王剑,靳军,高崇龙,刘明,王柯,罗正江,刘可,任影
1.中国石油新疆油田分公司实验检测研究院,新疆克拉玛依 834000
2.东北石油大学非常规油气研究院,黑龙江大庆 163318
3.中国石油大学(北京)克拉玛依校区石油学院,新疆克拉玛依 834000
4.东北石油大学地球科学学院,黑龙江大庆 163318
准噶尔盆地南缘(简称准南)作为北天山山前自中生代开始形成的陆相多旋回叠合盆地,其内部发育成排成带的构造带和多套储集层系,特别是作为整个准噶尔盆地中发育烃源岩层系(包括二叠系、三叠系、侏罗系、白垩系和古近系)最多的地区,其油气资源量巨大[1-3]。依据准噶尔盆地南缘发育的3 套区域性泥岩盖层可将其内部油气勘探目的层系划分为上、中、下3 个成藏储盖组合,其中下组合是指由侏罗系、下白垩统清水河组储集层与白垩系吐谷鲁群泥岩盖层所形成的储盖组合[4-5]。而准噶尔盆地南缘早期油气勘探以中、上组合为主要对象,但自2008 年开始下组合勘探逐步深入。2019 年在位于南缘西段四棵树凹陷内的高探1 井清水河组中首次获得重大油气突破,揭示了南缘西段下组合良好的勘探潜力与前景[6-7]。但目前下组合勘探程度仍然很低,资料较为匮乏,使得作为油气成藏关键要素的储层宏观、微观特征及成因仍存在诸多争议。物源条件作为分析储层区域展布和沉积环境的重要线索一直是储层研究的基础,同时也对原型盆地和古地理重建等具有重要意义[8-10]。本文利用准噶尔盆地南缘西段21 口钻井取心及3 条野外露头剖面资料,在对下组合侏罗系—白垩系储层碎屑矿物组分、砾岩砾石成分、重矿物、古水流、地层岩性比例等特征对比分析基础上,结合区域地质资料和前人相关成果,系统分析各地层组储层物源及其演化特征,并探讨储层形成的沉积背景,为准南西段侏罗系—白垩系规模储层预测和评价提供科学依据,同时对下组合油气后备储量提升具有重要的指导意义。
准噶尔盆地南缘在构造位置上属于北天山山前冲断带(图1),受控于晚海西、印支、燕山、喜马拉雅多期构造运动的影响,其构造特征及演化过程极其复杂[2,11-12]。根据构造特点及差异性,可将南缘划分为西、中、东三部分,其中准南西段指红车断裂以西的区域,南邻伊林黑比尔根山,北接车排子凸起,主要包括四棵树凹陷和齐古断褶带西部(图1)。南缘西段经历了中生代压扭走滑和新生代挤压两期构造演化,并形成了艾卡构造带和高泉构造带两个主要构造单元,且相较于南缘其他地区而言西段变形历史更为复杂,构造样式和组合也更为多样[3,13]。
准南西段侏罗系—白垩系地层除不发育上侏罗统喀拉扎组外其余地层较为齐全,同时还发育有石炭系、二叠系及三叠系地层(图1)。其中侏罗系地层以发育扇三角洲—辫状河三角洲—河流湖沼—滨浅湖成因的(砂)砾岩、砂岩、泥岩及煤层为特征,而下白垩统清水河组则表现为辫状河三角洲砂砾岩、砂岩及滨浅湖—半深湖暗色泥岩沉积[14-16]。但值得注意的是,南缘西段石炭和二叠系地层为典型的火山岩—火山碎屑岩层系,特别是在石炭系内部凝灰岩大量发育,此外还可见安山岩和玄武岩[17-18]。上述特征岩性的发育可为分析下组合物源演化提供重要线索。受控于多期构造活动特别是车—莫古隆起的演化影响,在南缘西段下组合内可识别出4 个区域性不整合界面,即八道湾组与下伏三叠系、头屯河组与西山窑组、齐古组与头屯河组及清水河组与齐古组[19]。区域上,准南西段潜在物源区可能包括西北缘的扎伊尔山、南部的北天山(伊山)和中天山[16,20]。
图1 准噶尔盆地南缘西段构造位置及发育地层特征(据文献[1,4]修改)Fig.1 Tectonic location and stratigraphic character of the western part of the southern Junggar Basin(modified from references [1,4])
