合发现,河流宽度与植被密度具有较好的负相关性,即随着河岸植被密度的降低,河流宽度逐渐增加(图6)。上述研究表明当植被密度减小时,植被根系对堤岸沉积物的固结作用减弱,水流对河岸侵蚀力大于堤岸土壤凝聚力,造成水流侵蚀堤岸,使得河流变宽并出现分叉。
上段最大坡度为2.0×10-4,平均坡度为7.9×10-5,伴随着河流宽度的增大,河流坡降没有出现规律性的增高,依据曲辫划分阈值计算满岸流量。
g = 0.013Q-bf0.44 (3)
式中:g为坡度,无量纲;Qbf为满岸流量,m3/s。
通过式(3)计算得出上段最大坡度处发生曲—辫转化时的瞬时满岸流量应为13 190.39 m3/s[10],Latrubesse[36]曾提出平均流量大于10 000 m3/s的河流可看作超大型河流,但松花江干流作为中小型河流显然不具备流量大于10 000 m3/s的水流条件。所以流量和坡度不是上段河型发生转化的控制因素,即植被密度降低造成的河流堤岸抗侵蚀性减弱是上段曲流河向辫状河转化的主控因素。
4.1.2 直流河向辫状河转化控制因素
河段下段具有直流河向辫状河的转化特征,对比中A段辫状河,下段辫状河形态复杂。究其原因主要有两点:1)下段辫状河河流坡度平均为1.4×10-4,并且河流失去山谷限制性,河流能量较中A段明显增强,导致河流拓宽程度较大和分叉程度较高,心滩数量及形态更加复杂;2)对比哈尔滨水文站和佳木斯水文站2003—2019年水文数据发现,佳木斯水文站的年径流量和年输沙量比哈尔滨水文站约大两倍(图7),这是因为河段下段有牡丹江、汤旺河等支流汇入,高流量和高输沙量代表水流对堤岸的侵蚀作用更强,所以下段辫状河的形态更加复杂。
此外,本次研究将下段河流宽度明显加宽区域与支流注入位置进行标定,河宽明显增加区域(淡蓝色阴影)前方均有支流汇入,如区域2前有梧桐河和嘟噜河汇入,区域3前有蒲鸭河汇入(图1d、图5a)。虽然该区域缺乏具体流量资料,不能对流量与河宽进行定量分析,但足以说明支流汇入增加了流量和输沙量,而这打破了原有的水沙平衡,过剩的沉积物发生堆积形成沙坝,致使河流展宽和水流分叉。
对下段河流宽度和植被密度统计发现:在低植被密度区,河流宽度分布范围较广,既有高宽度值,也有低宽度值;在高植被密度区,河流宽度仅有低宽度值;植被密度与河流宽度之间相关性较低,拟合系数仅为0.06(图8a)。然后将各测量河段坡降与河流宽度进行拟合,两者拟合系数达0.5(图8b),当河段内坡度变陡时,河宽随之增加且辫状河特征显现,即坡度变陡与辫状河发育密切相关[32-33]。上述结果表明,坡度增大不是辫状河发育的决定因素,而是由于下段众多支流注入导致水沙平衡被打破,较低的植被密度造就了较松散的堤岸条件,高坡度的强水流能量得以侵蚀河岸变宽,所以只有当外界条件发生改变时,坡度变陡才可能导致河流变宽,如众多学者建立的坡度—流量河型判别模型[37-40],即坡度变陡只是河型转化的前提,流量的增加和边界条件的改变才是河流变宽的主控因素。所以高坡度条件下流量和输沙量的增大是下段直流河向辫状河转化的主控因素,植被密度则是次要因素。
综上所述,同一因素在辫状河发育中有着不同的控制作用,如上段曲—辫转化植被密度为主控因素,下段直—辫转化植被密度为次要因素。这可能与不同河段的地质地貌背景有关,以往野外观测、实验模拟和理论计算得出的植被密度控制河型转化都是在河流流量稳定或其他参数不变的前提下建立的[20,41-42]。因此,在河流流量稳定和坡降平缓的条件下,植被密度为控制河型转化的主要因素;而在河流水沙平衡被破坏和坡降变陡的条件下,植被密度则是控制河型转化的次要因素。
4.2 不稳定河型向稳定河型转化
