包艳红 王强 张文龙 戈娜 李楠 苏军 李可欣
摘要:
目的 基于線粒体-细胞色素c途径探讨沙棘熊果酸对酒精性肝病大鼠肝细胞凋亡的抑制作用。方法 根据随机数字表将50只SPF级雄性Wistar大鼠进行完全随机分组,分为正常对照组、酒精模型组、沙棘熊果酸低、中和高剂量组,每组10只。正常对照组给予每日1次生理盐水灌胃8周;酒精模型组用阶梯式浓度酒精灌胃的方法持续灌胃8周;沙棘熊果酸组分别按50 mg/kg、100 mg/kg和150 mg/kg灌胃,1 h后再灌喂模型组同等剂量酒精。测定各组大鼠血清肝功能指标;HE染色观察肝组织病理情况;电镜下观察大鼠肝细胞超微结构;TUNEL法检测大鼠肝细胞凋亡情况;Western Blot法检测肝细胞线粒体和胞浆细胞色素c和活化caspase-3蛋白表达水平。计量资料多组间比较采用单因素方差分析,进一步两两比较采用LSD-t检验。结果 与酒精模型组相比,沙棘熊果酸中、高剂量组大鼠血清ALT、AST和胆碱酯酶水平均下降(P值均<0.05);酒精模型组大鼠肝细胞索排列紊乱,肝细胞水肿、脂肪变性明显,而沙棘熊果酸中、高剂量组大鼠肝细胞索排列逐渐趋于正常、肝脂肪变性明显改善;肝细胞线粒体数目增加、形态明显改善;肝细胞凋亡率、胞浆细胞色素c和活化caspase-3蛋白的表达均低于酒精模型组(P值均< 0.05)。结论沙棘熊果酸可改善酒精性肝病大鼠肝功能和肝组织形态,可能与抑制肝细胞线粒体细胞色素c的释放及caspase-3蛋白的活化,通过线粒体-细胞色素c途径抑制肝细胞凋亡有关。
关键词:
肝疾病, 酒精性; 沙棘; 细胞凋亡; 线粒体; 细胞色素c类
基金项目:
国家自然科学基金(81550044, 81760586);内蒙古自治区自然科学基金(2014MS0303); 内蒙古自治区高等学校“青年科技英才计划”项目(NJTY-15-B11); 内蒙古自治区卫生计生科研计划项目(201701084); 包头医学院博士研究启动基金项目(BSJJ201630); 内蒙古自治区草原英才工程青年创新人才培养计划项目(Q2017089); 包头市青年创新人才项目(包人社办字〔2017〕284号);包头医学院创新团队发展计划(BTMCTD202205)
Ursolic acid in Hippophae rhamnoides L. inhibits hepatocyte apoptosis in rats with alcoholic liver disease by regulating mitochondria-cytochrome c
BAO Yanhong1a, WANG Qiang1b, ZHANG Wenlong2, GE Na3, LI Nan3, SU Jun4, LI Kexin3. (1. a. Institute of Health, b.Institute of Basis and Forensic Medicine, Baotou Medical College, Baotou, Inner Mongolia 014040, China; 2. The First Affiliated Hospital, Baotou Medical College, Baotou, Inner Mongolia 014010, China; 3. Institute of Nutrition and Food Health, Baotou Medical College, Baotou, Inner Mongolia 014040, China; 4. System Reforms Office, Inner Mongolia Health Committee, Hohhot 010030, China)
Corresponding authors:
GE Na, genanihao80@163.com (ORCID:0000-0002-1512-1185); LI Nan, 383541607@qq.com (ORCID:0000-0001-6635-7393)
Abstract:
Objective To investigate the inhibitory effect of ursolic acid in Hippophae rhamnoides L. on hepatocyte apoptosis in rats with alcoholic liver disease based on the mitochondria-cytochrome c pathway. Methods A total of 50 specific pathogen-free male Wistar rats were divided into normal control group, alcohol model group, and low-, middle-, and high-dose ursolic acid groups using a random number table, with 10 rats in each group. The rats in the normal control group were given normal saline by gavage once a day for 8 weeks; the rats in the alcohol model group were given alcohol at increasing concentrations by gavage for 8 consecutive weeks; the rats in the low-, middle-, and high-dose ursolic acid groups were given ursolic acid at a dose of 50, 100, and 150 mg/kg, respectively, followed by an equal volume of alcohol as the model group 1 hour later. Serum liver function parameters were measured for each group; HE staining was used to observe liver histopathology; an electron microscope was used to observe hepatocyte ultrastructure; the TUNEL method was used to measure hepatocyte apoptosis; Western Blotting was used to measure the protein expression levels of cytochrome c and activated caspase-3 in hepatocyte mitochondria and cytoplasm. A one-way analysis of variance was used for comparison of continuous data between multiple groups, and the least significant difference t-test was used for further comparison between two groups. Results Compared with the alcohol model group, the middle- and high-dose ursolic acid groups had significant reductions in the serum level of alanine aminotransferase, aspartate aminotransferase, and cholinesterase (all P<0.05). The rats in the alcohol model group had disordered arrangement of hepatic cords with marked hepatocyte edema and fatty degeneration, while those in the middle- and high-dose ursolic acid groups had basically normal arrangement of hepatic cords and a significant improvement in hepatocyte fatty degeneration, as well as a significant increase in the number of hepatocyte mitochondria and a significant improvement in morphology. Compared with the alcohol model group, the middle- and high-dose ursolic acid groups had significantly lower hepatocyte apoptosis rate and protein expression levels of cytochrome c and caspase-3 in cytoplasm (all P<0.05). Conclusion Ursolic acid in Hippophae rhamnoides L. can improve the liver function and histomorphology of rats with alcoholic liver disease, possibly by inhibiting the release of cytochrome c in hepatocyte mitochondria, the activation of caspase-3, and the apoptosis of hepatocytes via the mitochondria-cytochrome c pathway.
