张翔宇 胡鑫慧 谷淑波 林 祥 殷复伟 王 东,*
减氮条件下分期施钾对冬小麦籽粒产量和氮素利用效率的影响
张翔宇1胡鑫慧1谷淑波1林 祥2殷复伟3王 东2,*
1山东农业大学/ 作物生物学国家重点实验室, 山东泰安 271018;2西北农林科技大学农学院, 陕西杨凌 712100;3泰安市农业技术推广中心, 山东泰安 271000
为探究钾肥分期施用对冬小麦产量和氮素利用效率的影响, 确定减氮条件下冬小麦高产高效的钾肥运筹方案, 本试验选用高产强筋冬小麦品种藁优5766作为试验材料, 于2018—2020年度冬小麦生长季, 采用二因素随机区组设计, 设置3个施氮水平: 常规施氮水平(240 kg hm–2, N1)、减氮20% (192 kg hm–2, N2)、减氮40% (144 kg hm–2, N3), 两种钾肥运筹方案: 钾肥全部底施(K1)和分期施钾(底施50%、拔节期追施50%, K2)。结果表明, 相同钾肥运筹方案下, N2处理的籽粒产量与N1处理无显著差异, N3处理的籽粒产量比N1处理显著降低, 降幅达9.0%~11.6%。在相同施氮水平下, 分期施钾可显著提高冬小麦籽粒产量和氮素利用效率。与K1处理相比, K2处理显著抑制硝态氮向深层土壤的淋溶, 增加冬小麦植株氮素积累量, 提高旗叶光合速率和硝酸还原酶活性、籽粒灌浆速率、穗粒数和千粒重; 籽粒产量和氮素利用效率在常规施氮水平下两年度分别提高21.7%和20.2%, 在减氮20%水平下两年度分别提高26.9%和26.2%, 在减氮40%水平下两年度分别提高25.2%和21.1%。N3K2处理的籽粒产量、氮素吸收效率、氮素利用效率和氮肥偏生产力均显著高于N1K1处理。以上结果说明分期施钾在不同施氮水平下均能大幅度提高冬小麦籽粒产量和氮素利用效率, 即使减氮40%, 其籽粒产量仍显著高于常规施氮且钾肥全部底施的处理; 采用192 kg hm–2施氮量并配合分期施钾, 冬小麦籽粒产量和氮素吸收效率最高, 氮素利用效率和氮肥偏生产力亦到达较高水平, 是高产高效的氮钾肥运筹方案。
冬小麦; 减氮; 分期施钾; 籽粒产量; 氮素利用效率
小麦作为世界上重要的作物之一[1], 为人类提供约21%的食物[2]; 氮肥作为小麦生长季必不可少的肥料, 对小麦的产量有重要影响[3-5]。然而, 过度追求通过提高施氮量增产导致氮素利用效率降低、生产成本增加; 同时, 多余的氮肥还会增加温室气体的排放[6]、污染地下水等[7]。近年来对氮肥的管理逐渐重视, 2012年到2020年, 氮肥用量降低23.6%。大量研究表明, 黄淮海麦区常规施氮量为240 kg hm–2, 将施氮量由240 kg hm–2降低到180 kg hm–2时, 籽粒产量下降幅度不明显, 氮素利用效率却显著提高[8], 继续降低到120 kg hm–2时, 籽粒产量大幅度下降[9]。有研究表明, 施钾可以促进作物对氮素的吸收, 也能提高氮素利用效率[10]。分期施钾能够增加植株氮素和钾素的积累量, 提高开花后旗叶的净光合速率和淀粉合成酶的活性, 增加冬小麦的籽粒产量[11-14]。在不改变施钾量的情况下, 分期施钾与钾肥一次性底施相比, 冬小麦的籽粒产量显著提高[15]。可以看出, 分期施钾无需增加钾素的投入即可达到增产效果。那么, 分期施钾能否与减量施氮相配合在减氮条件下实现增加籽粒产量、提高氮素利用效率的效果呢?目前还鲜有相关的研究报道。因此, 本文在3个施氮水平(常规施氮、减氮20%和减氮40%)下, 设置钾肥一次性底施和分期施钾两种施钾方式处理, 探索减氮条件下分期施钾对冬小麦籽粒产量和氮素利用效率的影响, 以期为冬小麦绿色高产高效栽培提供理论依据。
试验于2018—2019年和2019—2020年冬小麦生长季在山东省泰安市道朗镇玄庄村(36°12′N, 116°54′E)大田进行, 试验地前茬作物为玉米。该地区属温带大陆性季风气候, 年均气温为13.0~13.6℃, 年均降雨量为621.2~688.0 mm。试验地土壤类型为沙壤土。小麦播种前0~20 cm土层土壤含有机质9.4 g kg–1、全氮1.79 g kg–1、碱解氮78.82 mg kg–1、速效磷22.85 mg kg–1、速效钾97.06 mg kg–1。
试验材料选用高产强筋冬小麦品种藁优5766, 采用二因素随机区组设计, 设置3个施氮水平: 常规施氮水平(240 kg hm–2, N1)、减氮20% (192 kg hm–2, N2)、减氮40% (144 kg hm–2, N3), 2种钾肥运筹方案: 钾肥全部底施(K1)和分期施钾(底施50%、拔节期追施50%, K2)。每个处理3次重复, 小区面积为2 m×9 m=18 m2。试验各处理磷肥和钾肥的施用量一致, 分别为120 kg P2O5hm–2和120 kg K2O hm–2。所用氮肥为尿素(含N 46%), 磷肥为重过磷酸钙(含P2O546%), 钾肥为氯化钾(含K2O 60%)。磷肥全部底施, 氮肥50%于播种期底施, 50%于拔节期溶解成肥液后随灌溉水追施。冬小麦三叶一心期定苗, 留苗密度为每公顷185万株。2018—2019年度试验于10月3日播种, 6月4日收获; 2019—2020年度试验于10月9日播种, 6月4日收获, 其他管理措施同一般高产田。