不稳定河流向稳定河流转化是自然界中最常见的河型转化类型[43],特别是山区向平原过渡河段最为常见。河型转化通常是由于沉积环境的规律性变化引起的,如坡度降低和细粒沉积物增多等[44]。中段具有不稳定河流向稳定河流的转化特征,具体表现为辫状河向直流河转化。中段整体处在小兴安岭和张广才岭之间的山前过渡带上,是构造抬升背景下的山区河段[45]。中A段河流坡降较缓,平均坡度为8.3×10-5,山区河流砾石质沉积物较多,因其坡度小导致河流搬运能力不足,这些粗质沉积物不能随水流搬运在原地堆积下来,但这些粗质沉积物会在长期的水流推动下侵蚀河岸使河流宽度增加。中B段河流坡降较陡,平均坡度为2.0×10-4,Schumm et al.[46]认为当河流穿越构造高点时,河流下切使得河道变直,而中段恰好发育在由于构造抬升作用形成的先缓慢隆升后迅速下降的地形下,这也是中A段和中B段坡度存在差异的原因。这种构造格局是由于早更新世晚期之前,佳木斯和依兰区域存在佳依分水岭,早更新世晚期的松花江水系反转将佳依分水岭切穿[47-48],中B段就恰好发育在分水岭处,又由于晚第三纪的新构造运动导致佳依分水岭抬升,形成现今中B段河流纵向比降增大。加之河流两侧的小兴安岭余脉和张广才岭的限制作用,导致高坡度提供的高水流能量几乎全部用于河流的下蚀作用,河流宽度急剧变小向直流河转化。
中段河流作为砾石质限定性河段,构造作用引起的坡度增大和山谷限制性是辫状河向直流河转化的控制因素。而植被密度对河流宽度的控制作用极小,中A段植被密度很大却发育辫状河,中B段植被密度较小却发育直流河,显然植被密度不是影响该河段河型转化的主控因素(图9)。上述认识与常规条件下不稳定河流向稳定河流转化的控制因素不同,以往认为高坡度下河流应逐渐向辫状河转化,如下段直—辫转化,但下段是平原地貌,河岸抗侵蚀性较弱同时伴随输沙量和流量的增大,这便于高坡度下的水流侵蚀;而上段曲—辫转化,河流在低坡降下也可向辫状河转化。因此,在进行河型转化控制因素研究时,不应笼统地将高坡度作为辫状河发育的必要条件,要充分考虑构造运动对现今地貌特征的影响和河流侧向限制性对河型转化的控制作用。
4.3 河型转化模式
基于上述河型转化控制因素分析,建立了松花江干流中下游3种河型转化模式:河段上段为平原—低丘陵地貌,河流坡降较缓,随着植被密度减小,河宽逐渐增加,河型转化模式为曲流河向辫状河;河段中段为山区地貌,地形呈现先缓慢抬升后快速下降,同时受到山谷侧向限制性,河型转化模式为辫状河向直流河。河段下段为平原地貌,河流坡降大和多条支流注入,流量和输沙量明显增加,河型转化模式为直流河向辫状河(图10)。
上述研究表明无论哪种河型转化模式,河流坡度均扮演着重要角色,即低坡度易发生渐变转化,高坡度则多发生突变转化。坡度被认为是构造作用的直接体现,如纵穿南北的依舒断裂切过中段河谷,其与三江平原的沉降作用共同导致了坡度急剧增加进而发生河型的辫—直转化[49]。地貌对整个河段的河型转化都具有影响,河流坡度控制水流下切河岸强度,而河流横向的地貌变化影响河流宽度和沙坝分布,从而控制河流发育类型。另外,气候也是影响河型转化的因素,气候可以调节大气降水量和全球冰盖变化,进而影响海平面升降和基准面变化,控制可容纳空间的大小和沉积物的供给,最终表现为河型转化模式的差异性[50],如早更新世松花江流域经历了一次气候旋回(古气候由冷干转为湿润再转为冷干)[51],早更新世晚期佳依分水岭被切穿,此时正值气候变冷,河流侵蚀基准面下降,分水岭处的中段河流溯源侵蚀加重,沉积物向下游搬运造成下段向辫状河转化,最终现代松花江中下游水系形成。所以构造—地貌—气候耦合作用对探究河流发育类型及其转化模式具有重要的指示意义。
5 结论
(1) 松花江干流中下游河段依据地貌特征、平面形态和弯曲度可划分为3段4亚段:上段为平原—低丘陵地貌和低坡度背景的曲辫共存型河流,中A段为山区地貌和低坡度背景的简单辫状河,中B段为山区地貌和高坡度背景的直流河,下段为平原地貌和高坡度背景的复杂辫状河。
(2) 松花江干流中下游河型转化控制因素为植被密度、山谷限制性、坡度、流量和输沙量。植被密度反映河岸土壤与植被根系的黏结程度,从而调节河岸抗侵蚀性;山谷限制性影响水流下切河岸强度;坡度改变水流侵蚀的方式及强弱,进而控制河流宽度变化;流量和输沙量之间的平衡关系决定水流侵蚀与沉积物沉积。