Key words:Liver Diseases, Alcoholic; Hippophae Fructus; Apoptosis; Mitochondria; Cytochromes c
Research funding:
National Natural Science Foundation of China(81550044, 81760586); Natural Science Foundation of Inner Mongolia Autonomous Region(2014MS0303); The Program for Young Talents of Science and Technology in Universities of the Inner Mongolia Autonomous Region(NJTY-15-B11); Scientific Research Project on Health and Family Planning in Inner Mongolia Autonomous Region(201701084); The Doctoral Research Foundation Project of Baotou Medical College(BSJJ201630); Young Innovative Talents Training Program of Grassland Talents Project in Inner Mongolia Autonomous Region(Q2017089); Baotou Youth Innovative Talent Project(2017-284);Innovation Team Development Plan of Baotou Medical College(BTMCTD202205)
沙棘(hippophae rhamnoides),蒙名其察日嘎纳,又名酸刺、黑刺、醋柳,为胡颓子科沙棘属植物。含有黄酮类、类胡萝卜素、甾醇类、生育酚、脂类等多种化合物,具有抗菌、消炎、调节血压、抗氧化、抗癌等多种作用,是珍贵的药食两用植物[1]。研究[2]表明沙棘提取物对丙烯酰胺相关脑损伤具有保护作用,可用于治疗心肌缺血[3],已广泛用于抗氧化、抗炎、抗菌、促进伤口愈合等皮肤病领域[4],还可改善饮食引起肥胖中的脂肪沉积、肝脂肪变性、胰岛素抵抗和炎症[5]。熊果酸(ursolic acid, UA)是一种五环三萜类化合物,具有抗氧化、抗肿瘤、抗炎和抗菌等生物活性[6-9],通过降低肝脏和血浆中甘油三酯、胆固醇水平,降低脂质积累,增加脂肪分解降低血脂,改善血液流变学、血流动力学,对动脉粥样硬化起到一定的防治作用[10-11],UA可通过抑制NOX4/NLRP3炎症小体通路和细菌失衡逆转肝纤维化,通过抑制胱天蛋白酶3减少肝细胞凋亡并减轻酒精诱导的肝损伤[12-13],对化学性肝损伤、药物性肝损伤、酒精性肝损伤以及实验性肝癌具有保护作用[14],同时具备安全有效、毒性低的特性。
酒精性肝病(ALD)又称酒精性肝损伤,是指长期大量饮酒所致的肝损伤,也是导致肝癌甚至急性肝衰竭最常见的诱因之一,严重危害着人类的健康[15]。既往研究[16-18]多集中在沙棘中黄酮的含量测定及生物学效应,对沙棘UA的研究报道较少,而关于酒精性肝损伤和UA的研究报道更少,且仅停留在检测氧化应激指标来推测UA的保护作用可能与其抗氧化活性和抑制氧化应激有关。
本次研究通过分析沙棘UA对ALD大鼠肝功能生化指标、肝组织病理改变、肝细胞超微结构、肝细胞凋亡、内源性凋亡通路关键蛋白——细胞色素c及天冬氨酸特异性半胱氨酸蛋白酶(caspase)3表达的影响,从线粒体-细胞色素c途径探讨沙棘UA抑制ALD大鼠肝细胞凋亡的作用及其机制,为进一步开发沙棘提供理论依据。
1 材料与方法
1.1 实验动物 2月龄体质量为180~200 g的SPF级雄性Wistar大鼠50只,动物生产许可证编号:SCXK(鲁)20140001,由山东鲁抗医药股份有限公司提供。大鼠在室温(23±2) ℃、50%~60%相对湿度、12 h光照条件下饲养。
1.2 药品与试剂
1.2.1 药品 沙棘果采集于呼和浩特市和林县境内野生沙棘林,由内蒙古农业大学提供并鉴定,后经内蒙古科技大学分离纯化,并应用IR、1H-NMR和13C-NMR鉴定为五环三萜类化合物——UA,分子式為C30H48O3,分子量为456.68,纯度93.8%。
1.2.2 试剂 ALT(C009-1-1)、AST(C010-1-1)和胆碱酯酶(ChE)试剂盒(A023-1-1)(南京建成生物工程研究所);原位缺口粒端标记(TUNEL)法试剂盒(4500-0121)(美国Calbiochem公司);细胞色素c(CST4272)和VDAC(CST4866)蛋白兔抗多克隆抗体(美国Cell Signaling Technology公司);活化caspase-3(BS7004)兔抗多克隆抗体(美国BIoworld公司);SDS-PAGE凝胶制备试剂盒(G2003)、RIPA裂解液(G2033-100),BCA蛋白浓度测定试剂盒(G2026)、小鼠抗GAPDH多克隆抗体(GB12002)、辣根酶标记山羊抗兔IgG(GB23303)均购于武汉谷歌生物科技;SDS(S8010)、Tris(T8060)、甘氨酸(G8200)、Tween20(P1001)均购于北京索来宝公司;氯化钠(10019318)、乙醇(10009164)购于北京国药集团化学试剂有限公司。