1.3.1 产量及其构成因素 成熟期每小区随机选取0.5 m2调查单位面积穗数, 随机选取50个麦穗, 调查穗粒数; 每小区收获2 m2脱粒, 风干至籽粒含水率达到12.5%左右时称重, 计算单位面积籽粒产量, 同时调查千粒重。每个处理3次重复。
1.3.2 冬小麦氮素利用效率
氮素利用效率(NUE, kg kg–1)=籽粒产量(kg hm–2)/地上部植株氮素积累量(kg hm–2)
氮素吸收效率(NUpE, kg kg–1)=地上部植株氮素积累量(kg hm–2)/施氮量(kg hm–2)
氮肥偏生产力(PFPn, kg kg–1)=籽粒产量(kg hm–2)/施氮量(kg hm–2)
1.3.3 土壤硝态氮含量 于冬小麦拔节期、开花期和成熟期, 使用土钻, 每10 cm一层采集0~40 cm土层土壤样品, 每20 cm一层采集40~200 cm土层土壤样品, 并于–20℃条件下保存, 之后用AA3流动分析仪测定土壤硝态氮含量。
1.3.4 植株氮素含量 于越冬期、返青期、拔节期、开花期和成熟期采集冬小麦地上部植株样品。采用浓硫酸消煮, 用国标GB2905-1982半微量凯氏定氮法测定植株地上部全氮含量。
1.3.5 植株氮素积累与分配
各器官氮素积累量(kg hm–2)=各器官干重×各器官氮素含量
花后同化氮素输入籽粒量(kg hm–2)=成熟期籽粒氮素积累量-花前营养器官贮藏氮素转运量
花后同化氮素对籽粒的贡献率(%)=花后同化氮素在籽粒中的分配量/成熟期籽粒氮素积累量×100
1.3.6 旗叶硝酸还原酶活性(NR) 于开花后0、10、20和30 d随机采集冬小麦旗叶, 每小区30片。参照邹琦等(2000)主编《植物生理学实验指导》中的方法测定冬小麦旗叶硝酸还原酶活性。
1.3.7 旗叶叶绿素相对含量(SPAD值)及净光合速率(n) 于开花后0、10、20和30 d (晴天)的上午09:00—11:00, 每处理随机选取5片旗叶, 采用日本产SPAD-502叶绿素测量仪测量叶绿素相对含量(SPAD值), 采用美国产Li-6400型便携式光合仪, 在固定光源1400 μmol m–2s–1光强下测量净光合速率。
1.3.8 籽粒灌浆速率 于开花期选取各处理小区内长相基本一致且同一天开花的穗挂牌标记, 并于开花后7、14、21、28和35 d每小区随机采集15个麦穗, 置烘箱内于105℃条件下杀青30 min, 再于75℃条件下烘干至恒重, 脱粒测定平均单粒重。籽粒灌浆速率计算公式如下:
籽粒灌浆速率(mg kernel–1d–1) = (后1次取样单粒干重–前1次取样单粒干重)/2次取样间隔天数。
从表1可以看出, 在同一施氮水平下, 分期施钾与钾肥全部底施相比, 显著提高冬小麦籽粒产量、氮素利用效率和氮肥偏生产力。与K1处理相比, K2处理2018—2019年籽粒产量在N1、N2和N3水平下分别提高24.6%、26.6%和27.5%; 2019—2020年籽粒产量分别提高18.7%、27.08%和22.9%。两年度, N2K2处理与N1K2处理的籽粒产量无显著差异, 但显著高于其余处理。N3K2处理的籽粒产量、氮素吸收效率、氮素利用效率和氮肥偏生产力均显著高于N1K1处理。说明分期施钾能大幅度提高冬小麦籽粒产量和氮素利用效率, 即使减氮40%, 其籽粒产量仍显著高于常规施氮且钾肥全部底施的处理。
表1 不同处理对冬小麦籽粒产量和氮素利用效率的影响
N1: 常规施氮(240 kg hm–2); N2: 减氮20% (192 kg hm–2); N3: 减氮40% (144 kg hm–2); K1: 钾肥全部底施; K2: 分期施钾(底施50%, 拔节期追施50%)。NUE: 氮素利用效率; NUpE: 氮素吸收效率; PEPn: 氮肥偏生产力。数据后不用字母表示同一年度的不同处理之间差异显著(< 0.05)。
N1: conventional nitrogen application rate (240 kg hm–2); N2: nitrogen application rate was reduced by 20% (192 kg hm–2); N3: nitrogen application rate was reduced by 40% (144 kg hm–2); K1: all potassium fertilizers were applied at the sowing stage; K2: potassium fertilizer application in stages (50% was applied at the sowing stage, 50% was applied at the jointing stage). NUE: nitrogen use efficiency; NUpE: nitrogen uptake efficiency; PEPn: nitrogen partial productivity. Different letters after date indicate significant difference among treatments in each growing season (< 0.05).