本次研究数据主要来源于钻井取心资料、野外露头资料和前期文献资料。其中侏罗系—白垩系砂岩碎屑矿物组分分析主要采用显微镜分析统计法,对砂岩样品中的单晶石英颗粒Q、单晶长石颗粒F、岩屑颗粒R、总石英颗粒Qt(包括单晶石英颗粒和多晶石英碎屑)及不稳定岩屑颗粒L的各相对含量进行统计计算,其中单个薄片完成统计300~400 个颗粒。砾岩砾石成分分析数据来源包含野外露头砾岩样品及钻井岩心砾岩样品的镜下薄片砾石成分鉴定数据两个方面。而古水流分析则主要依据前期文献[21]中针对侏罗系—白垩系野外露头剖面实测所获得的古流向数据。此外,各钻井点位的地层岩性比例数据主要分砾岩、砂岩(细砂—粗砂)、粉砂岩、泥岩及煤层这5 大类主体岩性进行地层厚度录井数据的统计和计算。除上述常规数据来源及分析方法外,针对研究区侏罗系—白垩系储层大量样品内,类型众多且含量差异较大的重矿物鉴定数据,本次研究重点采用聚类分析的方法确定储层内多种重矿物间的组合关系,划分组合类别。而聚类分析是按照样本或变量之间相似程度或亲疏关系而进行的一种多元统计数学分类方法。根据分类对象的不同,聚类分析可分为R型和Q型两种聚类方法,其中R型聚类是分析同一样本中不同变量之间的亲疏关系进而对变量分类,而Q 型聚类则通过样本间同一或多个变量参数的对比,确定不同样本间的相似程度进而对样本进行分类[10,22-23]。据此,可将下组合各组地层作为独立样本而以其内部发育的不同重矿物及含量作为变量,通过R型聚类方法组合各重矿物类别,进而分析各组沉积期母岩性质。而Q型聚类可将不同井同一地层作为独立样本,通过聚类对比各独立样本内部变量,即重矿物类别及含量相关性,分析各井间的物源亲疏关系,判断同一地层各井间物源体系的相关性。
准噶尔盆地南缘侏罗系—白垩系储层以砂岩为主体,同时还包括一定比例的砂砾岩。通过对研究区下组合21 口取心井的岩石薄片数据统计分析(表1),结果表明:砂岩类型以长石岩屑砂岩、长石质岩屑砂岩和岩屑砂岩为主(图2a),岩屑含量高,成分成熟度低平均在0.27~0.58 之间,整体反映相对近物源的沉积环境。但相比而言,西山窑组成熟度最高,而清水河组成熟度最低(表1)。此外砂岩Dickinson Qt-F-L判别图解[26](Qt代表石英颗粒,包括单晶石英和多晶石英;F 代表单晶长石颗粒;L 代表不稳定岩屑颗粒)显示大部分样品点均落入再循环造山带物源区,但仍有部分样品位于火山弧物源区和陆块物源区(图2b)。由此可见,侏罗系—白垩系各组地层沉积期源区母岩成因较为多样,但仍以再循环的沉积岩物源为主。
图2 准噶尔盆地南缘西段下组合侏罗系—白垩系各地层砂岩成分及成因判别三角图(a)砂岩成分三角图(据文献[25]);(b)Dickinson判别图解(据文献[26],部分数据引自文献[27])Q=单晶石英含量,F=单晶长石含量,R=岩屑总含量,Qt=总石英颗粒(包括单晶石英颗粒和多晶石英碎屑)含量,L=不稳定岩屑含量Fig.2 Sandstone content and orign triangular diagram of different formations in the lower assemblage within the western part of the southern Junggar Basin(a)sandstone content triangular diagram (modified from reference[25]);(b)Dickinson discriminating diagram(modified from reference[26],some data from reference[27])
