隋芳茜,李杰雨,杨山景,姜海梅,杨诗宇,李凌军,蔡晓青
基于刺激响应及靶向因子修饰载多烯紫杉醇纳米递送系统的研究进展
隋芳茜,李杰雨,杨山景,姜海梅,杨诗宇,李凌军*,蔡晓青*
山东中医药大学药学院,山东 济南 250355
多烯紫杉醇是天然抗肿瘤药物紫杉醇的衍生物,具有广谱、高效的抗肿瘤活性,但其溶解性低、组织分布广,限制了临床应用。刺激响应型纳米递送系统凭借其载体材料结构的多元性、环境敏感释药性,有效改善了多烯紫杉醇这些缺陷,在此基础上,修饰靶向因子可使药物靶向递送,改变药物的组织分布,进一步提高抗肿瘤效果。综述近年多烯紫杉醇刺激响应型及靶向因子修饰纳米递送系统的研究进展,提出其发展面临的挑战及未来趋势等关键问题,以期为多烯紫杉醇在抗肿瘤药物的研究开发方面提供参考。
多烯紫杉醇;刺激响应;靶向因子;抗肿瘤;纳米递送系统
世界卫生组织国际癌症研究机构的最新数据显示,2020年全球新发癌症病例1929万,其中死亡病例996万,癌症负担不断上升。结合调节免疫、未病先防、增效减毒等中医药基础理论,多糖类、萜类、生物碱类等天然抗肿瘤药物通过抑制肿瘤增殖、诱导肿瘤细胞凋亡等发挥抗肿瘤作用,但很多天然抗肿瘤药物存在选择性差、易多药耐药、生物利用度低等问题[1]。多烯紫杉醇(docetaxel,DTX)是萜类抗肿瘤药紫杉醇的衍生物,以其广谱抗肿瘤活性备受研究者关注,但低溶低渗、生物分布广、不良反应大的特点限制其临床应用[2]。
靶向递药系统凭借其载体材料结构的多元性、修饰因子的多样性,可有效改善化疗药物缺陷,提高药物疗效,在肿瘤治疗中显示出巨大潜力。未经修饰的脂质体、纳米粒、胶束、微囊等传统递药系统,主要借助非特异性的肿瘤高通透性和滞留效应[3],使药物富集于肿瘤部位,但药物极易在肝、脾、肾等组织中蓄积。通过响应肿瘤微环境内源性刺激(低pH[4]、强还原性[5]、过表达的酶[6]等)及外源性刺激(光、超声、温度等)[7-8]设计纳米递送系统可以实现药物在病灶部位快速释放,此类递药系统已有大量文献报道。此外,将一些靶向因子(如抗体、配体及前体药物等)利用物理或化学方法连接到载体表面可以进一步使药物定向输送到靶点发挥药效[9-10]。
当前基于新型靶向递药系统的研究主要集中在创新性的载体材料[11]、不同刺激响应[12]和不同修饰因子[13]等方面,故本文着重介绍DTX刺激响应型纳米药物递送系统(nanoparticles drug delivery system,NDDS)的研究进展,分析其功能机制(图1)及体内外抗肿瘤效果,并对常用于修饰纳米载体的靶向因子进行总结,以期为DTX新型制剂的研究开发提供思路。
图1 DTX-NDDS的刺激响应行为
肿瘤细胞糖酵解产生大量乳酸[14],造成人体正常组织(pH 7.4)与肿瘤组织(pH 6.5~7.2)的pH环境差异,细胞内细胞器中也存在pH梯度,如溶酶体的pH值在4.5~5.5[15],这种pH差异在提高纳米制剂靶向性方面发挥了重要作用。pH响应一方面可以利用基团质子化使纳米材料化学构象改变而释放药物,如聚(β-氨基酯)、壳聚糖等。聚(β-氨基酯)可在低pH条件下胺基质子化释放药物,在pH响应材料中应用较早[16]。壳聚糖同样具有氨基质子化作用,且成本低,具有低免疫原性和良好的生物降解性[17]。还有报道基于两亲性材料聚乙二醇-聚(ω-十五内酯-共--甲基二乙醇胺-共-2,2-硫代二乙醇)制备DTX胶束,在低pH刺激下,胶束核心中硫醚基团质子化而响应性释药[18]。另一方面NDDS通过酸敏感的化学键断裂实现pH响应,如腙键、肼键[19]等。有研究以低聚倍半硅氧烷为刚性核,将DTX通过腙键连接到接枝物上,继而包载入刚性核中制备NDDS,在酸性溶酶体环境下,DTX被刺激释放[20]。