1.3 仪器与设备 ELx808型酶标仪(美国BioTek公司),JEM-1200EX透射电镜(日本JEOL公司),半自动组织包埋机(英国SHANDON公司),RM2135型石蜡切片机(德国LEICA公司),752-P紫外分光光度计(上海现科仪器有限公司),TRANS-BLOT SD电转膜仪(美国Bio-Rad公司),DYY-60型电泳仪(北京六一仪器厂)。
1.4 动物分组及模型建立 适应性喂养SPF级雄性Wistar大鼠1周后,根据随机数字表进行完全随机分组,分为正常对照组、酒精模型组、沙棘UA低、中和高剂量组,每组10只。正常对照组给予每日1次生理盐水灌胃8周;酒精模型组给予体积分数50%酒精8 mL·kg-1·d-1灌胃2周、12 mL·kg-1·d-1灌胃6周;UA低、中、高剂量组按50 mg·kg-1·d-1、100 mg·kg-1·d-1、150 mg·kg-1·d-1分别给予沙棘UA进行灌胃,1 h后再灌模型组同等剂量酒精。大鼠每日自由进食,进水。
1.5 标本取材 末次灌胃后,禁食12 h,将Wistar大鼠称重后给予2%戊巴比妥(0.3 mL/100 g)进行腹腔麻醉,自腹主动脉取血后,分离全血用于生化指标的检测。一部分新鲜肝脏用于肝细胞超微结构分析,另一部分用于TUNEL法检测,剩余样本经液氮速冻后,保存于-80 ℃冰箱备用。
1.6 实验观察与指标测定
1.6.1 血清肝功能酶学指标测定 赖氏法检测ALT和AST;微量酶标法检测ChE,具体操作步骤严格按试剂盒说明书进行。
1.6.2 肝组织病理情况观察 取0.9 cm×0.9 cm×0.5 cm 新鲜肝组织放置于10%甲醛中进行固定,用石蜡包埋,切片,经HE染色,用中性树胶封片,通过光学显微镜观察各组大鼠肝组织形态结构。
1.6.3 肝细胞超微结构观察 将各组相同部位肝组织1 mm3固定于2.5%戊二醛溶液中,后经脱水、包埋、切片、染色后,通过透射电镜观察肝细胞的超微结构。
1.6.4 肝细胞凋亡检测 应用原位脱氧核苷酸末端转移酶介导的TUNEL法检测大鼠肝细胞凋亡情况。将肝组织用4%多聚甲醛固定,制备石蜡切片。将石蜡切片常规脱蜡、水化。按照TUNEL试剂盒的产品说明书操作,经DAB显色,用中性树脂封片,在光镜下观察TUNEL阳性细胞(即肝组织中呈黄色或棕黄色颗粒沉淀物)的数目、染色强度和密集区域的位置。每片计数500个细胞,并按公式:凋亡率=凋亡细胞数/总细胞数×100%,计算肝细胞凋亡率。
1.6.5 肝组织细胞色素c和活化casepase-3蛋白检测 用Western Blot法检测肝组织线粒体和胞浆细胞色素c蛋白表达水平和活化caspase-3蛋白表达水平。称取各组同一部位肝脏,制成4 ℃匀浆,12 000 g离心20 min后取上清液,用BCA法进行蛋白定量。经SDS-PAGE凝胶电泳后,电转至PVDF膜,5%脱脂奶粉室温封闭2 h,洗膜后加入一抗,4 ℃孵育过夜,再洗膜后加入二抗,室温孵育1 h,后经ECL化学发光试剂盒进行曝光,将定影后胶片进行扫描存档,Alpha软件处理系统分析目标带的光密度值[19]。目的蛋白的相对表达量=目的蛋白/内参蛋白的光密度。
1.7 统计学方法 采用SPSS 19.0软件对检测结果进行分析处理。计量资料以x±s表示,多组间比较采用单因素方差分析,组间两两比较采用LSD-t检验。P<0.05为差异有统计学意义。
2 结果
2.1 沙棘UA对ALD大鼠肝功能的影响 与正常对照组比较,酒精模型组大鼠血清ALT、AST和ChE水平均升高(P值均<0.05);而UA中、高剂量组大鼠血清ALT、AST和ChE水平明显低于酒精模型组(P值均<0.05);且UA中、高剂量组大鼠血清ALT、AST水平低于低剂量组(P值均<0.05)(表1)。
2.2 沙棘UA对ALD大鼠肝组织病理改变的影响 肝组织HE染色结果显示,正常对照组大鼠肝小叶结构清晰,肝细胞核圆、轮廓完整,肝细胞索以中央静脉为中心向四周呈放射状分布; 酒精模型组大鼠肝细胞索排列紊乱,肝细胞水肿、脂肪变性明显,可见肝细胞呈现片状坏死和炎细胞浸润; UA低剂量组水肿和脂肪变性的肝细胞减少,肝细胞索排列有所改善但仍紊乱,伴有炎症细胞浸润和点片状坏死;UA中、高剂量组肝细胞索排列逐渐趋于正常,肝脂肪变性明显改善(图1)。
2.3 沙棘UA对ALD大鼠肝细胞超微结构的影响 如图2所示,正常对照组大鼠肝细胞核核圆,核膜光滑,粗面内质网、线粒体数量较多,线粒体内嵴结构清晰,粗面内质网排列整齐,其上分布着丰富的核糖体;酒精模型组大鼠肝细胞体积变小,核不圆,线粒体数量减少,内嵴结构模糊,并出现萎缩、变形等改变,脂滴增多,胶原纤维增多呈纤维化改变;與酒精模型组相比,UA中、高剂量组,线粒体数目增加,粗面内质网排列较整齐,胞浆脂滴数量有所减少。