在同一施氮水平下, 拔节期追肥前, K1处理0~40 cm土层土壤硝态氮含量显著大于K2处理, 40~200 cm土层土壤硝态氮含量显著小于K2处理(图1); 开花期和成熟期, K1处理0~40 cm土层土壤硝态氮含量显著小于K2处理, 40~200 cm土层土壤硝态氮含量显著大于K2处理(图2和图3)。表明拔节期追施钾肥可以显著提高拔节后0~40 cm土层土壤的硝态氮含量, 减少硝态氮向深层土壤淋溶。
图1 不同处理对拔节期0~200 cm土层土壤硝态氮含量的影响
N1: 常规施氮(240 kg hm–2); N2: 减氮20% (192 kg hm–2); N3: 减氮40% (144 kg hm–2); K1: 钾肥全部底施; K2: 分期施钾(底施50%, 拔节期追施50%)。
N1: conventional nitrogen application rate (240 kg hm–2); N2: nitrogen application rate was reduced by 20% (192 kg hm–2); N3: nitrogen application rate was reduced by 40% (144 kg hm–2); K1: all potassium fertilizers were applied at the sowing stage; K2: potassium fertilizer application in stages (50% was applied at sowing stage, 50% was applied at jointing stage).
图2 不同处理对开花期0~200 cm土层土壤硝态氮含量的影响
处理同图1。Treatments are the same as those given in Fig. 1.
(图3)
处理同图1。Treatments are the same as those given in Fig. 1.
如图4所示, 在N1水平下, K2处理植株氮素积累量与K1处理的无显著差异; 在N2和N3水平下, K2处理成熟期的植株氮素积累量显著高于K1处理的, 其余时期二者无显著差异。相同施钾方式下, N3处理的植株氮素积累量显著低于N1和N2处理; 且N1K1的植株氮素积累量显著高于N2K1的, 但N1K2的植株氮素积累量与N2K2的无显著差异。表明冬小麦植株氮素积累量随着施氮量的降低而显著降低; 分期施钾可显著提高植株氮素积累量, 从而在一定程度上弥补减氮对冬小麦氮素积累的负面影响。
从表2可以看出, 在同一施氮水平下, 分期施钾与钾肥全部底施相比, 显著提高成熟期籽粒氮素积累量和花后氮素同化量, 降低成熟期营养器官氮素积累量; 在N2和N3水平下, 还显著提高了花后同化氮素量及其对籽粒的贡献率。表明在减氮条件下, 分期施钾不仅可以促进开花后营养器官氮素向籽粒转运, 而且显著提高花后同化氮素量及其对籽粒的贡献率。
图4 不同处理植株氮素积累量变化动态
处理同图1。Treatments are the same as those given in Fig. 1.
表2 不同处理对冬小麦植株氮素积累与分配的影响
处理同图1。Treatments are the same as those given in Fig. 1.
如图5所示, 在N1水平下, K2处理开花后10 d的旗叶硝酸还原酶活性显著大于K1处理的, 其余时期与K1处理的无显著差异; 在N2和N3水平下, K2处理开花后10~20 d的旗叶硝酸还原酶活性显著大于K1处理的, 其余时期与K1处理的无显著差异。表明分期施钾可显著提高籽粒灌浆中期的旗叶硝酸还原酶活性, 对氮素同化有利。
如图6所示, 同一施氮水平下, K2处理开花后旗叶叶绿素相对含量显著高于K1处理的; 其中在N1条件下两年度分别提高7.8%和6.4%, 在N2条件下两年度分别提高24.1%和32.1%, 在N3条件下两年度分别提高14.7%和18.1%。表明分期施钾在各施氮水平下均可显著提高冬小麦开花后旗叶叶绿素的相对含量, 以在N2条件下的提高幅度最大。
如图7所示, 在相同施氮水平下, K2处理开花后旗叶净光合速率总体上大于K1处理。在N1、N2和N3水平下, 两年度平均增幅分别为20.1%、23.0%和17.3%。表明分期施钾在各施氮水平下均能显著提高冬小麦开花后旗叶的净光合速率, 以在减氮20%的条件下提高的幅度最大。
图5 2018–2019年度不同处理对冬小麦开花后旗叶硝酸还原酶活性(NR)影响
处理同图1。Treatments are the same as those given in Fig. 1.