为进一步利用pH响应性增强NDDS靶向释药,研究者结合纳米粒表面电性制备出基于pH响应的可电荷反转的NDDS[21]。Li等[22]以2,3-二甲基马来酸酐改性-(2-羟丙基)甲基丙烯酰胺共聚物作为外壳,以正性介孔二氧化硅纳米颗粒(mesoporous silica nanoparticle,MSN)为核,构建逐级pH响应的载DTX杂化纳米粒,外壳上的氨基发生酰胺化反应而形成的β-羧酰胺在生理pH下稳定,当pH值低于6.8时可水解,在共聚物屏蔽下,纳米杂化材料的半衰期(1/2)达到裸MSN的1.93倍。还有研究依赖于聚合物的可逆质子化/去质子化实现pH响应的电荷转换以降低体内免疫清除[23],为pH响应的载DTX电荷反转型纳米粒研发提供一定参考。
癌细胞(2~10 mmol/L)和正常细胞基质(2~20 μmol/L)之间的还原型谷胱甘肽(glutathione,GSH)浓度存在显著差异,氧化还原电位成为细胞内释药的有效刺激。近年来,利用GSH响应的NDDS展现出较好的发展前景[24-25]。
二硫键在高还原性肿瘤环境中会发生断裂而迅速释放药物,目前关于二硫键载体的插入和合成方法已较为成熟[13,26],故二硫键已被广泛应用于构建DTX还原响应型纳米载体。有报道显示在β环糊精-杯芳烃巨型两亲分子中插入二硫键,自组装成纳米球或纳米微囊用以包裹DTX,基于二硫键还原响应的药物释放显著增强了DTX对不同肿瘤细胞的毒性[27]。Li等[28]通过含有二硫键的半胱胺修饰DTX制备DTX前药,而后进一步以二硫键构建两亲性聚合物硫酸软骨素-ss-DTX对前药进行包载制备复合纳米粒,其在还原和非还原条件下,DTX在96 h的体外累积释药量分别达到62.5%和50.0%,细胞摄取实验中,发现C-6标记的复合纳米粒主要存在于乳腺癌MCF-7细胞的胞浆中,说明还原响应改善了DTX靶向性,有助于提升DTX与微管蛋白的结合效率。
除二硫键外,还有其他化学键应用于氧化还原响应,不同化学键对氧化还原响应的敏感性及对肿瘤治疗的潜力也有所不同。Zuo等[29]分别以二硒键、二硫键或碳化二键设计了3种DTX二聚体前药,自组装为纳米粒。研究发现二硒键纳米粒的体外氧化还原响应释放弱于二硫键纳米粒,但以二硒键纳米粒处理的乳腺癌4T1细胞内活性氧(reactive oxygen species,ROS)水平更高,进一步促进DTX释放,使其表现出比二硫键纳米粒更强的细胞毒性。结合药动学研究,3种前药纳米粒组总DTX的药-时曲线下面积分别是泰索帝组的28.2、12.2、23.3倍,说明二硒键更能提高纳米粒的胶体稳定性,延长血液循环时间,但目前关于二硒键的研究尚少,还需进一步深入研究。
为进一步增强DTX治疗效果、发挥协同作用优势,基于氧化还原响应的联合治疗已有不少研究。Conte等[30]制备氧化还原响应型纳米粒用于DTX和核酸TUBB3 siRNA的联合递送,相比游离形式siRNA和非氧化还原响应型纳米粒,其在还原条件下表现出更高的siRNA细胞内化能力,明显降低β-微管蛋白的表达,DTX纳米粒与DTX/TUBB3纳米粒的半数抑制浓度(IC50)分别为79、6.5 μg/mL,证实了共载纳米粒良好的协同作用。Li等[31]以二硫键连接制备DTX-双氢青蒿素纳米复合物,由纳米颗粒的溶胀和侵蚀以及共轭物二硫键的断裂控制两药的释放,其能显著促进细胞早期凋亡,诱导细胞阻滞于G0/G1期。