2.4 沙棘UA对ALD大鼠肝细胞凋亡的影响 HE染色结果显示,正常对照组仅有少量凋亡细胞,酒精模型组和UA各剂量组大鼠肝凋亡细胞明显多于正常对照组,凋亡率升高(P值均<0.05);而UA干预组肝细胞凋亡数量低于酒精模型组,凋亡率明显下降(P值均<0.05)。UA高剂量组凋亡率明显低于低剂量组,且具有统计学差异(P<0.05)(图3、4)。
2.5 沙棘UA对ALD大鼠肝脏线粒体和胞浆细胞色素c蛋白表达的影响 Western Blot实验结果显示,与正常对照组比,酒精模型组大鼠肝细胞线粒体细胞色素c蛋白表达下降,胞浆细胞色素c蛋白表达增加(P值均<0.05);中、高剂量UA明显抑制了酒精诱导的大鼠肝脏胞浆细胞色素c蛋白表达增多,缓解了线粒体细胞色素c蛋白表达下降(P值均<0.05);UA低剂量组与酒精模型组相比无统计学差异(P值均>0.05)(图5)。
2.6 沙棘UA对ALD大鼠肝脏活化caspase-3蛋白表达的影响 如图6所示,酒精模型组与正常对照组比较,活化caspase-3蛋白表达程度升高(P<0.05);给予沙棘UA对酒精诱导下大鼠肝脏活化caspase-3表达增加有抑制作用,尤其UA中、高剂量组活化caspase-3蛋白的含量与酒精模型组比较显著下降(P值均<0.05),而UA低剂量组与酒精模型组相比差异不明显(P>0.05)。
3 讨论
细胞凋亡是基因水平调控下的程序性死亡,是主动性死亡过程。生理条件下,可通过凋亡将老化和受损的肝细胞和机体其他细胞清除体外,以保证内环境的平衡,而病理条件可导致一些疾病的发生,如肝脏和肾脏的损伤、癌症的发生、神经功能减退等。因此研究凋亡的发生机制及其影响因素和信号传导对一些疾病的防治尤为重要。
近些年来,我国已经成为“全球第二酒精饮用国”[20],随着我国酒精人均消费量的增高,酒精已成为导致肝损害的第二大病因,仅次于肝炎病毒感染[21]。有调查[22]表明,北京市通州区常住居民ALD检出率3.88%。延华等[23]对西北地区(陕西、甘肃、新疆)18岁以上的部分城市不同职业人群进行调查发现,ALD患病率高达8.7%。因此,探寻天然、安全且有效的预防
和治疗酒精性肝损伤的功能性食品或药物具有重要意义[24]。
尽管已有很多关于酒精对肝损伤的报道,但具体机制尚不清楚[25]。有研究[26-28]表明,ALD的发病机制与内毒素介导的细胞因子释放、线粒体损伤、肝细胞凋亡、氧化应激、肝细胞损伤以及肠道微生物等密切相关。而肝细胞凋亡是乙醇诱导肝损伤的主要机制之一[29]。大量研究表明长期慢性饮酒可导致肝细胞凋亡[30-31],并且细胞凋亡数目与疾病严重程度直接相关[32]。酒精的主要成分乙醇在肝脏代谢成乙醛的过程中,继发引起氧化应激、内质网应激,致使线粒体结构受损、功能破坏,诱发内源性凋亡信号通路活化,导致肝细胞凋亡的发生[27,33]。多细胞生
物发生凋亡主要受线粒体损伤介导的内源性凋亡通路调控,即在一些凋亡刺激信号作用下,线粒体转运孔的孔径增大,使得线粒体的外膜被破坏,将本来存在于线粒体内的细胞色素c蛋白释放到胞浆当中,从而激
酒精在体内主要是通过肝脏进行代谢,因此肝脏也成为其攻击的靶器官[37-38]。血清转氨酶和ChE是临床上常用的肝功能评价指标,其水平的高低可以
反映肝细胞的损伤程度[39-40]。ALT和ALP主要存在于肝细胞的胞浆中,而AST主要存在于肝细胞的线粒体中,ALT活性升高,提示肝细胞破坏或膜通透性增强,而AST活性增强则提示线粒体也受损[41]。本实验研究发现,酒精模型组大鼠血清中ALT、AST、ChE水平显著上升,说明酒精既可造成肝细胞膜損伤,还可引起线粒体的损伤。而UA中、高剂量组可有效抑制酒精诱导性肝损伤大鼠的血清ALT、AST、ChE的水平升高,说明UA具有一定的肝脏保护作用,可有效避免酒精引起的肝脏细胞膜和线粒体的损伤。超微电镜观察还发现酒精干预后大鼠肝细胞的线粒体数量减少、结构改变以及大量胶原纤维堆积,光镜下还看到大量的肝细胞发生凋亡,说明酒精可以导致大鼠肝细胞凋亡引起肝脏受损。有研究者[32,42]在ALD患者肝脏中也观察到了凋亡细胞,并且发现凋亡细胞数目与疾病严重程度相关。而UA干预组(尤其是UA中、高剂量组)大鼠肝细胞线粒体病变减轻、数目有所增加,粗面内质网排列紊乱程度有所改善,胞浆脂滴数量有所减少,且肝细胞凋亡数目明显减少,多为早期凋亡细胞。由此可证实,酒精可对肝细胞的线粒体造成损伤引起肝细胞凋亡,从而影响其功能,这与Xu等[43]发现大鼠摄入乙醇,随时间延长,肝细胞线粒体肿胀和内质网退化程度不断加重的研究结果相一致。而中、高剂量的UA可通过增加线粒体数目减轻酒精对大鼠肝细胞的损伤程度,这也表明了UA对酒精性肝损伤具有明显的改善作用。
