基于无线传感器网络能耗监测系统在高校老校区建设的研究

2022-11-17 13:13郭文会
甘肃科技 2022年19期
关键词:能耗服务器无线

郭文会

(兰州信息科技学院,甘肃 兰州 730050)

1 引言

中国大多数高校老校区都是人工干预电力、水和天然气的消耗管理。人工抄表在原有状态下存在着综合数据不准确、实时采集性能差、工作量大、管理困难等问题。如果没有其他途径可以直接有效地获取实际能耗相关信息,就不可能进一步提出明确的最优节能高效解决方案,并有效降低高校老校区能耗[1]。

现有高校能耗监测系统一般采用有线网络进行监测。如果老校园改造了,需要设备种类多,布线复杂,对现有建筑破坏严重。在国外,能耗实时监控系统也发展到非常完善的水平,已形成一定的特定标准。但是,市场价格并不便宜,缺乏与中国大多数高校老校区相适应的测控设备应用软件。

无线传感器网络采用总线结构,设备可共享,品种少,无需布线,现有建筑物未损坏,网络灵活。因此,基于无线传感器网络的大学能源消耗监控系统是非常必要的,在高校老校区节能工作中具有一定的实用价值。

2 总体设计结构

2.1 总体设计

系统采用4G无线数据传输技术将传感器连接到网关、主机、互联网服务器、移动终端等设备。改造了高校老校区中现有的校园能源调度监控系统,实现覆盖了全校无线传感器网络范围的能量自动监控系统。本系统是由无线传感器环境的测量节点、网关和互联网(传输网络)的服务器等组成,互联网(传输网络)的服务器是由互联网终端用户提供(在计算机和移动应用程序上)组成,如图1所示。

图1 基于无线传感器网络能耗监测系统总体结构

2.2 功能特点

无线传感器节点主要由各种传感器控制节点和网络服务器组成,努力实现电力消耗、水资源利用、小环境等相关参数(如室内温度、光强等)的采集和网络传输。通过无线传感器技术,数据能够通过网关实时传输信息到万维网中,把这些数据按照地址储存在服务器的数据库上,控制指令经转换完成后自动发送给万维网,万维网对发送存储过来信息的数据进行分组后,再发送给相应网络节点,以达到减少了无线传感器网络上的采集数据分组传输流量。服务器用于接收和存储网络传感器设备上收集的环境信息数据、生活环境中多种因素的阈值、环境中控制设备的开关量。这些信息可以由专用软件来处理,供高校后勤供应日常管理部门使用和管理[2]。

本系统具备以下基本功能:

(1)基于无线传感器技术和网络技术的高校能耗实时监测系统,以无线传感网、万维网等先进技术将高校老校区的能耗数据安全上传至高校后勤管理平台,显著提高了高校老校区能源储备数据的精确度和及时处理能力,使综合能耗数据和各类处理信息得以共享。

(2)通过自动化管理减少能源消耗。根据部分学生宿舍、职工宿舍、实验室和基础教学楼能耗的突出特点,完成学校电力消耗数据的综合统计,以及生成水电统计分析报告。

(3)及时预警报警保证用能安全。根据学生宿舍、教师宿舍、实验室和教学建筑的能量消耗特征,制定合理的策略,可以及时发出预警和报警,在特殊情况下自动切断电力;根据各个地区的能量消耗特征以及不同季节的教学建筑,工作日和非工作日实际情况下做出正确的决策。根据不同地区的能量消耗特征,对不同季节、工作日和非工作日的教学楼进行了节能改造,详细统计分析相关能耗数据,当能量消耗超过标准数值或无法正常使用时,及时报警,并将信息发送给相关人员。

对大型设备进行大规模地监控和预警分析,如学校建筑、水泵和空调装置等大型设备,确保关键监控设备的正常运行。

3 功能模块设计

3.1 传感器节点

传感器测试节点由无线通信设备、内置核心处理器、各种传感器、功率检测模块、功率模块和无线射频收发器模块。传感器包括照明、风扇、空调、流量监控、人员监控等传感器,每个传感器网络节点都有数据采集模式和相关设备控制的基本功能。

基本功能如下:

(1)数据采集功能。自动采集高校老校区消耗电能、水能、环境参数(如温度、光照度等)数据,在组合数据之后,通过串行端口发送到射频无线收发器模块,然后被网络发送到有关网关[3]。