(3) 松花江干流中下游上段曲—辫转化的控制因素为植被密度降低引起的堤岸抗侵蚀性减弱,中段辫—直转化的控制因素为山谷限制性导致的水流下蚀能力增大,下段直—辫转化的控制因素为高坡度条件下流量和输沙量的增加。
(4) 建立了松花江干流中下游河段河型转化的3种模式:上段为曲流河渐变至辫状河转化模式,中段为辫状河突变至直流河转化模式,下段为直流河突变至辫状河转化模式。
致谢 感谢审稿专家和编辑部老师为本文提出的建设性意见。
参考文献(References)
[1] 张昌民,朱锐,赵康,等. 从端点走向连续:河流沉积模式研究
进展述评[J]. 沉积学报,2017,35(5):926-944.[Zhang Changmin,
Zhu Rui, Zhao Kang, et al. From end member to continuum:
Review of fluvial facies model research[J]. Acta Sedimentologica
Sinica, 2017, 35(5): 926-944.]
[2] 唐武,王英民,赵志刚,等. 河型转化研究进展综述[J]. 地质论
评,2016,62(1):138-152.[Tang Wu, Wang Yingmin, Zhao Zhigang,
et al. A review of fluvial pattern transformation[J]. Geological
Review, 2016, 62(1): 138-152.]
[3] 谭程鹏,于兴河,李胜利,等. 辫状河-曲流河转换模式探讨:以
准噶尔盆地南缘头屯河组露头为例[J]. 沉积学报,2014,32
(3):450-458.[Tan Chengpeng, Yu Xinghe, Li Shengli, et al.
Discussion on the model of braided river transform to meandering
river: As an example of Toutunhe Formation in southern Junggar
Basin [J]. Acta Sedimentologica Sinica, 2014, 32 (3) :
450-458.]
[4] Church M. Bed material transport and the morphology of alluvial
river channels[J]. Annual Review of Earth and Planetary Sciences,
2006, 34: 325-354.
[5] Dade W B. Grain size, sediment transport and alluvial channel
pattern[J]. Geomorphology, 2000, 35(1/2): 119-126.
[6] Duan J G, Julien P Y. Numerical simulation of meandering evolution
[J]. Journal of Hydrology, 2010, 391(1/2): 34-46.
[7] Ouchi S. Response of alluvial rivers to slow active tectonic movement
[J]. Geological Society of America Bulletin, 1985, 96(4):
504-515.
[8] Li Z W, Lu H Y, Gao P, et al. Characterizing braided rivers in
two nested watersheds in the source region of the Yangtze River
on the Qinghai-Tibet Plateau[J]. Geomorphology, 2020, 351:
106945.