表1 准噶尔盆地南缘西段下组合侏罗系—下白垩统储层骨架碎屑成分、重矿物类型及相关分析参数特征Table 1 Skeletal clastic compositions, heavy mineral types, and related analysis parameters of lower assemblage Jurassic-Lower Cretaceous within the western part of the southern Junggar Basin
砾岩是临近物源区及其母岩性质的直观记录,其中砾岩砾石成分差异及其变化特征可反映不同基岩性质的山体可能发生的剥蚀和隆升过程[21,28]。通过对野外剖面和钻井砾岩砾石成分统计分析表明(表2):南缘西段下组合侏罗系—白垩系砾岩砾石成分整体以沉积岩系砾石为主,即包含泥岩、粉砂岩、中细砂岩、凝灰岩砾石,其平均含量至少占总体50%以上,最大可达90%以上,并以凝灰岩成分砾石为主(图3)。相比而言,结晶变质岩系砾石含量较少,但波动较大。上述现象说明南缘西段侏罗系—白垩系沉积期沉积岩物源区已构成物源的主体,其与由砂岩Dickinson源区判别图解所揭示的特征一致。值得注意的是,凝灰岩地层主要发育于石炭系内,因此砾岩中凝灰岩砾石含量的高低可从侧面反映早期石炭系地层被抬升剥蚀的剧烈程度,凝灰岩砾石含量越高则构造作用造成的石炭系隆升剥蚀程度越大。此外,结晶变质岩系砾石成分含量的高低可从侧面反映“老山”,特别是早古生代发育的岩浆岩及与构造有关的变质岩(如糜棱岩、脉石英等)山体,即中天山和扎伊尔山供源强度的大小。
图3 准噶尔盆地南缘西段下组合侏罗系—白垩系各地层砾岩砾石成分特征Fig.3 Gravel content of conglomerates in different formations in the lower assemblage within the western part of the southern Junggar Basin
表2 准噶尔盆地南缘西段下组合各地层砾岩砾石各成分平均含量Table 2 Average gravel content of conglomerates in different formations of the lower assemblage within the western part of the southern Junggar Basin
重矿物类型及其组合可反映母岩岩性、搬运距离、区域构造及气候条件等信息。因此在盆地源—汇系统分析中得以广泛应用[10,16]。准南西段下组合侏罗—白垩系储层内部共可鉴定出20 余种重矿物,包括:石榴石、锆石、电气石、金红石、磁铁矿、钛铁矿等。其中岩心观察可见黄铁矿常与碳酸盐胶结物伴生且晶体形态规则颗粒较大,属于成岩自生型重矿物因而不能反映物源条件[29-31]。此外,赤/褐铁矿多呈四方体或八面体粒状,并残存黄铁矿或磁铁矿假相,属再氧化成因,同样不能反映物源条件。在排除上述两类自生重矿物外,可将下组合储层陆源成因的重矿物按其稳定性差异进一步划分为稳定重矿物和不稳定重矿物两大类(表3)。
表3 准噶尔盆地南缘西段下组合储层重矿物组合特征及潜在源区Table 3 Heavy mineral association and potential provenance of the lower assemblage reservoir within the western part of the southern Junggar Basin