图6 冬小麦开花后旗叶叶绿素相对含量(SPAD)
处理同图1。Treatments are the same as those given in Fig. 1.
图7 不同处理冬小麦开花后旗叶净光合速率(Pn)
处理同图1。Treatments are the same as those given in Fig. 1.
如图8所示, 同一施氮水平下, K1处理在开花后0~20 d的籽粒灌浆速率高于K2处理的, 在开花后20~35 d的籽粒灌浆速率则显著低于K2处理的。表明分期施钾对冬小麦开花20 d后的籽粒灌浆速率有明显促进作用。
硝态氮作为土壤中无机氮的主要存在形式, 易被小麦吸收利用, 但其在土壤中不易被胶体吸附、移动性强, 是土壤氮素淋溶的主要部分[16]。土壤中的钾素与氮素存在一定程度的交互作用。K+的增多有利于NH4+在土壤溶液中保留, 进而在硝化细菌的作用下转换成NO3– [17]。土壤中的NO3–与K+存在耦合迁移现象, 施氮量提高引起的NO3–大量淋失会间接导致K+的大量淋失[18]。本试验改钾肥一次性底施为底追结合分期施用, 拔节期追施钾肥显著提高拔节后0~40 cm土层土壤硝态氮的含量, 降低40~200 cm土层土壤的硝态氮含量。说明在144~240 kg hm–2施氮量范围内, 将50%的钾肥由播种期移至拔节期施用, 不仅提高冬小麦主要根层土壤硝态氮含量, 而且减少硝态氮向深层土壤的运移。这可能与土壤中钾素和氮素在一定浓度范围内的互作有关, 其机制尚待进一步探讨。
图8 不同处理对籽粒灌浆速率的影响
处理同图1。Treatments are the same as those given in Fig. 1.
适宜的施氮量有利于小麦对氮素的吸收和积累[19]。在土壤碱解氮含量为88.2 mg kg–1的土壤条件下, 施氮量由135 kg hm–2增至180 kg hm–2时, 小麦植株氮素积累量显著提高, 继续增加施氮量, 植株氮素积累量无显著增加, 甚至降低[20]。在土壤碱解氮含量为53.5 mg kg–1的条件下, 施氮量由300 kg hm–2降至225 kg hm–2, 植株氮素积累量反而呈增加趋势[21]。以上结果说明过多的氮素投入并不能增加小麦植株氮素的积累。K+可以充当NO3–的电化学平衡, 促进植株对NO3–的吸收[22]。适宜的施钾量可以提高硝酸还原酶的活性[23], 增加植株氮素积累量[24],同时还能提高花后同化氮素对籽粒的贡献率[25]。本试验结果表明, 分期施钾可以提高籽粒灌浆中期旗叶硝酸还原酶的活性, 提高氮素同化能力。在常规施氮量条件下, 分期施钾对植株成熟期氮素积累和花后同化氮素量及其对籽粒的贡献率并无显著影响,在减氮20%和40%的条件下则可以显著增加植株成熟期氮素积累量, 提高花后同化氮素量及其对籽粒的贡献率。说明钾素对小麦氮素吸收、积累与分配的调节效应受氮素供给水平的影响, 在减氮条件下, 可以通过分期施钾, 增强小麦旗叶硝酸还原酶活性, 促进氮素同化和积累, 提高花后同化氮素量及其对籽粒的贡献率, 从而保持较高的植株氮素积累量和籽粒产量。
适宜的施氮量能够提高旗叶叶绿素相对含量, 延缓旗叶衰老[26]。有研究表明, 在土壤全氮含量为0.88 g kg–1的条件下, 施氮量由90 kg hm–2增至180 kg hm–2, 冬小麦旗叶SPAD值和净光合速率显著提高, 继续增加施氮量至270 kg hm–2, 旗叶SPAD值和净光合速率无显著变化[27]。还有研究表明, 在土壤全氮含量为1.6 g kg–1的条件下, 施氮量由225 kg hm–2增至300 kg hm–2时, 小麦开花后旗叶SPAD值显著降低[28]。通过分期施钾, 提高生育中后期供钾水平也能提高开花后旗叶SPAD值和净光合速率, 延长光合高值和灌浆持续时间[29-32]。本研究结果进一步证明, 在不同施氮水平下, 分期施钾均能显著提高旗叶SPAD值、净光合速率和灌浆持续时间, 但是以在施氮量为192 kg hm–2条件下的增幅最大, 相比常规施氮(施氮量为240 kg hm–2)和减氮40% (施氮量为144 kg hm–2)的处理, 旗叶净光合速率分别提高2.9%和5.6%。说明适宜的供氮水平有利于发挥钾素对小麦光合同化的正向调节作用。
有研究表明, 在土壤碱解氮含量为53.54 mg kg–1的条件下, 施氮量由300 kg hm–2降低至240 kg hm–2, 小麦产量无显著差异, 氮素利用效率显著提高; 继续降低至225 kg hm–2, 氮素利用效率显著降低[21]。在土壤碱解氮含量为112.4 mg kg–1的条件下, 施氮量由240 kg hm–2降低至180 kg hm–2, 小麦产量无显著差异, 氮素利用效率显著提高[8]。说明土壤含氮量不同, 施氮量对小麦氮素利用效率的调控效果存在明显的差异, 过高的氮素供给水平无益于作物产量和氮素利用效率的提高。本试验田土壤碱解氮含量为78.82 mg kg–1, 相同施钾方式下将施氮量由240 kg hm–2降低至192 kg hm–2, 产量无显著变化, 氮素利用效率显著提高; 继续降至144 kg hm–2后, 产量大幅度下降。说明在土壤碱解氮含量为78.82 mg kg–1的条件下, 短期内(连续2年)将施氮量由240 kg hm–2降低至192 kg hm–2, 可以在保持产量的前提下提高冬小麦氮素利用效率, 长期减氮效应还有待进一步探讨。另有研究表明, 在土壤速效钾含量为74.1 mg kg–1的条件下, 施钾量由0 kg hm–2增至100 kg hm–2, 水稻产量提高23.9%[33]。