[9] 董占地,吉祖稳,胡海华,等. 流量对河势及河型变化影响的试
验研究[J]. 水利水运工程学报,2011(4):46-51.[Dong Zhandi,
Ji Zuwen, Hu Haihua, et al. Experimental study on influence
of discharge on transformation of river patterns[J]. Hydro-
Science and Engineering, 2011(4): 46-51.]
[10] Leopold L B, Wolman M G. River channel patterns: Braided,
meandering, and straight[R]. Washington, DC: U. S. Government
Printing Office, 1957: 39-85.
[11] Eaton B C, Millar R G, Davidson S. Channel patterns: Braided,
anabranching, and single-thread [J]. Geomorphology,
2010, 120(3/4): 353-364.
[12] 钱宁. 关于河流分类及成因问题的讨论[J]. 地理学报,1985,
40(1):1-10.[Qian Ning. On the classification and causes of
formation of different channel patterns[J]. Acta Geographica Sinica,
1985, 40(1): 1-10.]
[13] 陆中臣,舒晓明. 河型及其转化的判别[J]. 地理研究,1988,7
(2):7-16. [Lu Zhongchen, Shu Xiaoming. Discrimination
about channel pattern and its changes[J]. Geographical Research,
1988, 7(2): 7-16.]
[14] Gurnell A M, Bertoldi W, Corenblit D. Changing River channels:
The roles of hydrological processes, plants and pioneer fluvial
landforms in humid temperate, mixed load, gravel bed rivers
[J]. Earth-Science Reviews, 2012, 111(1/2): 129-141.
[15] Krzeminska D, Kerkhof T, Skaalsveen K, et al. Effect of riparian
vegetation on stream bank stability in small agricultural
catchments[J]. CATENA, 2019, 172: 87-96.
[16] Gibling M R, Davies N S, Falcon-Lang H J, et al. Palaeozoic
co-evolution of rivers and vegetation: A synthesis of current
knowledge[J]. Proceedings of the Geologists' Association,
2014, 125(5/6): 524-533.
[17] Motta D, Langendoen E J, Abad J D, et al. Modification of meander
migration by bank failures[J]. Journal of Geophysical Research:
Earth Surface, 2014, 119(5): 1026-1042.
[18] Tal M, Paola C. Effects of vegetation on channel morphodynamics:
Results and insights from laboratory experiments[J].
Earth Surface Processes and Landforms, 2010, 35(9): 1014-
1028.
[19] Abernethy B, Rutherfurd I D. The effect of riparian tree roots
on the mass-stability of riverbanks[J]. Earth Surface Processes
and Landforms, 2000, 25(9): 921-937.
[20] Yu G A, Li Z W, Yang H Y, et al. Effects of riparian plant
roots on the unconsolidated bank stability of meandering channels
in the Tarim River, China[J]. Geomorphology, 2020,
351: 106958.
[21] Fotherby L M. Valley confinement as a factor of braided river
pattern for the Platte River[J]. Geomorphology, 2009, 103
(4): 562-576.
[22] Nicoll T J, Hickin E J. Planform geometry and channel migration
of confined meandering rivers on the Canadian prairies[J].
Geomorphology, 2010, 116(1/2): 37-47.
[23] 王双银,谢萍萍,穆兴民,等. 松花江干流输沙量变化特征分
析[J]. 泥沙研究,2011(4):67-72.[Wang Shuangyin, Xie
Pingping, Mu Xingmin, et al. Analysis of variation of annual
sediment loads in Songhua River[J]. Journal of Sediment Research,
2011(4): 67-72.]
[24] 隋高阳,于莉,隋栋梁,等. 松花江水沙变化态势与影响因素
[J]. 山东农业大学学报(自然科学版),2018,49(5):819-824.
[Sui Gaoyang, Yu Li, Sui Dongliang, et al. Changing trend
and influencing factors of water and sand in Songhua River[J].
Journal of Shandong Agricultural University (Natural Science
Edition), 2018, 49(5): 819-824.]