ROS是氧的不完全还原产物,包括羟基自由基、超氧阴离子、过氧化氢等,线粒体代谢是其主要来源[32]。由于肿瘤组织血管供应氧气含量不足以支撑肿瘤细胞正常代谢,致使肿瘤部位存在缺氧区,继而导致癌细胞(高达1×10−4mol/L)中的ROS水平远高于正常组织(≈20×10−9mol/L)[33]。利用肿瘤组织固有的高ROS环境,ROS敏感的连接物或强还原性载体,通过ROS响应裂解选择性快速释药[34-35]。研究表明,DTX本身可通过促进ROS产生来诱导肿瘤细胞凋亡[36-37],辅以ROS响应,将有助于快速选择性释药。Zhu等[38]开发了基于维生素E的载DTX强还原纳米系统,体外释药实验显示,其在肿瘤环境高ROS水平下DTX的释放量接近29%(而生理条件下约10%);在体内释药实验中,由Förster共振能量转移分析发现,相比正常器官,该纳米系统在肿瘤中可更快地释药,在肿瘤部位的DTX积聚明显高于泰索帝组。
由于肿瘤细胞的恶性增殖、转移及生理代谢紊乱,多数肿瘤的发生都伴随着酶异常表达,如基质金属蛋白酶(matrix metalloproteinases,MMPs)、组织蛋白酶B、透明质酸酶、分泌性磷脂酶A2、碱性磷酸酶、氧化还原酶等,这些酶的表达异常使得肿瘤与正常组织之间存在失调酶的差异,为酶刺激响应型治疗提供了基础[39-41]。酶刺激响应机制可概括为酶底物片段通过物理化学作用插入NDDS中,经血液循环到达肿瘤部位,暴露在高浓度酶环境中引发结构改变,通过纳米载体解体或偶联键断裂控制药物释放[42]。Zhang等[43]通过在-羟基丁二酰亚胺活化的甲氧基聚乙二醇与α-生育酚琥珀酸酯之间插入MMP-2/9可裂解寡肽,合成新型材料制备MMP-2/9敏感的DTX胶束。荧光共振能量转移结果表明,该敏感胶束能被MMP-2/9成功切割,且与不敏感胶束相比,其在纤维肉瘤HT1080细胞(MMP-2/9过表达)中的摄取量增加了1倍。
当前外源性刺激响应型NDDS已取得很大进展,尤其光热响应、超声响应等具有高时空分辨率的刺激响应型控释NDSS备受关注。
肿瘤部位深层恶性细胞的不可及性和肿瘤复发的不可控性是传统癌症治疗面临的重大挑战[44],光响应型NDDS以光热治疗、等离子体光热治疗、光动力疗法等为前提,可用于局部治疗恶性肿瘤,并且治疗时间短、不良反应小,更有助于增强药物对肿瘤的靶向性,提高对肿瘤部位的穿透性。其常用载体材料包括Au、Ag、Pt等贵金属纳米颗粒,石墨烯、碳纳米棒等碳类材料,CuS、ZnS等金属与非金属化合物,吲哚菁绿、普鲁士蓝等有机染料物质。DTX不是光敏性药物,因此载DTX的光响应型NDDS常与光热治疗、光动力疗法相结合发挥协同抗肿瘤作用[45-46]。
2.1.1 光热疗法 肿瘤细胞与正常细胞的热耐受性不同,光热疗法作为一种非侵入性治疗手段会导致肿瘤中的DNA损伤和蛋白质变性,可利用具有光热转换效率的载体材料负载DTX,在近红外激光刺激下,一方面使光能转换为热能,利用热损伤引起肿瘤消融,另一方面控制肿瘤部位DTX的释放以发挥药效杀死细胞[47]。