在土壤速效钾含量为88.7 mg kg–1的条件下, 施钾量由180 kg hm–2增至360 kg hm–2, 甘薯产量仅提高1.4%, 而氮素利用效率降低15.6%[34]。在土壤速效钾含量为202 mg kg–1的条件下, 施钾量由50 kg hm–2增至100 kg hm–2, 冬小麦的产量和氮素利用效率分别降低4.2%和8.0%[27]。说明土壤含钾量不同, 施钾量对作物产量和氮素利用效率的调控效果存在明显的差异, 过高的钾素供给水平无益于作物产量和氮素利用效率的提高。在施氮量为270 kg hm–2和施钾量为135 kg hm–2的条件下, 分期施钾相较于一次性底施钾, 产量和氮素利用效率分别提高4.7%和7.6%[13]。本试验中分期施钾与钾肥一次性底施相比, 在施氮量分别为240、192、144 kg hm–2的条件下, 冬小麦产量分别提高21.7%、26.9%和25.2%, 氮素利用效率分别提高20.2%、26.2%和21.1%。在施氮量为192 kg hm–2的条件下, 分期施钾对产量和氮素利用效率的提高幅度最大。说明适宜的施氮量配合分期施钾有利于实现冬小麦产量和氮素利用效率的同步提高。
在土壤碱解氮和速效钾含量分别为78.82 mg kg–1和97.06 mg kg–1的条件下, 分期施钾与钾肥全部底施相比, 显著抑制土壤硝态氮向深层土壤的淋溶, 提高冬小麦拔节后0~40 cm土层土壤硝态氮含量, 增加植株氮素积累量、花后同化氮素对籽粒的贡献率和穗粒数, 提高旗叶硝酸还原酶活性和净光合速率, 促进籽粒灌浆, 提高千粒重。在144~240 kg hm–2施氮量范围内, 分期施钾均能大幅度提高冬小麦籽粒产量和氮素利用效率; 即使减氮40% (施氮量为144 kg hm–2), 籽粒产量仍显著高于常规施氮且钾肥全部底施的处理。采用192 kg hm–2施氮量并配合分期施钾, 冬小麦籽粒产量和氮素吸收效率最高, 氮素利用效率和氮肥偏生产力亦到达较高水平, 是高产高效的氮钾肥运筹方案。
[1] Fu W, Fan J, Hao M D, Hu J S, Wang H. Evaluating the effects of plastic film mulching patterns on cultivation of winter wheat in a dryland cropping system on the Loess Plateau., 2021, 244: 106550.
[2] Gu X, Cai H, Chen P, Li Y, Fang H, Li Y. Ridge-furrow film mulching improves water and nitrogen use efficiencies under reduced irrigation and nitrogen applications in wheat field., 2021, 270: 108214.
[3] Grant C A, Wu R, Selles F, Harker K N, Clayton G W, Bittman S, Zebarth B J, Lupwayi N Z. Crop yield and nitrogen concentration with controlled release urea and split applications of nitrogen as compared to non-coated urea applied at seeding., 2012, 127: 170–180.
[4] Abbasi M K, Tahir M M, Rahim N. Effect of N fertilizer source and timing on yield and N use efficiency of rainfed maize (L.) in Kashmir-Pakistan., 2013, 195: 87–93.
[5] Duan J, Shao Y, He L, Li X, Hou G, Li S, Feng W, Zhu Y, Wang Y, Xie Y. Optimizing nitrogen management to achieve high yield, high nitrogen efficiency and low nitrogen emission in winter wheat., 2019, 697: 134088.
[6] Tian D, Zhang Y, Mu Y, Zhou Y, Zhang C, Liu J. The effect of drip irrigation and drip fertigation on N2O and NO emissions, water saving and grain yields in a maize field in the North China Plain., 2017, 575: 1034–1040.
[7] Lenka S, Singh A K, Lenka N K. Soil water and nitrogen interaction effect on residual soil nitrate and crop nitrogen recovery under maize-wheat cropping systemin the semi-arid region of northern India., 2013, 179: 108–115.