Western Blot实验结果显示,酒精模型组大鼠肝细胞胞浆细胞色素c蛋白表达明显增加,而线粒体细胞色素c蛋白表达明显下降,说明酒精可使肝细胞线粒体中的细胞色素c释放到胞浆中,促进凋亡的发生;UA中、高剂量组肝细胞胞浆细胞色素c蛋白表达受抑制,而线粒体细胞色素c蛋白明显增加,说明中、高剂量UA抑制线粒体的细胞色素c蛋白释放到胞质当中,增加线粒体细胞色素c蛋白含量。caspase-3在caspase家族中处于凋亡级联反应执行者的核心地位,是细胞凋亡途径下游进行底物酶解的关键性蛋白酶,也是是多条细胞凋亡信号通路的中心蛋白,常被称为“死亡蛋白酶”[44]。caspase-3在一般情况下以无活性的酶原(Pro-caspase) 形式存在,当肝细胞凋亡程序被激活时,Pro-caspase将转变为有活性的裂解caspase-3,其可促进肝细胞的凋亡过程[45],所以,活化的caspase-3常被用作判断肝细胞凋亡的重要指标之一。本实验实验结果显示,酒精模型组大鼠肝脏caspase-3活化增加,而UA干预组可抑制因酒精损伤引起的caspase-3的活化。说明UA可通过减少线粒体的细胞色素c蛋白的释放和抑制caspase-3的激活,从而阻断线粒体介导的内源性凋亡通路的激活,抑制肝细胞凋亡。
综上所述,沙棘UA对酒精性肝损伤大鼠具有保护性作用,其机制可能是通过线粒体-细胞色素c途径调控肝细胞凋亡而实现的,本研究结果为更深入探究酒精性肝损伤的发生机制,开发防治酒精性肝损伤的功能性食品/药品提供了基础的理论和实验依据。
伦理学声明:本研究于2016年12月20日经由包头医学院医学伦理审查委员会审批,审批号:包医伦审 2016 第(015)号。
利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:戈娜、李楠、李可欣等负责课题设计,资料分析;张文龙、王强、苏军等参与收集数据,修改论文;戈娜、包艳红负责拟定写作思路,撰写文章并最后定稿。
参考文献:
[1]
GONG Y, ZHANG X, HE L, et al. Optimization of subcritical water extraction parameters of antioxidant polyphenols from sea buckthorn (Hippopha rhamnoides L.) seed residue[J]. J Food Sci Technol, 2015, 52(3): 1534-1542. DOI: 10.1007/s13197-013-1115-7.
[2]
TURAN MI, AKTA瘙塁 M, GUNDOGDU B, et al. The effect of Hippophae rhamnoides L. extract on acrylamideinduced brain injury in rats[J]. Acta Cir Bras, 2021, 36(10): e361005. DOI: 10.1590/ACB361005.
[3]WEI ZC, TONG D, YANG J, et al. Action mechanism of total flavonoids of Hippophae rhamnoides in treatment of myocardial ischemia based on network pharmacology[J]. China J Chin Mater Med, 2017, 42(7): 1238-1244. DOI: 10.19540/j.cnki.cjcmm.20161222.077.
魏志成, 童東, 杨娟, 等. 基于网络药理学的沙棘总黄酮治疗心肌缺血的作用机制研究[J]. 中国中药杂志, 2017, 42(7): 1238-1244. DOI: 10.19540/j.cnki.cjcmm.20161222.077.
[4]PUNDIR S, GARG P, DVIWEDI A, et al. Ethnomedicinal uses, phytochemistry and dermatological effects of Hippophae rhamnoides L.: A review[J]. J Ethnopharmacol, 2021, 266: 113434. DOI: 10.1016/j.jep.2020.113434.
[5]KWON EY, LEE J, KIM YJ, et al. Seabuckthorn leaves extract and flavonoid glycosides extract from seabuckthorn leaves ameliorates adiposity, hepatic steatosis, insulin resistance, and inflammation in diet-induced obesity[J]. Nutrients, 2017, 9(6): 569. DOI: 10.3390/nu9060569.
[6]TAN J, HUANG W, CHEN SL, et al. Synthesis and anti-inflammatory activity of ursolic acid derivative-chalcone conjugate [J]. Acta Pharm Sin, 2016, 51(6): 938-946. DOI: 10.16438/j.0513-4870.2015-1162.
谭娟, 黄微, 陈善龙, 等. 熊果酸衍生物与查耳酮缀合物的合成及抗炎活性[J]. 药学学报, 2016, 51(6): 938-946. DOI: 10.16438/j.0513-4870.2015-1162.