分别对准南西段21口井、3个野外剖面共计215个侏罗系—白垩系各组地层样品发育的陆源重矿物类型及含量进行R 型聚类分析,得到各组地层重矿物树型聚类图谱(图4)。由图4可知,当距离系数为23 时,准南西段下组合各组地层重矿物组合类型大致可区分为4 大类,即:1)以重晶石+绿泥石+榍石+电气石+磷灰石等为主的重矿物组合类型,这一重矿物组合多反映的是沉积岩类(包含火山碎屑岩及凝灰岩)母岩类型[10,28];2)以石榴石+绿帘石+磁铁矿+十字石等为主的重矿物组合类型,这一重矿物组合多反映的是变质岩类母岩类型[10,16];3)以锆石+电气石+磷灰石+黑云母+白钛石+锐钛矿等为主的重矿物组合类型,这一重矿物组合多反映的是中酸性岩浆岩母岩类型[8,10];4)以(钛)磁铁矿+铬铁矿+钛铁矿等为主重矿物组合类型,这一重矿物组合多反映的是基性岩浆岩类母岩类型[16,30]。由此可见,准南西段侏罗系—白垩系沉积期源区条件较为复杂,而这一复杂性与研究区南部的北天山和中天山及西北部的扎伊尔山母岩类型具有较好可对比性(表3)。此外,沉积岩类母岩重矿物组合的出现反映下组合沉积期下伏沉积岩系地层的抬升剥蚀,构造造山运动较为活跃。
图4 准噶尔盆地南缘西段下组合侏罗—白垩系沉积各类型重矿物含量R 型聚类图Fig.4 R-type cluster plot of heavy mineral content for deposits in the lower assemblage within the western part of the southern Junggar Basin
为进一步分析准南西段下组合不同组地层在区域上的潜在物源分区,在研究中首先利用不同井同一层位的全部样品各重矿物含量的算数平均值代表该层位重矿物组合类型和比重分配模式,绝大多数代表值的求取均有10 个以上样品点数据控制,基本可反映其整体特征和各井间的变化趋势。在此定性对比基础上,再次通过Q 型聚类方法对不同井同一层位重矿物类型及含量亲疏关系进行判断,确定区域可能的潜在物源分区(图5)。由图5可见,当距离系数为17 时,下组合沉积期可能存在过三支物源体系,同时区域内可出现混源特征。其中北部地区以艾2井和四参1井为代表,在各组地层沉积期均处于同一潜在物源体系,而南部地区则以四棵树剖面及高101 井区域和乌苏剖面区域为界可区分出两支潜在物源体系。相比而言,中部地区尽管缺少井资料,但推测可能为多支物源体系的混源区。值得注意的是,从八道湾组各井Q型聚类分析结果可见,乌苏剖面和卡8井位置可能处于同一潜在物源区,即卡8井与其距离更近的四参1 井和艾2 井重矿物组合反而存在更大差异,而在齐古组和清水河组沉积期整个北部地区均受控于同一潜在物源体系。上述现象除反映混源特征的存在外,还可从侧面反映下组合侏罗系—白垩系沉积期北部和南部物源体系可能存在此消彼长的关系。
图5 准噶尔盆地南缘西段下组合侏罗系—白垩系各井发育重矿物类型比例及重矿物含量Q 型聚类图Fig.5 The proportions of different kinds of heavy minerals and Q-type cluster plots of different wells in the lower assemblage within the western part of the southern Junggar Basin
由于南缘下组合侏罗系—白垩系研究程度较低,因此目前西段仅有三个野外露头剖面可获得侏罗系古水流相关资料[21],而从三个剖面早侏罗世及中晚侏罗世古水流流向变化(图6)可见:早侏罗世南缘西段南部以自南向北古流向为主,仅在乌苏剖面出现特殊的南西向古水流,相比而言中晚侏罗世各剖面除存在自南向北古流向外,均发育有来自北部物源的流向(即自北向南或南西向、南东向古水流)。上述现象揭示早侏罗世沉积期研究区南部以伊山(天山)为主要物源区,仅局部受北部物源干扰(例如乌苏剖面附近),而中晚侏罗世北部物源条件显著增强并可与南部物源呈并存状态,使得古水流方向较为复杂,造成研究区南部可能存在混源特征。值得注意的是,中晚侏罗世北部物源的增强可能与车—莫大型古隆起在这一时期开始隆升并遭受剥蚀有关[19,32]。