[8] 曹倩, 贺明荣, 代兴龙, 门洪文, 王成雨. 密度、氮肥互作对小麦产量及氮素利用效率的影响. 植物营养与肥料学报, 2011, 17: 815–822.
Cao Q, He M R, Dai X L, Men H W, Wang C Y. Effects of interaction between density and nitrogen on grain yield and nitrogen use efficiency of winter wheat., 2011,17: 815–822 (in Chinese with English abstract).
[9] 李法计, 徐学欣, 肖永贵, 何中虎, 王志敏. 不同氮素处理对中麦175和京冬17产量相关性状和氮素利用效率的影响. 作物学报, 2016, 42: 1853–1863.
Li F J, Xu X X, Xiao Y G, He Z H, Wang Z M. Effect of nitrogen on yield related traits and nitrogen utilization efficiency in Zhongmai 175 and Jingdong 17., 2016, 42: 1853–1863 (in Chinese with English abstract).
[10] 夏淑洁, 刘闯, 袁晓良, 李俊雅, 李林洋, 张润琴, 李志国. 不同氮钾水平及氮形态差异对土壤氨挥发和氧化亚氮排放的影响. 农业环境科学学报, 2020, 39: 1122–1129.
Xia S J, Liu C, Yuan X L, Li J Y, Li L Y, Zhang R Q, Li Z G. Effects of different nitrogen and potassium levels and nitrogen forms on soil ammonia volatilization and nitrous oxide emissions., 2020, 39: 1122–1129 (in Chinese with English abstract).
[11] Sitthaphanit S, Limpinuntana V, Toomsan B, Panchaban S, Bell R W. Fertiliser strategies for improved nutrient use efficiency on sandy soils in high rainfall regimes., 2009, 85: 123–139.
[12] 梁晓芳, 于振文. 施钾时期对冬小麦旗叶光合特性和籽粒淀粉积累的影响. 应用生态学报, 2004, 15: 1349–1352.
Liang X F, Yu Z W. Effect of potassium application stage on photosynthetic characteristics of winter wheat flag leaves and on starch accumulation in wheat grains., 2004: 1349–1352 (in Chinese with English abstract).
[13] 于振文, 梁晓芳, 李延奇, 王雪. 施钾量和施钾时期对小麦氮素和钾素吸收利用的影响. 应用生态学报, 2007, 18: 69–74.
Yu Z W, Liang X F, Li Y Q, Wang X. Effects of potassium application rate and time on the uptake and utilization of nitrogen and potassium by winter wheat., 2007, 18: 69–74 (in Chinese with English abstract).
[14] Lu Q, Jia D Y, Zhang Y, Dai X L, He M R. Split application of potassium improves yield and end-use quality of winter wheat., 2014, 106: 1411–1419.
[15] 王宜伦, 杨素芬, 韩燕来, 李青松, 谭金芳. 钾肥运筹对砂质潮土冬小麦产量、品质及土壤钾素平衡的影响. 麦类作物学报, 2008, 28: 861–866.
Wang Y L, Yang S F, Han Y L, Li Q S, Tan J F. Effect of potassium fertilizer application on the yield quality of winter wheat and soil available K Balance in sandy Chao soil., 2008, 28: 861–866 (in Chinese with English abstract).
[16] Muratoglu A. Grey water footprint of agricultural production: an assessment based on nitrogen surplus and high-resolution leaching runoff fractions in Turkey., 2020, 742: 140553.
[17] Chappell M A, Evangelou V P. Influence of added K+on inducing ammonium fixation and inhibiting nitrification., 2000, 165: 420–426.
[18] 周旋, 吴良欢, 董春华, 贾磊. 氮肥配施生化抑制剂组合对黄泥田土壤氮素淋溶特征的影响. 生态学报, 2019, 39: 1804–1814.
Zhou X, Wu L H, Dong C H, Jia L. Effects of nitrogen fertilization combined with biochemical inhibitors on leaching characteristics of soil nitrogen in yellow clayey soil., 2019, 39: 1804–1814 (in Chinese with English abstract).
[19] 王玲玲, 吴文革, 李瑞, 胡健, 闫素辉, 邵庆勤, 许峰, 张从宇,周永进, 李文阳. 施氮量对弱筋小麦籽粒品质与氮素利用的影响. 浙江农业学报, 2021, 33: 777–784.
Li L L, Wu W G, Li R, Hu J, Yan S H, Shao Q Q, Xu F, Zhang C Y, Zhou Y J, Li W Y. Effects of nitrogen rate on grain quality and nitrogen utilization of weak gluten wheat., 2021, 33: 777–784 (in Chinese with English abstract).
[20] 吕广德, 亓晓蕾, 张继波, 牟秋焕, 吴科, 钱兆国. 中、高产型小麦干物质和氮素累积转运对水氮的响应. 植物营养与肥料学报, 2021, 27: 1534–1547.