[7]GAO JG. Study on the protective effect of ursolic acid on nonalcoholic fatty liver in rats[J]. Pharmocol Clin Chin Mater Med, 2016, 32(2): 27-31. DOI: 10.13412/j.cnki.zyyl.2016.02.009.
高敬国. 熊果酸对非酒精性脂肪肝大鼠肝脏的保护作用及机制[J]. 中药药理与临床, 2016, 32(2): 27-31. DOI: 10.13412/j.cnki.zyyl.2016.02.009.
[8]KALINOWSKA M, BIELAWSKA A, LEWANDOWSKA-SIWKIEWICZ H, et al. Apples: content of phenolic compounds vs. variety, part of apple and cultivation model, extraction of phenolic compounds, biological properties[J]. Plant Physiol Biochem, 2014, 84: 169-188. DOI: 10.1016/j.plaphy.2014.09.006.
[9]IQBAL J, ABBASI BA, AHMAD R, et al. Ursolic acid a promising candidate in the therapeutics of breast cancer: Current status and future implications[J]. Biomed Pharmacother, 2018, 108: 752-756. DOI: 10.1016/j.biopha.2018.09.096.
[10]LIANG KY, CHU X. Effects of ursolic acid on cholesterol metabolism in hepatic cells[J]. Herald Med, 2017, 36(1) :9-12. DOI: 10.3870 / j. issn.1004-0781.2017.01.002.
梁奎英, 初霞. 熊果酸对肝细胞胆固醇代谢的影响[J]. 医药导报, 2017, 36(01): 9-12. DOI: 10.3870 / j. issn.1004-0781.2017.01.002.
[11]YANG XL. The effects of urosolic acid on blood lipid and hemorheology in rats with atherosclerosis[J]. Chin J Integr Med Cardio-Cereb Dis, 2018, 16(11): 1509-1512. DOI: 10.12102/j.issn.1672-1349.2018,11.011.
楊晓龙. 熊果酸对动脉粥样硬化大鼠血脂和血液流变学的影响[J]. 中西医结合心脑血管病杂志, 2018, 16(11): 1509-1512. DOI: 10.12102/j.issn.1672-1349.2018,11.011.
[12]NIE Y, LIU Q, ZHANG W, et al. Ursolic acid reverses liver fibrosis by inhibiting NOX4/NLRP3 inflammasome pathways and bacterial dysbiosis[J]. Gut Microbes, 2021, 13(1): 1972746. DOI: 10.1080/19490976.2021.1972746.
[13]MA XY, ZHANG M, FANG G, et al. Ursolic acid reduces hepatocellular apoptosis and alleviates alcohol-induced liver injury via irreversible inhibition of CASP3 in vivo[J]. Acta Pharmacol Sin, 2021, 42(7): 1101-1110. DOI: 10.1038/s41401-020-00534-y.
[14]ZHANG NN, GE N. Research progress on the protective effect of ursolic acid on experimental liver injury[J]. Acta Med Sin, 2018, 31(4): 173-177. DOI: 10.19296/j.cnki.1008-2409.2018-04-056.
张男男, 戈娜. 熊果酸对实验性肝损伤的保护作用研究进展[J]. 华夏医学, 2018, 31(4): 173-177. DOI: 10.19296/j.cnki.1008-2409.2018-04-056.
[15]TORRUELLAS C, FRENCH SW, MEDICI V. Diagnosis of alcoholic liver disease[J]. World J Gastroenterol, 2014, 20(33): 11684-11699. DOI: 10.3748/wjg.v20.i33.11684.
[16]CHENG J, LIU Y, LIU Y, et al. Ursolic acid alleviates lipid accumulation by activating the AMPK signaling pathway in vivo and in vitro[J]. J Food Sci, 2020, 85(11): 3998-4008. DOI: 10.1111/1750-3841.15475.
[17]QIAO JY, ZANG YC, MIAO YY, et al. Protective effects and mechanisms of ursolic acid on acute alcohol-induced liver injury in mice[J]. Pharmocol Clin Chin Mater Med, 2017, 33(4): 14-17. DOI: 10.13412/j.cnki.zyyl.2017.04.004.
乔靖怡, 臧云彩, 苗艳艳, 等. 熊果酸对小鼠急性酒精性肝损伤的保护作用及机制[J]. 中药药理与临床, 2017, 33(4): 14-17. DOI: 10.13412/j.cnki.zyyl.2017.04.004.
[18]YE QY, LIN HJ, CHEN JH, et al. Protective effect and mechanism of ursolic acid on rats with alcoholic liver injury[J]. Shandong Med J, 2018, 58(41): 14-17. DOI: 10.3969 / j.issn.1002-266X.2018.41.004.
叶泉英, 林浩佳, 陈金慧, 等. 熊果酸对酒精性肝损伤大鼠的保护作用及机制[J]. 山东医药, 2018, 58(41):14-17. DOI: 10.3969 / j.issn.1002-266X.2018.41.004.
[19]GE N, LIANG H, LIU Y, et al. Effects of Aplysin on ultrastructure, NO and iNOS in rats with chronic alcoholic liver injury[J]. Chin J Marine Drugs, 2014, 33(3): 63-68. DOI: 10.13400/j.cnki.cjmd.2014.03.010.