[25] 秦冰雪,李琼,潘保田,等. 祁连山东段基岩抗蚀性评估及其
对河道宽度的影响[J]. 第四纪研究,2021,41(1):14-27.[Qin
Bingxue, Li Qiong, Pan Baotian, et al. Evaluation of bedrock
corrosion resistance and its influence on channel width in eastern
Qilian Mountain[J]. Quaternary Sciences, 2021, 41(1):
14-27.]
[26] Operstein V, Frydman S. The influence of vegetation on soil
strength[J]. Proceedings of the Institution of Civil Engineers-
Ground Improvement, 2000, 4(2): 81-89.
[27] 李志威,王兆印,李艳富,等. 黄河源区典型弯曲河流的几何
形态特征[J]. 泥沙研究,2012(4):11-17.[Li Zhiwei, Wang
Zhaoyin, Li Yanfu, et al. Planform geometry characteristics of
typical meandering rivers in Yellow River source[J]. Journal of
Sediment Research, 2012(4): 11-17.]
[28] Rust B R. A classification of alluvial channel systems[M]//Miall
A D. Fluvial sedimentology. Calgary: Canadian Society of
Petroleum Geologists Memoir 5, 1978: 187-198.
[29] 刘贝贝,朱立俊,陈槐,等. 冲积性河流的河型分类及判别方
法研究综述[J]. 泥沙研究,2020,45(1):74-80.[Liu Beibei,
Zhu Lijun, Chen Huai, et al. Review on river classification and
distinguish methods of alluvial rivers[J]. Journal of Sediment
Research, 2020, 45(1): 74-80.]
[30] 钱宁. 冲积河流稳定性指标的商榷[J]. 地理学报,1958,24
(2):128-144.[Qian Ning. On the stability criterion of alluvial
streams[J]. Acta Geographica Sinica, 1958, 24(2): 128-144.]
[31] 周宜林,唐洪武. 冲积河流河床稳定性综合指标[J]. 长江科
学院院报,2005,22(1):16-20.[Zhou Yilin, Tang Hongwu.
Synthetic index of river-bed stability for alluvial rivers[J]. Journal
of Yangtze River Scientific Research Institute, 2005, 22
(1): 16-20.]
[32] Leopold L B, Wolman M G, Miller J P. Fluvial processes in
geomorphology[M]. New York: Dover Publications, 1995.
[33] 王随继. 黄河流域河型转化现象初探[J]. 地理科学进展,
2008,27(2):10-17.[Wang Suiji. Analysis of river pattern transformations
in the Yellow River basin[J]. Progress in Geography,
2008, 27(2): 10-17.]
[34] 陈彬滔,于兴河,王磊,等. 河流相沉积的河型转换特征与控
制因素及其油气地质意义:以南苏丹Melut 盆地Ruman地区坳
陷期Jimidi 组为例[J]. 沉积学报,2021,39(2):424-433.
[Chen Bintao, Yu Xinghe, Wang Lei, et al. Features and controlling
factors of river pattern transition in fluvial deposition
and its significance for petroleum geology: An insight from the
Jimidi Formation in the Ruman area, Melut Basin, South Sudan
[J]. Acta Sedimentologica Sinica, 2021, 39(2): 424-433.]
[35] Kleinhans M G. Sorting out river channel patterns[J]. Progress
in Physical Geography: Earth and Environment, 2010, 34(3):
287-326.
[36] Latrubesse E M. Patterns of anabranching channels: The ultimate
end-member adjustment of mega rivers[J]. Geomorphology,
2008, 101(1/2): 130-145.
[37] Parker G, Wilcock P R, Paola C, et al. Physical basis for quasiuniversal
relations describing bankfull hydraulic geometry of
single-thread gravel bed rivers[J]. Journal of Geophysical
Research: Earth Surface, 2007, 112(F4): F04005.
[38] Henderson F M. Stability of alluvial channels[J]. Journal of the
Hydraulics Division, 1961, 87(6): 109-138.
[39] Millar R G. Theoretical regime equations for mobile gravel-bed
rivers with stable banks[J]. Geomorphology, 2005, 64(3/4):
207-220.