Lü G D, Qi X L, Zhang J B, Mou Q H, Wu K, Qian Z G. Response of nitrogen and dry matter accumulation in middle and high yield wheat cultivars to water and nitrogen supply., 2021, 27: 1534–1547 (in Chinese with English abstract).
[21] 孔丽婷, 蒋桂英, 杨灵威. 减量施氮对滴灌春小麦干物质和氮素积累转运特征的影响. 麦类作物学报, 2021, 41: 317–327.
Kong L T, Jiang G Y, Yang L W. Effects of reduced nitrogen application on dry matter and nitrogen accumulation and transport characteristics of spring wheat under drip irrigation., 2021, 41: 317–327 (in Chinese with English abstract).
[22] Lollato R P, Figueiredo B M, Dhillon J S, Arnall D B, Raun W R. Wheat grain yield and grain–nitrogen relationships as affected by N, P, and K fertilization: a synthesis of long-term experiments., 2019, 236: 42–57.
[23] 孙常青, 杨艳君, 郭志利, 屈非. 施肥和密度对杂交谷可溶性糖、可溶性蛋白及硝酸还原酶的影响. 植物营养与肥料学报, 2015, 21: 1169–1177.
Sun C Q, Yang Y J, Guo Z L, Qu F. Effects of fertilization and density on soluble sugar and protein and nitrate reductase of hybrid foxtail millet.,2015, 21: 1169–1177 (in Chinese with English abstract).
[24] Akhtar K, Wang W, Ren G, Khan A, Enguang N, Khan A, Feng Y, Yang G, Wang H. Straw mulching with inorganic nitrogen fertilizer reduces soil CO2and N2O emissions and improves wheat yield., 2020, 741: 140488.
[25] 郭明明, 赵广才, 郭文善, 常旭虹, 王德梅, 杨玉双, 王美, 亓振, 王雨, 代丹丹, 魏星, 李银银, 刘孝成. 追氮时期和施钾量对小麦氮素吸收运转的调控. 植物营养与肥料学报, 2016, 22: 590–597.
Guo M M, Zhao G C, Guo W S, Chang X H, Wang D M, Yang Y S, Wang M, Qi Z, Wang Y, Dai D D, Wei X, Li Y Y, Liu X C. Regulation of nitrogen topdressing stage and potassium fertilizer rate on absorption and translocation of nitrogen by wheat., 2016, 22: 590–597 (in Chinese with English abstract).
[26] 张向前, 曹承富, 张存岭, 陈欢, 乔玉强, 杜世州, 李玮, 赵竹. 小麦光合特性及产量构成对长期不同土壤培肥模式的响应. 麦类作物学报, 2018, 38: 615–622.
Zhang X Q, Cao C F, Zhang C L, Chen H, Qiao Y Q, Du S Z, Li W, Zhao Z. Response of photosynthetic characteristics and yield components of winter wheat to different long-term soil fertilizer application model., 2018, 38: 615–622 (in Chinese with English abstract).
[27] 李廷亮, 谢英荷, 洪坚平, 冯倩, 孙丞鸿, 王志伟. 施氮量对晋南旱地冬小麦光合特性、产量及氮素利用的影响. 作物学报, 2013, 39: 704–711.
Li Y L, Xie Y H, Hong J P, Feng Q, Sun C H, Wang Z W. Effects of nitrogen application rate on photosynthetic characteristics, yield and nitrogen utilization in rainfed winter wheat in Southern Shanxi., 2013, 39: 704–711 (in Chinese with English abstract).
[28] 李晶晶, 尹钧, 李武超, 李磊. 不同水氮运筹对冬小麦光合特性和产量的影响. 河南农业科学, 2017, 46(5): 27–33.
Li J J, Yin J, Li W C, Li L. Effects of different irrigation and nitrogen application on photosynthetic characteristics and yield of winter wheat., 2017, 46(5): 27–33 (in Chinese with English abstract).
[29] 张海竹, 张永清, 张建平, 贾志宽. 氮、磷、钾肥对强筋小麦产量与品质的影响. 麦类作物学报, 2008, 28: 457–460.
Zhang H Z, Zhang Y Q, Zhang J P, Jia Z K. Effect of nitrogen, phosphorus, potassium fertilizer application on yield and quality of high-gluten wheat., 2008, 28: 457–460 (in Chinese with English abstract).
[30] 梁晓芳, 于振文. 施钾时期对冬小麦旗叶光合特性和籽粒淀粉积累的影响. 应用生态学报, 2004, 15: 1349–1352.
Liang X F, Yu Z W. Effect of potassium application stage on photosynthetic characteristics of winter wheat flag leaves and on starch accumulation in wheat grains., 2004, 15: 1349–1352 (in Chinese with English abstract).
[31] 吕广德, 王超, 靳雪梅, 徐加利, 王瑞霞, 孙宪印, 钱兆国, 吴科. 水氮组合对冬小麦干物质及氮素积累和产量的影响. 应用生态学报, 2020, 31: 2593–2603.
Lyu G D, Wang C, Jin X M, Xu J L, Wang R X, Sun X Y, Qian Z G, Wu K. Effects of water-nitrogen combination on dry matter, nitrogen accumulation and yield of winter wheat., 2020, 31: 2593–2603 (in Chinese with English abstract).