CuS纳米粒子是一种新兴的光热剂,具有生物相容性、易制备性、不溶性和低成本等特点,其由于Cu2+离子的d-d能带跃迁而具有稳定的近红外吸收特性。Poudel等[48]构建了CuS纳米平台负载DTX,并进一步包裹共轭聚合物-多肽用于靶向化疗-光疗。体内外研究表明,该纳米系统的增强吸收和近红外响应行为可增强药物释放效率、促进光热消融并增强ROS的产生,并且该系统表现出较高的生物安全性。Su等[49]报道了一种附着于脂质双层上的海绵状碳材料,其中脂质双层以石墨烯纳米片为支撑,在近红外光照射下可释放出DTX、气化的全氟己烷和高热,抗肿瘤效果显著。进一步通过蛋白质/红细胞膜封端的碳/二氧化硅纳米微球(red blood cell-membrane enveloped nanosponge,RBC@NS)递送石墨烯量子点和DTX,在远程运动蛋白质/红细胞膜的介导下,经红外处理的RBC@NS在靶点的DTX有效聚集量约是未经红外处理的NS的8倍。抑瘤率实验中发现,单纯化疗或光热治疗组易出现肿瘤复发,而靶向RBC@NS结合红外照射组前10 d内显著抑制肿瘤生长,且56 d内无肿瘤复发[50]。
2.1.2 等离子体光热治疗 等离子体纳米结构由于等离子体共振而具有强光吸收,金基纳米结构属于等离子体纳米结构,其稳定性高、毒性低且有助于肿瘤摄取[51]。Villar-Alvarez等[52]以人血清白蛋白/壳聚糖纳米粒包裹游离DTX和阿霉素修饰的金纳米棒,嵌入的金纳米棒在近红外光刺激下,可对DTX进行独立的部分释放控制,结合等离子体光热治疗,DTX纳米粒使单次低剂量照射后对肿瘤细胞的杀伤率接近90%。Zhao等[53]将DTX和NH4HCO3负载到表面包覆有金纳米壳的热敏脂质体中,在808 nm激光照射下实现了药物的时空可控释放。
2.1.3 光动力疗法 光动力疗法的选择性主要依赖于光敏剂在肿瘤微环境中的选择性积聚和局部照射。光敏剂主要通过接受特定波长的激光照射产生ROS,利用化学损伤抑制肿瘤。光动力疗法尤其适应于对抗多药耐药及缺氧相关的肿瘤治疗[54-55],Jiang等[56]在改进的纳米组装体中共载DTX和光敏剂维替泊芬,同时修饰肿瘤血管生成靶向肽以提高肿瘤靶向效率,激光作用下由靶向纳米粒处理的细胞几乎无管状结构形成,更能有效抑制血管生成。
相比pH响应型与氧化还原响应型NDDS而言,目前载DTX的光响应NDDS研究较少,具有较大发掘潜力。经过一系列初步研究可知,以光响应为基础的化疗方法是一种较为可行的肿瘤消融方式,有助于提高抗肿瘤效果,降低肿瘤穿透难度,但高功率激光也会造成正常组织的光损伤,其安全性需进一步深入研究。
当超声刺激作用于体内组织时,机体会产生热效应、机械效应与化学效应,基于此,超声响应型NDDS凭借其高时空性、高穿透性、非侵入性渗透肿瘤组织和经济便捷的特点而被逐渐探索。
综合各方面文献资料发现,MSN等介孔纳米材料比表面积大、孔径均匀,可负载治疗药物,在超声响应的生物医学领域中应用广泛。作为经典介孔纳米材料,MSN本身无刺激响应性,当介孔体系引入药物后,若不及时加以封端,在体内循环时,极易造成药物泄漏而过早释放。因此,常在MSN孔隙入口处用适宜分子进行封端,一方面可避免药物过早释放,另一方面封端分子可响应某些刺激从MSN中脱落,进而实现药物的按时、按需释放[57]。超声响应型NDDS进行封端的分子通常具有几种特点:(1)利用热效应,在温度刺激下发生结构变化而脱落;(2)在超声刺激下间接产生大量ROS,刺激ROS敏感接头断裂而控释药物;(3)利用机械效应释放药物。目前基于DTX/MSN的超声响应型纳米粒研究较少,其对于DTX的利用价值有待进一步探索。