(2)控制相关设备的功能。当传感器的某些节点检测到的室内温度、相对湿度,当照明和其他环境条件达到阈值时,通过射频收发器模块将相应的控制命令发送到本地环境相关参数控制设备,例如自动和智能地关闭或重新打开控制的设备,增加或减少电扇的速度调整室内温度等,为了实现各种设备的智能化和控制,引入无线网络技术[4]。智能应用电源开关通过无线局域网的各种信号在网络服务器上获取控制命令,通过控制电路来控制照明电源插头的接通和断开。

3.1.1 照明传感器的设计

(1)照明传感器采用入射发光波长,一般为约520 nm波长的光电耦合集成照明传感器,内置的双敏感元件接收器具有高可见光响应范围,输出照明电流能与照明器线性变化。当室外环境光线照明较强劲时,关闭所有照明供电设备内的所有电源回路以帮助实现电源节能化管理。当外部光线照明为偏暗色时,照明控制电路可以自动连接。

(2)故障传感器。照明及控制自动化设备上采用的各种故障传感器通常主要由故障电压传感器、电流传感器和控制照明自动化设备门端电路的与门、与非门电路等组成。当故障电压传感器和电流传感器发送电流信号到与门栅极上时,与门之间就形成正常的电流,发送正常运行的信号。如果只有一个标准的电压信号但还没有产生标准的电流信号,则与门将发送故障信号[5]。

3.1.2 风扇用传感器

风扇温度传感器启动风扇节能运行管理,选择常旋开的温度开关,用双金属片作为平面温度的测量温度元件,设定平面温度值为25 °C,当环境温度值低于设定25 °C时,控制开关将断开,切断风扇供电电路工作;当室外环境温度高于25 °C时,控制开关会接通,风扇电路接通。

3.1.3 空调内置传感器

(1)温度传感器空调机组是我国一种比较常用的生活用电温度控制设备,在节能管理方面充当主色。空调高效节能温度传感器系统由一个低温闭式传感器和一个带有高温闭式的温度开关并联所组成,当室内环境温度低于10 °C时,微处理器会控制该低温开关自动闭合;当室外环境温度高于25 °C时,微处理器可以控制高温开关自动闭合;但如果户外环境温度维持在10~25 °C,微处理器控制2个开关断开[6]。

(2)空调故障传感器

空调故障传感器一般由工作电压测量传感器,压缩机压力测量传感器和非栅极电路组成。工作电压测量传感器检测空调的工作状态。压缩机压力测量传感器用于确定空调是否处于正常操作状态。如果是空调系统脱机非正常运行,压缩机系统无法正常的运行或压缩机空转运行时,压缩机系统的转子两端之间没有形成压力容差。因此,压力传感器系统必须同时检测到高压管之间和驱动压缩机转动的2个低压管头之间发生的瞬间压力级差[7]。

差压传感器是用于实时测量压缩机系统的高压管和中低压管这2个管道压力分布之间的微小差异,并通过数据处理发出警报信号,使得工作人员可以及时收到报警信号。整个传感器系统元件精确度高,数据采集准确,根本上解决了高校建立绿色节能数字化校园管理的共性技术问题,并同时解决了传统高校能源计量管理中效率低的诸多关键瓶颈问题。工作原理则是由于测量仪表的输入压力差直接叠加在压力传感器内的隔膜片上,导致传感器隔膜内部产生一种与输出压力差大小成反比例值的微观位移,从而间接使压力传感器中的电容值改变。电子电路元件用于准确检测出该数值变化,并快速转换信号直接输出到与测量压力变化相对应数值的标准电压的测量控制信号。

为了能防止故障误回报,故障传感器通常需要事先用数字万用表来测量芯片处于工作状态端处的相对电位,确认其是否已存在低工作电压。故障传感器的基本工作原理是,如果需要让空调系统改变室内环境温度,则利用温度开关可以控制整个空调装置的工作运行和状态,并且使差压传感器系统也由此获得稳定了的工作电源。如果传感器存在差压,则非门输出压力低,传感器一般不会发生报警。如果在压缩机回路中还没有完全建立一个足够高的压力位差,则非门输出高压力电位,故障传感器警报[8]。

3.1.4 人员监控传感器

人员监控传感器一般的都采用红外传感器,其基本探测功能是在一个没有人员可以进入的地方时,该地点内的探测器主电源开关将断开;当有人员可进入探测器时,主电源开关会闭合。