[40] Gaurav K, Tandon S K, Devauchelle O, et al. A single widthdischarge
regime relationship for individual threads of braided
and meandering rivers from the Himalayan Foreland[J]. Geomorphology,
2017, 295: 126-133.
[41] Hopkinson L, Wynn T. Vegetation impacts on near bank flow
[J]. Ecohydrology, 2009, 2(4): 404-418.
[42] Simon A, Collison A J C. Quantifying the mechanical and hydrologic
effects of riparian vegetation on streambank stability
[J]. Earth Surface Processes and Landforms, 2002, 27(5):
527-546.
[43] 倪晋仁,王随继,王光谦. 现代冲积河流的河型空间转化模式
探讨[J]. 沉积学报,2000,18(1):1-6,35.[Ni Jinren, Wang
Suiji, Wang Guangqian. Spatial variations of channel patterns
[J]. Acta Sedimentologica Sinica, 2000, 18(1): 1-6, 35.]
[44] 李胜利,于兴河,姜涛,等. 河流辫—曲转换特点与废弃河道
模式[J]. 沉积学报,2017,35(1):1-9.[Li Shengli, Yu Xinghe,
Jiang Tao, et al. Meander-braided transition features and
abandoned channel patterns in fluvial environment[J]. Acta
Sedimentologica Sinica, 2017, 35(1): 1-9.]
[45] 杨秉赓,孙肇春,吕金福. 松辽水系的变迁[J]. 地理研究,
1983,2(1):48-56.[Yang Binggeng, Sun Zhaochun, Lü Jinfu.
The changes of Songhua-Liao River system[J]. Geographical
Research, 1983, 2(1): 48-56.]
[46] Schumm S A, Dumont J F, Holbrook J M. Active tectonics and
alluvial rivers[M]. Cambridge: Cambridge University Press,
2000.
[47] 吴鹏,谢远云,康春国,等. 早更新世晚期松花江水系袭夺:地
球化学和沉积学记录[J]. 地质学报,2020,94(10):3144-
3160.[Wu Peng, Xie Yuanyun, Kang Chunguo, et al. The capture
of the Songhua River system in the late Early Pleistocene:
Geochemical and sedimentological records[J]. Acta Geologica
Sinica, 2020, 94(10): 3144-3160.]
[48] 魏振宇,谢远云,康春国,等. 早更新世松花江水系反转:来自
荒山岩芯Sr-Nd 同位素特征指示[J]. 沉积学报,2020,38(6):
1192-1203.[Wei Zhenyu, Xie Yuanyun, Kang Chunguo, et al.
The inversion of the Songhua River system in the Early Pleistocene:
Implications from Sr-Nd isotopic composition in the Harbin
Huangshan cores[J]. Acta Sedimentologica Sinica, 2020,
38(6): 1192-1203.]
[49] 裘善文,王锡魁,Makhinov A N,等. 中国东北平原及毗邻地区
古水文网变迁研究综述[J]. 地理学报,2014,69(11):1604-
1614. [Qiu Shanwen, Wang Xikui, Makhinov A N, et al.
Summary of the paleodrainage pattern changes in the Northeast
China Plain and its neighboring areas[J]. Acta Geographica
Sinica, 2014, 69(11): 1604-1614.]
[50] 晋剑利,黄奇志,赵国良,等. 南苏丹Melut 盆地Palogue 油田
古近系Yabus 组河型演化规律及主控因素分析[J]. 古地理学
报,2018,20(6):951-962. [Jin Jianli, Huang Qizhi, Zhao
Guoliang, et al. Evolution of fluvial pattern and analysis of
dominated factors in the Paleogene Yabus Formation of Palogue
oilfield in Melut Basin, South Sudan[J]. Journal of Palaeogeography,
2018, 20(6): 951-962.]
[51] 林年丰,汤洁. 松嫩平原环境演变与土地盐碱化、荒漠化的成
因分析[J]. 第四纪研究,2005,25(4):474-483.[Lin Nianfeng,
Tang Jie. Study on the environment evolution and the
analysis of causes to land salinization and desertification in
Songnen Plain[J]. Quaternary Sciences, 2005, 25(4):
474-483.]