介孔二氧化钛纳米材料(mesoporous titania nanoparticle,MTN)同MSN类似,目前已应用到DTX-NDDS中。Shi等[58]开发了一种超声触发的β-环糊精封端的DTX-MTN药物释放系统,将β-环糊精通过ROS敏感接头连接到MTN外表面,发挥“门控”作用。一旦受到超声激发,MTN可产生大量ROS,一方面导致ROS敏感接头断裂,使β-环糊精分离释放DTX,通过检测超声诱导的DTX在肿瘤中的释放发现,纳米粒组超声前DTX质量浓度很低,而超声后DTX质量浓度显著升高,且较长时间高于1 μg/mL;另一方面,ROS诱导肿瘤细胞凋亡以协同发挥抗肿瘤作用。另已有多项研究证实,声动力疗法与DTX结合,在超声刺激下诱导ROS产生,利用ROS诱导一系列生化反应亦可抑制肿瘤细胞[59-62]。
除光热、超声等外源性刺激响应外,还有温度[63]、磁场[64]等外源性刺激型响应系统,也为DTX提供了有潜力的纳米平台。有研究合成了一种温敏型磁性水凝胶,其包载阿霉素(doxorubicin,DOX)、DTX及用于磁热刺激响应的氧化铁,该载药磁性水凝胶对三重阴性乳腺癌细胞株具有显著抗肿瘤活性[65]。
相比传统未功能化的NDDS,单一刺激响应NDDS的靶向性已得到一定增强,但其响应灵敏度、响应速度、物理化学靶向效果仍然有限,故研究者趋向于利用各种纳米材料或修饰组装,开发出不同功能组合的多响应型NDDS[18,66]。Chen等[67]制备了具有pH和氧化还原双重响应的载DTX纳米粒,其在PBS缓冲液(pH 6.5,10 mmol/L GSH)中药物释放显著增加,在增强肝癌HepG2细胞和SMMC 7721细胞药物摄取的同时,带正电的纳米粒子还促进细胞周期阻滞于G2/M期,增加细胞凋亡率。部分多响应型DTX-NDDS的载体结构与功能机制见表1。
尽管多重刺激响应型NDDS在一定程度上增加了药物靶向性,但单纯刺激响应型NDDS仍然是半选择性靶向病灶,为进一步增强靶向性,基于刺激响应的NDDS结合适宜靶向因子实现多重靶向性,成为近年来靶向制剂领域的研究热点[74-75]。目前一些配体,如糖类、配体、受体、适配子、肽、抗体等已被广泛用于肿瘤靶向。例如,叶酸是一种常见靶向因子,叶酸受体在癌细胞(乳腺、子宫和肺癌等)中过表达而在健康细胞中的表达降低,在兼具刺激响应及体内血液长循环等多功能的NDDS中,辅以叶酸修饰将大大增加其靶向性。Nie等[76]用氨基-聚乙二醇-叶酸和硼替佐米对载DTX的星形共聚物胆酸-聚丙交酯-聚乙交酯纳米粒进行包覆,形成靶向复合物,实现了NDDS主动靶向、pH响应、体内长循环和双重载药的多功能一体化。透明质酸是CD44受体的特异性配体,其修饰的纳米粒子可以通过CD44受体介导的内吞作用提高肿瘤细胞对纳米粒子的摄取效率。此外,透明质酸还是一种带负电的聚阴离子,可用于屏蔽正电性NDDS的正电荷,一定程度上减少NDDS的体内清除。Bai等[77]以聚酰胺-胺型树枝状大分子为药物载体,阿仑膦酸钠为骨靶向配体和破骨细胞抑制剂,透明质酸为肿瘤细胞靶向配体,制备了破骨细胞和肿瘤细胞双靶向纳米粒子,在治疗肺癌骨转移方面显示出巨大潜力。应用于DTX-NDDS的靶向因子见表2。
表1 多响应型DTX-NDDS的响应机制与体内外评价
Table 1 Response mechanism and in vitro and in vivo evaluation of multi responsive DTX-NDDS