3.2 无线网络节点和万维网管理安全网关

无线传感网络节点和万维网管理安全网关同时也是介于无线传感器网络节点和高速以太网系统之间连接的无边界设备,其在本套系统架构中始终扮演着一个重要的桥梁作用。无线网络节点主要由网络协调器、核心处理器模块、无线射频能量控制模块、内部存储模块和电源插头模块组成。无线传感器控制的节点设备和网络服务器全部通电启动后,自动建立无线传感器和网络。核心处理器模块接收到数据后,利用串口对无线传感器和网络进行监控,并在应答器数据允许的情况下触发相应的串口终止事件。

核心处理器模块的第一步是将协调器发送的消息数据通过无线传感器网络和万维网传输到数据存储模块,再通过无线路由模块端口将集成数据传输到万维网服务器,再将数据传输到万维网服务器中。专用软件使用设置的阈值处理能耗数据,并将消息直接发送到相应的命令。网关接收到命令数据后,首先对综合数据包进行分析和处理,然后执行控制指令,将综合控制执行命令信息发送给相应的多个传感器和控制设备节点,控制节点上各类设备的运行状态。

3.3 手机App

Java软件,开发完成了一套具有与万维网服务器系统基本使用功能相同的移动端应用系统专业软件[9]。手机移动端应用程序具有与万维网服务器系统相同的一些基本网络功能。可以在实时平台上查看老校区的能耗信息,随时随地控制相应控制设备的工作。其移动性将通过智能的能耗监测为高校老校区能耗监控带来极大的便利。

4 服务器管理软件

目前,最流行的Windows平台被应用到语言工作室的研发中。开发了一种基于无线传感器技术和网络技术的高校能量消耗实时监测系统。整体软件结构有4种类型和4层最佳方案:现场多终端数据采集人层、系统集成数据平台、业务应用层、基础平台层、应用层,各层快速完成不同的任务,上层为下层提供更多相关的核心技术支持专业服务。本系统符合国家相关核心技术开发的两大标准,并具备真实身份机构认证、综合数据加密算法、数据库备份、病毒感染预防等安全综合保障体系建设。

5 方案的合理性

5.1 资源利用率和市场预测

我国的大部分高校老校区能源消耗管理部门,对电力、水、燃气等能源消耗管理,缺乏直接和有效的手段,并无法获得关键点的实际能耗信息,不能进一步提出节能计划。有效地减少能耗,基于无线传感器网络能源消耗监测系统通过旧校区的建设,实时监测能源消耗数据,优化节能工作,适合大多数高校,也可以促进企业、居民社区为节能工作,具有良好的市场前景。

5.2 技术合理性

目前,随着现代互联网技术,传感器技术应用和网络计算机技术等的持续快速健康发展,通过互联网添加各种硬件处理设备技术和网络传感器技术,监控设备数据就可以快速通过移动互联网直接上传到服务器。能源及消耗计量管理的部门工作人员可以随时通过宽带互联网连接访问的任何计算机电脑或手机,登录能源和消耗管理网站,通过计算机监控查询系统还可以随时查询运行数据信息并准确分析实际能量消耗。

6 结论

基于无线传感器网络能耗监测系统在网络中使用先进的无线传感器,并实时监控数据。通过互联网上传到服务器,高校能源监管部门可以通过任何接入方式登录能耗监测系统,进行能耗数据查询,能源消耗分析和其他操作,并完全实现能耗监控系统。本系统采用总线技术,设备可以共享,成本低,并且在建设中对现有建筑破坏程度小,施工强度低、布线较少,维修量小。

本系统可以实时监测和分析旧校区的能源消耗,利用现代化管理手段进行能源配额管理,逐步培养教师和学生的节能意识,虽然实现建设节能校园的目标需要一定的时间,随着传感技术和网络技术的应用也将会尽快实现该目标。

猜你喜欢
能耗服务器无线
EnMS在航空发动机试验能耗控制中的应用实践
大师操刀,通勤首选 KEF Mu3真无线降噪耳机
《无线互联科技》征稿词(2021)
探讨如何设计零能耗住宅
水下飞起滑翔机
无线追踪3
日本先进的“零能耗住宅”
2018年全球服务器市场将保持温和增长
无线追踪
用独立服务器的站长注意了