戈娜, 梁惠, 刘颖, 等. 海兔素对慢性酒精性肝损伤大鼠肝超微结构及NO和iNOS的影响[J]. 中国海洋药物, 2014, 33(3): 63-68. DOI: 10.13400/j.cnki.cjmd.2014.03.010.
[20]XIE YD. People with liver disease have many drinkers and are harmful[J]. Liver Doctor, 2021, 20(1): 47-48.
谢艳迪. 肝病患者的饮酒者多危害大[J]. 肝博士, 2021, 20(1): 47-48.
[21]ZHANG Y, HAN C, WANG ZX, et al. Protective effects of Tamarix chinensis Lour on mice with alcoholic liver injury and its mechanism[J]. J Shandong Univ(Health Sciences), 2017, 55(2): 61-67. DOI: 10. 6040 /j. issn.1671-7554.0.2016.995.
张钰, 韩琛, 王朝霞, 等. 柽柳对小鼠酒精性肝损伤的保护作用及机制[J]. 山东大学学报(医学版), 2017, 55(2): 61-67. DOI: 10. 6040 /j. issn.1671-7554.0.2016.995.
[22]PI JT, WANG C, ZHANG JM, et al. Epidemiologic investigation of alcohol consumption and alcoholic liver disease among residents in the Tongzhou District of Beijing[J]. Chron Pathematol J, 2022, 23(5): 712-716. DOI:10.16440/J.CNKI.1674-8166.2022.05.20.
邳建庭, 王晨, 張建明, 等. 北京市通州区常住居民饮酒与酒精性肝病流行病学调查[J]. 慢性病学杂志, 2022, 23(5): 712-716. DOI: 10.16440/J.CNKI.1674-8166.2022.05.20.
[23]YAN H, ZHANG FL, GAO YQ, et al. Epidemiological study on alcohol consumption and alcoholic liver disease[J]. Shaanxi Med J, 2015, 44(7): 917-918, 920. DOI: 10.3969/j.issn.1000-7377.2015.07.066.
延华, 张粉利, 高艳琼, 等. 饮酒与酒精性肝病流行病学调查研究[J]. 陕西医学杂志, 2015, 44(7): 917-918, 920. DOI: 10.3969/j.issn.1000-7377.2015.07.066.
[24]GUO YY, TAO MX, CHENG GY, et al. Protective effect of polysaccharides from boletus aereus on alcoholic liver injury in mice[J]. J Chin Insti Food Sci Technol, 2016, 16(1): 35-41. DOI: 10.16429/j.1009-7848.2016.01.005.
郭永月, 陶眀煊, 程光宇, 等. 黑牛肝菌多糖对急性酒精肝损伤小鼠的保护作用[J]. 中国食品学报, 2016, 16(1): 35-41. DOI: 10.16429/j.1009-7848.2016.01.005.
[25]KIM MH, KIM JN, HAN SN, et al. Ursolic acid isolated from guava leaves inhibits inflammatory mediators and reactive oxygen species in LPS-stimulated macrophages[J]. Immunopharmacol Immunotoxicol, 2015, 37(3): 228-235. DOI: 10.3109/08923973.2015.1021355.
[26]SID B, VERRAX J, CALDERON PB. Role of oxidative stress in the pathogenesis of alcohol-induced liver disease[J]. Free Radic Res, 2013, 47(11): 894-904. DOI: 10.3109/10715762.2013.819428.
[27]WU Y, LI YR, YANG JZ, et al. Research advances in the pathogenesis of alcoholic liver disease[J]. J Clin Hepatol, 2020, 36(12): 2822-2825. DOI: 10.3969 / j.issn.1001-5256.2020.12.038.
吴亚, 李艳茹, 杨寄镯, 等.酒精性肝病发病机制研究现状[J]. 临床肝胆病杂志, 2020, 36(12): 2822-2825. DOI: 10.3969 / j.issn.1001-5256.2020.12.038.
[28]BJRKHAUG ST, AANES H, NEUPANE SP, et al. Characterization of gut microbiota composition and functions in patients with chronic alcohol overconsumption[J]. Gut Microbes, 2019, 10(6): 663-675. DOI: 10.1080/19490976.2019.1580097.
[29]POTZ BA, LAWANDY IJ, CLEMENTS RT, et al. Alcohol modulates autophagy and apoptosis in pig liver tissue[J]. J Surg Res, 2016, 203(1): 154-162. DOI: 10.1016/j.jss.2016.03.009.
[30]LI SQ, LU HJ, WANG P, et al. Study on the time of cell apoptosis in alcoholic liver injury in mice[J]. Chin J Clin Pharmacol, 2017, 33(21): 2154-2157. DOI: 10. 13699/j. cnki. 1001- 6821. 2017. 21. 018.
李三强, 卢华杰, 王萍, 等. 酒精性肝损伤小鼠在损伤过程中细胞凋亡时间点研究[J]. 中国临床药理学杂志, 2017, 33(21): 2154-2157. DOI: 10. 13699/j. cnki. 1001- 6821. 2017. 21. 018.
[31]ZHANG Y, WANG C, YU B, et al. Gastrodin protects against ethanol-induced liver injury and apoptosis in HepG2 cells and animal models of alcoholic liver disease[J]. Biol Pharm Bull, 2018, 41(5): 670-679. DOI: 10.1248/bpb.b17-00825.