[32] 张元帅, 冯伟, 张海艳, 齐双丽, 衡亚蓉, 郭彬彬, 李晓, 王永华, 郭天财. 遮阴和施氮对冬小麦旗叶光合特性及产量的影响. 中国生态农业学报, 2016, 24: 1177–1184.
Zhang Y S, Feng W, Zhang H Y, Qi S L, Heng Y R, Guo B B, Li X, Wang Y H, Guo T C. Effects of shading and nitrogen rate on photosynthetic characteristics of flag leaves and yield of winter wheat., 2016, 24: 1177–1184 (in Chinese with English abstract).
[33] Islam A, Muttaleb A. Effect of potassium fertilization on yield and potassium nutrition of Boro rice in a wetland ecosystem of bangladesh., 2016, 62: 1530–1540.
[34] 赵庆鑫, 江燕, 史春余,司成成, 史文卿, 王新建, 柳洪鹃, 史衍玺. 氮钾互作对甘薯氮钾元素吸收、分配和利用的影响及与块根产量的关系. 植物生理学报, 2017, 53: 889–895.
Zhao Q X, Jiang Y, Shi C Y, Si C C, Shi W Q, Wang X J, Liu H J, Shi Y X. Effects of nitrogen potassium Interaction on absorption, distribution and utilization of nitrogen and potassium in sweet potato and its relationship with root tuber yield., 2017, 53: 889–895 (in Chinese with English abstract).
Effects of staged potassium application on grain yield and nitrogen use efficiency of winter wheat under reduced nitrogen conditions
ZHANG Xiang-Yu1, HU Xin-Hui1, GU Shu-Bo1, Lin Xiang2, YIN Fu-Wei3, and WANG Dong2,*
1Shandong Agricultural University / State Key Laboratory of Crop Biology, Tai’an 271018, Shandong, China;2College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China;3Tai’an City Agricultural Technology Extension Center, Tai’an 271000, Shandong, China
In order to explore the effect of potassium fertilizer application on the yield and nitrogen use efficiency of winter wheat in different stages, and to determine the high-yield and efficient potassium fertilizer operation plan for winter wheat under the condition of nitrogen reduction, the high-yield and strong-gluten winter wheat variety Gaoyou 5766 was selected as the test materials in this experiment. During the growing season, a two-factor randomized block design was used to set three nitrogen application levels [conventional nitrogen application rate (240 kg hm–2, N1), nitrogen application rate reduced by 20% (192 kg hm–2, N2), and nitrogen application rate reduced by 40% (144 kg hm–2, N3)] and two potassium fertilizer application schemes [all potassium fertilizers applied at the sowing stage (K1) and potassium fertilizer applied in stages (50% was applied at the sowing stage and 50% was applied at the jointing stage, K2)]. The results showed that under the same potassium fertilizer application scheme, the grain yield of N2 treatment was not significantly different from that of N1 treatment, and the grain yield of N3 treatment was significantly lower than that of N1 treatment, with a decrease of 9.0%–11.6%. Under the same nitrogen application rate, potassium application by stages could significantly improve grain yield and nitrogen use efficiency of winter wheat. Compared with K1 treatment, K2 treatment significantly inhibited the leaching of nitrate nitrogen into deep soil layers, increased nitrogen accumulation in winter wheat plants, and increased flag leaf photosynthetic rate and nitrate reductase activity, grain filling rate, the number of grains per spike, and 1000-grain weight. Grain yield and nitrogen use efficiency increased by 21.7% and 20.2% under the conventional nitrogen application rate, by 26.9% and 26.2% under the N2 level, and by 25.2% and 21.1% under the N3 level, respectively. The grain yield, nitrogen uptake efficiency, nitrogen use efficiency, and nitrogen partial productivity of N3K2 treatment were significantly higher than those of N1K1 treatment. The above results showed that potassium application in stages could greatly improve the grain yield and nitrogen use efficiency of winter wheat under different nitrogen application rates. Using the nitrogen application rate of 192 kg hm–2combined with potassium application in stages, the grain yield and nitrogen uptake efficiency of winter wheat were the highest, and the nitrogen use efficiency and nitrogen partial productivity also reached a high level. It is a high-yield and efficient nitrogen-potassium fertilizer application scheme.
winter wheat; nitrogen reduction; potassium application by stages; grain yield; nitrogen use efficiency
10.3724/SP.J.1006.2023.21013
本研究由山东省重点研发计划项目(LJNY202010)和陕西省重点研发计划项目(2021ZDLNY01-05)资助。
This study was supported by the Key Research and Development Program Project of Shandong Province (LJNY202010) and the Key Research and Development Program Project of Shaanxi Province (2021ZDLNY01-05).
王东, E-mail: wangd@nwafu.edu.cn
E-mail: 492754758@qq.com
2022-02-18;
2022-06-07;
2022-07-11.
URL: https://kns.cnki.net/kcms/detail/11.1809.S.20220708.1753.005.html
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).