纳米药物递送系统响应机制体内外评价文献 Au/Fe3O4/PVA-DTX(1)pH;(2)温度;(3)光(1)对乳腺癌MCF-7模型小鼠的抑瘤率达70%,安全性高;(2)有助于增强CT成像对比度68 DSPE-PEG-SS-PCL/DTX(1)ROS;(2)GSH(1)细胞毒性增强,诱导细胞凋亡,抑制细胞迁移和侵袭;(2)在荷前列腺癌的小鼠体内,抑制肿瘤生长,对主要器官无明显损伤69 PEG-PPMD/PEG-PCMD-DTX(1)pH;(2)GSH(1)低pH与GSH条件下,细胞毒性增强;(2)抑瘤实验中,显著抑制肿瘤生长70 PEG-PPMT/DTX(1)pH;(2)ROS(1)细胞对纳米粒的摄取效率增加;(2)纳米粒对荷CT-26肿瘤小鼠的抑瘤率在90%以上,同时对肝脏和肾脏等正常器官的毒性较小71 HA-DTX(1)酶;(2)pH;(3)GSH(1)表现出较高的细胞摄取率和肿瘤细胞凋亡率;(2)在荷瘤裸鼠体内,显著抑制肿瘤生长,循环时间长,药动学时间长,对器官毒性低19 CSCD-DTX(1)氧化还原;(2)酶(1)诱导细胞凋亡;(2)减少转移促进蛋白的表达(3)减少原位肿瘤体积和肺转移形成72 SP-DTX(1)pH;(2)氧化还原(1)细胞毒性增强,引起显著的微管聚集、G2/M细胞期停滞和细胞凋亡;(2)对PC-3/3T3移植瘤小鼠的抑瘤率达78.9%20 DTX/CA-PLGA@PDA/DOX-PEG-APT(1)pH;(2)温度;(3)光热(1)细胞毒性增大,细胞对纳米粒摄取显著增加;(2)延长药物半衰期,抑制肿瘤生长73
PVA-聚乙烯醇 DSPE-1,2-二硬脂酰-sn-甘油-3-磷酸乙醇胺 PEG-聚乙二醇 SS-二硫键 PCL-聚己内酯 PPMD-聚(ω-五癸内酯-co--甲基二乙胺-co-3,3′-二硫代二丙酸酯) PCMD-聚(己内酯-co--甲基二乙胺-co-3,3′-二硫代二丙酸酯) PPMT-聚(邻十五内酯-co--甲基二亚乙基胺-共-3,30-硫代二丙酸酯) HA-透明质酸 CSCD-硫酸软骨素-二硫键-脱氧胆酸 SP-双刺激响应型杂化聚合物纳米粒 CA-碳酸酐酶 PLGA-聚(乳酸-乙醇酸) PDA-聚多巴胺 APT-适配子AS1411
PVA-poly(vinyl alcohol) DSPE-1,2-distearoyl-sn-glycero-3-phosphoethanolamine-poly(ethylene glycol) PEG-polyethylene glycol SS-disulfide bond PCL-poly(caprolactone) PPMD-poly(pentadecalactone-co--methyldiethyleneamine-co-3,3′-dithiodipropionate) PCMD-poly(caprolactone-co--methyldiethyleneamine-co-3,3′-dithiodipropionate) PPMT-poly(-pentadecalactone-co--methyldiethyleneamine-co-3,30-thiodipropionate) HA- hyaluronic acid CSCD-chondroitin sulfate-ss-deoxycholic acid SP-dual stimuli-responsive hybrid polymeric nanoparticles CA-carbonic anhydrase PLGA-poly(lactic-co-glycolic acid) PDA-polydopamine APT-aptamer AS1411
表2 应用于DTX-NDDS的靶向因子
Table 2 Targeting factors applied to DTX-NDDS