[32]ZIOL M, TEPPER M, LOHEZ M, et al. Clinical and biological relevance of hepatocyte apoptosis in alcoholic hepatitis[J]. J Hepatol, 2001, 34(2): 254-260. DOI: 10.1016/s0168-8278(00)00047-7.
[33]WANG J. A study on the mechanism of NINJ2 regulating the alcoholic liver disease[D]. Wuhan: Huazhong University of Science and Technology, 2021.
王晶. NINJ2調控酒精性肝病机制研究[D]. 武汉: 华中科技大学, 2021.
[34]LANG F, HOFFMANN EK. Role of ion transport in control of apoptotic cell death[J]. Compr Physiol, 2012, 2(3): 2037-2061. DOI: 10.1002/cphy.c110046.
[35]GROSSINI E, POLLESELLO P, BELLOFATTO K, et al. Protective effects elicited by levosimendan against liver ischemia/reperfusion injury in anesthetized rats[J]. Liver Transpl, 2014, 20(3): 361-375. DOI: 10.1002/lt.23799.
[36]KATAYAMA S, SHIMODA K, TAKENAGA Y. Loss of ADAR1 in human iPS cells promotes caspase3-mediated apoptotic cell death[J]. Genes Cells, 2015, 20(8): 675-680. DOI: 10.1111/gtc.12261.
[37]PLAPP BV, LEIDAL KG, MURCH BP, et al. Contribution of liver alcohol dehydrogenase to metabolism of alcohols in rats[J]. Chem Biol Interact, 2015, 234: 85-95. DOI: 10.1016/j.cbi.2014.12.040.
[38]HAN D, JOHNSON HS, RAO MP, et al. Mitochondrial remodeling in the liver following chronic alcohol feeding to rats[J]. Free Radic Biol Med, 2017, 102: 100-110. DOI: 10.1016/j.freeradbiomed.2016.11.020.
[39]CHU C, ZHAO YY, ZHOU CY, et al. Protective effect of mangiferin on alcoholic hepatitis in rats[J]. Nat Prod Res Dev, 2018, 30(5): 753-760. DOI: 10.16333/j.1001-6880.2018.5.005.
楚策, 赵燕燕, 周程艳, 等. 芒果苷对大鼠酒精性肝炎的保护作用研究[J]. 天然产物研究与开发, 2018, 30(5): 753-760. DOI: 10.16333/j.1001-6880.2018.5.005.
[40]ZHU PS, JIAO YJ, FU SN, et al. Changes of serum biomarkers levels in early stage of alcohol-induced liver injury in rats[J]. Chin J Exp Med Formul, 2019, 25(2): 129-133. DOI: 10.13422/j.cnki.syfjx.20190223.
朱平生, 焦炎杰, 付双楠, 等. 酒精致大鼠肝损伤早期血清生物标志物水平的变化规律[J]. 中国实验方剂学杂志, 2019, 25(2): 129-133. DOI: 10.13422/j.cnki.syfjx.20190223.
[41]SHEWEITA SA, ABD EL-GABAR M, BASTAWY M. Carbon tetrachloride-induced changes in the activity of phase II drug-metabolizing enzyme in the liver of male rats: role of antioxidants[J]. Toxicology, 2001, 165(2-3): 217-224. DOI: 10.1016/s0300-483x(01)00429-2.
[42]XU B, LI Y, JI PY, et al. Study on mechanism of total flavonoids from Hemerocallis fulva on oxidative stress and hepatocyte apoptosis in alcoholic liver injury[J]. Chongqing Med, 2017, 46(10): 1304-1307. DOI: 10.3969/j.issn.1671-8348.2017.10.003.
徐博, 李妍, 纪朋艳, 等. 萱草花黄酮对酒精性肝损伤氧化应激及肝细胞凋亡机制的探讨[J]. 重庆医学, 2017, 46(10): 1304-1307. DOI: 10.3969/j.issn.1671-8348.2017.10.003.
[43]XU GF, WANG XY, GE GL, et al. Dynamic changes of capillarization and peri-sinusoid fibrosis in alcoholic liver diseases[J]. World J Gastroenterol, 2004, 10(2): 238-243. DOI: 10.3748/wjg.v10.i2.238.
[44]AN WW, WANG MW, TASHIRO S, et al. Norcantharidin induces human melanoma A375-S2 cell apoptosis through mitochondrial and caspase pathways[J]. J Korean Med Sci, 2004, 19(4): 560-566. DOI: 10.3346/jkms.2004.19.4.560.
[45]CAO XH, ZHAO SS, LIU DY, et al. ROS-Ca(2+) is associated with mitochondria permeability transition pore involved in surfactin-induced MCF-7 cells apoptosis[J]. Chem Biol Interact, 2011, 190(1): 16-27. DOI: 10.1016/j.cbi.2011.01.010.
收稿日期:
2022-11-01;录用日期:2022-12-26
本文编辑:王亚南
引证本文:
BAO YH, WANG Q, ZHANG WL, et al.
Ursolic acid in Hippophae rhamnoides L. inhibits hepatocyte apoptosis in rats with alcoholic liver disease by regulating mitochondria-cytochrome c[J]. J Clin Hepatol, 2023, 39(7): 1617-1626.
包艷红,王强, 张文龙, 等.
沙棘熊果酸通过调节线粒体-细胞色素c抑制酒精性肝病大鼠模型肝细胞凋亡的作用分析[J]. 临床肝胆病杂志, 2023, 39(7): 1617-1626.