图6 准噶尔盆地南缘西段下组合剖面早侏罗世(a)及中晚侏罗世(b)古水流方向(数据引自文献[21])Fig.6 Palaeocurrent direction identified within outcrops in the lower assemblage within the western part of the southern Junggar Basin (data from reference [21])
地层岩性比例特征及其变化是分析陆源物源供给强度和沉积环境的重要依据之一,因此对南缘西段不同钻井下组合侏罗系—白垩系各地层内不同岩性比例进行计算统计(图7),并据此推断各沉积期物源条件及其演化差异,但目前研究区钻遇下组合的钻井资料仍相对有限。
其中八道湾组除在研究区北部艾2 井及南部高101—托6 井发育比例较大的砾岩和砂岩外,其余钻井均以泥岩和粉砂岩占比最大(图7),反映沉积期南北向供源并向中部汇聚的特点。但三工河组整体以泥岩占比最大,仅部分钻井出现一定比例的砂岩和砾岩,反映沉积期湖水范围扩大,砂(砾)岩分布整体向源区后退,物源供给能力减弱的特点。而中侏罗统西山窑组和头屯河组在研究区各井中不同岩性比例变化较大(图7),反映沉积期物源供给量及供给强度存在较大波动,并且研究区可能不存在统一的沉积中心,使得各岩性分布区域相对分散。相比而言,上侏罗统齐古组在研究区整体以砂岩和砾岩为主(图7),仅在南部个别钻井中发育比例较高的泥岩,这一现象说明齐古组沉积期研究区整体物源供给强度增大,特别是北部物源供给量大幅度增大,使得各井砂岩、砾岩占比最大,但南部物源相比存在一定程度的减弱,水体存在加深现象,使得细粒泥岩仍占据一定比重。下白垩统清水河组沉积期相较于上侏罗统存在大幅度物源供给强度和供给量减弱的特点,湖水范围和深度存在一定程度扩大,使得各钻井泥岩及粉砂岩比例大幅度增加,仅个别钻井内部出现一定比例的砂岩和砾岩(图7)。
图7 准噶尔盆地南缘西段下组合不同井各组地层岩性比例特征Fig.7 Lithologic proportion characteristics of different formations in the lower assemblage within the western part of the southern Junggar Basin
准噶尔盆地南缘西段是盆地西北缘构造体系与南缘构造体系的交会区,经历了多期构造运动的叠加,构造及山体演化历史复杂,造成下组合沉积期物源体系具有一定的多变性。准南西段盆山格局始于石炭纪,古准噶尔地体周缘洋盆逐渐闭合,碰撞造山使得盆地南缘古天山和西北缘扎伊尔山以及盆地内部车排子凸起形成[33-35]。二叠纪,准噶尔盆地南缘西段进入后碰撞伸展演化阶段而形成裂陷盆地,但晚二叠世由于周缘造山带强烈挤压挠曲盆地南缘及西北缘逐渐进入陆内前陆盆地演化阶段[12,36]。三叠纪开始,整个准噶尔盆地南缘处于相对稳定的发展阶段,盆地整体以坳陷沉降为主。这一时期,北天山隆起幅度和隆起范围相对较小,盆地范围大,其南缘边界可达中天山地区,而天山主分水岭可达南天山一带[9,14,17]。相比而言,南缘西段北部车排子凸起及西北缘山体在三叠纪仍继承了二叠纪的挤压背景,发育多期冲断活动,致使车排子凸起南侧大量抬升[37-38]。
早侏罗世沉积期(即八道湾组和三工河组沉积期)南缘西段整体继承了晚三叠纪沉积背景,但晚印支运动仍造成天山的第一期隆升,造成八道湾组底砾岩的发育及其与三叠系间的角度不整合现象[9,19]。由地层连井剖面可见(图8),整体上八道湾组和三工河组地层厚度区域范围内相对稳定,仅向研究区北部车排子地区发生减薄,说明沉积期构造相对稳定,区域地貌高差相对较小。但低成熟度的砂岩组分说明整个南缘西段下侏罗统沉积期距源区相对较近(图2a、表1),而砂岩Dickinson 源区判别图解和砾岩砾石成分揭示再循环的沉积岩山体仍作为主要的物源供应(图2b),但石炭系凝灰岩砾石成分与中上侏罗统地层相比比重较小(图3、表2),反映这一时期山体隆升幅度较小,石炭系并未大量剥蚀,处于中低山状态。而重矿物组合特征(图4)揭示沉积期物源除受控于沉积岩山体外,还受扎伊尔山及中天山的结晶变质岩系山体的影响。结合研究区不同部位古水流和重矿物组合特征(图5,6),可推断早侏罗世沉积受南部物源(中天山及北天山)和北部物源(扎伊尔山和车排子凸起)共同控制,但北部物源供源能力相对较强,甚至可达南部地区,并同时存在混源现象。由于地层展布相对平稳,因此南缘西段可能仅存在局部的小规模沉积中心,而整体上区域汇水区仍位于南缘中段山前昌吉凹陷部位。这一时期,研究区整体处于河流—三角洲沉积体系,八道湾组煤层发育,但三工河组泥岩比例明显增大(图7b),发生一期大范围的湖侵作用。但值得注意的是,早侏罗沉积地层内部除凝灰岩砾石含量较低外,重矿物ZTR 指数和重矿物稳定系数整体优于中晚侏罗世沉积(图9),反映这一时期沉积原始边界即周缘山体隆升位置较中晚侏罗世应更为扩大,即南部边界更南,北部边界更北(图10a,b)。
图8 准噶尔盆地南缘西段下组合地层连井剖面地层发育特征Fig.8 Connecting well sections show the stratigraphic characteristics of the lower assemblage within the western part of the southern Junggar Basin
中侏罗世沉积期(即西山窑组和头屯河组沉积期)为整个准噶尔盆地构造背景发生重大转变的时期,受控于周缘大型走滑断裂带走滑压扭作用影响,盆地内部NE—SW 向大型车莫古隆起逐渐发育,并在西山窑组沉积期出露水面并逐渐扩大,造成研究区北部车排子凸起范围也随之扩大[19,32,39]。从区域连井地层展布特征来看(图8),西山窑组和头屯河组地层发育呈现出不均衡性,地层厚度变化较大,特别是在卡字号井区附近及托6 井区存在地层的超覆和剥蚀现象,剥蚀层位甚至可达三工河组。这一时期物源仍以再循环沉积岩山体为主(图2b),且砾岩中凝灰岩砾石含量较早侏罗世沉积地层增加(表2、图3),反映早期石炭系地层的进一步隆升剥蚀。但重矿物组合(图4)显示沉积物源仍受中天山及扎伊尔山结晶变质岩系的影响,并且南部可能存在两支物源体系。古流向特征显示研究区南部各部位均存在自北向南的古流向(图6),说明这一时期由于车排子凸起隆起幅度增大造成北部物源供源能力格外加强,且整个研究区各井地层岩性变化较大(图7c,d)不存在统一的沉积中心,北部物源体系可完全到达研究区南部。值得注意的是,中侏罗统西山窑组和头屯河组地层重矿物ZTR 指数和稳定系数仍相对较高(图9),甚至较下侏罗统呈现增加趋势,这一现象说明中侏罗世沉积期尽管盆地内部古隆起演化剧烈但盆地边缘山体并未出现大范围隆升和推覆活动,物源远近程度及沉积背景仍与早侏罗世类似,发育河流三角洲体系(图10c,d),特别是西山窑组仍发育规模煤层。但头屯河组沉积后全区可能存在大范围的暴露和剥蚀过程并可形成典型的沟谷—残丘地貌[40-41],使得头屯河组与上侏罗统齐古组间存在一区域性角度不整合面。
图9 准噶尔盆地南缘西段下组合各地层重矿物ZTR 指数和重矿物稳定系数变化特征ZTR指数=(锆石含量+金红石含量+电气石含量)/透明重矿物总含量×100%,计算公式据文献[24]Fig.9 Variations in ZTR and stability coefficient of heavy minerals from the lower assemblage within the western part of the southern Junggar Basin ZTR index=(zircon content+rutile content+tourmaline content)/total content of transparent heavy minerals×100%,calculation formula from reference[24]
晚侏罗世研究区仅发育齐古组沉积,而这一时期车莫古隆起区沟谷—残丘地貌处于河流—三角洲沉积体系的回填阶段。从区域连井地层剖面可见齐古组地层整体展布呈现填平补齐特征,即在隆起区或残丘区地层沉积厚度薄,而沟谷或洼陷区沉积厚度大,且地层顶界近平坦(图8)。齐古组凝灰岩砾石成分进一步增加反映再循环沉积岩山体进一步隆升(图3、表2)。但值得注意的是齐古组重矿物ZTR 指数和稳定系数(图9)较早中侏罗世沉积存在一明显的降低,揭示源区距离明显缩短,南缘西段周缘沉积边界萎缩(图10e)。因此齐古组沉积期开始,以石炭系沉积岩为主的南缘北天山和西北缘前端车排子凸起北部地区隆起幅度和隆起范围大幅度增加,使得中天山及扎伊尔山结晶变质岩系山体供源路径受阻,造成结晶变质岩系砾石成分也随之大幅度降低。而古流及重矿物组合显示齐古组沉积其仍受控于北部物源和南部物源,其中南部物源可区分为两支(图5,6)。而地层岩性比例特征显示(图7e),北部沉积砂砾岩比例较大,而南部沉积泥岩含量相对较高,因此南部物源距离相对可能更远,沉积中心也更趋向于研究区南部,特别是独山1 井区,地层厚度明显加大(图10e)。
早白垩世清水河组沉积期,由于经历了齐古组填平补齐的沉积作用以及齐古组沉积后大约7Ma的沉积间断和夷平化(即缺失喀拉扎组地层)过程[35,42],使得清水河组沉积期古地貌呈准平原化状态,区域连井剖面显示地层厚度稳定(图8)。而清水河组底砾岩砾石成分中结晶变质岩系砾石大幅度降低,凝灰岩砾石含量较侏罗系各组地层均更高(表2、图3),且地层重矿物ZTR指数和稳定系数较低(图9),上述现象说明清水河组沉积期南缘西段周缘山体隆起幅度较侏罗系更大,沉积范围呈持续缩小状态。但重矿物组合(图5)显示除北部统一物源外,南部仍发育两支物源。值得注意的是,清水河组除发育底部砾岩和底部砂岩外,整体以湖相泥岩沉积为主(图7f),全盆地发生区域性大规模湖侵作用,沉积中心整体位于昌吉凹陷[32,36](图10f)。
图10 准噶尔盆地南缘西段侏罗系—下白垩统各沉积期物源沉积体系演化特征Fig.10 Provenance and sedimentary system evolution during the Jurassic and lower Cretaceous within the western part of the southern Junggar Basin
(1)准噶尔盆地南缘西段侏罗系—白垩系砂岩成分成熟度低,距源区距离相对较近,且主体源区属再循环沉积岩造山带,而砾岩砾石成分中来源于石炭系地层的凝灰岩砾石含量自八道湾组至清水河组不断增大,反映早期沉积地层的不断隆升剥蚀状态。
(2)准噶尔盆地南缘西段侏罗系—白垩系各地层重矿物组合显示沉积期源区条件较为复杂,既存在沉积岩系母岩类型也发育变质岩系及岩浆岩系(酸性和基性)母岩类型,且沉积期整体受控于扎伊尔山及其前端车排子凸起相关的北部物源和天山相关的南部物源。
(3)准噶尔盆地南缘西段侏罗系—白垩系各地层古水流及不同位置岩性比例变化特征揭示沉积期研究区内部存在混源现象,且不同时期南北向物源供给强度和供给量存在波动,而北部物源体系在中晚侏罗世供源强度增大,整个研究区在下组合沉积期可能不存在统一且稳定的沉积中心。
(4)整体而言,下侏罗统沉积期南缘西段源区即沉积边界距现今最远,沉积物源背景相对稳定,而中侏罗统沉积期受控于车莫古隆起演化北部物源供源能力得以加强,但主体沉积边界可能并未发生较大改变。自上侏罗统沉积期直至下白垩统清水河组沉积期研究区沉积边界发生明显收缩,即沉积岩山体隆升幅度和范围增大,并对结晶变质岩系源区山体供源起到阻隔作用。