靶向因子靶向部位文献 甘露糖配体四聚体植物凝集素刀豆蛋白A(concanavalin A,Con A)78 半乳糖配体去唾液酸糖蛋白(asialoglycoprotein,ASGP)受体79 T细胞受体人类白细胞抗原(human leukocyte antigens,HLAs)80 乙酸单羧酸转运蛋白1(monocarboxylic acid transporter 1,MCT1)81 S2.2适配子黏蛋白(mucin-1,MUC-1)53 适配子AS1411核仁素73,82 小分子靶向配体ACUPA; DUPA前列腺特异性膜抗原(prostate specific membrane antigen,PSMA)83-84 肿瘤血管生成靶向肽肿瘤血管内皮细胞的氨基肽酶N(aminopeptidase N,APN/CD13)56 T7肽血管生成素2(angiopoietin-2,Ang 2)、转铁蛋白受体(transferrin receptor,TfR)85-87 环状五肽FC131趋化因子受体4型(C-X-C chemokine receptor type 4,CXCR4)88 RVG29肽尼古丁乙酰胆碱受体(nicotinic acetylcholine receptor,NAchR)89 胃泌素释放肽胃泌素释放肽受体(gastrin-releasing peptide receptor,GRPR)90 AE147肽尿激酶型纤溶酶原激活剂受体(urokinase-type plasminogen activator receptor,uPAR)91 精氨酸-甘氨酸-天冬氨酸三肽序列整联蛋白avb392-93 西妥昔单抗表皮生长因子受体(epidermal growth factor receptor,EGFR)50,94-95 曲妥珠单抗人表皮生长因子受体2型(human epidermal growth factor receptor 2,HER2)96-97 嵌合小鼠/人抗体Tn抗原(N-乙酰葡萄糖胺-O-丝氨酸/苏氨酸,GalNAc-O-serine/threonine)98
多功能刺激响应型纳米粒具有粒径小,药物体内清除少、可控释放、靶向性高等优势。DTX作为天然药物紫杉醇的衍生物,抗肿瘤作用显著,关于其纳米制剂的研究从未停止,其制剂的研究方向是在“尽可能减少DTX体内清除、实现长效循环”的基础上,进一步提高DTX靶向性,增强药物入胞效率,以降低全身毒性。当前DTX纳米制剂结合纳米技术的基本理论及肿瘤组织生理代谢的新进展,聚焦于刺激响应的或靶向修饰的NDDS,可显著改善DTX溶解性低、靶向性差等理化缺陷,在增强DTX抗肿瘤活性,扩大其临床应用方面,具有显著优越性。
但刺激响应型纳米递药系统及有关修饰因子还存在许多亟待解决的问题:(1)功能化脂质体、聚合物纳米粒等虽然在纳米材料的辅助下提高了药物靶向性,但由于材料自身的限制性,载药量通常低于10%;(2)刺激响应型纳米制剂的响应速度低,限制了药物释放,导致药物疗效降低;(3)目前发现并研究应用的靶向因子类型众多,但大都存在靶向因子受体非肿瘤部位独有这一关键问题,降低了NDDS的主动靶向效率;(4)目前各类NDDS多停留在基础研究阶段,亟需更深入的制剂稳定性、安全性及毒理学研究为临床研究奠定基础;(5)在创新的DTX-NDDS成果转化方面,还需注意复杂材料、工艺带来的成本问题以及工业生产方面出现的设备及技术问题。
本文对DTX刺激响应型纳米药物递送系统及其修饰因子进行总结与分析,希望为DTX递药系统的进一步发展提供可行思路,相信随着纳米科技、高分子材料及靶向修饰因子的深入发展,NDDS将进一步提高肿瘤特异性响应程度,向高效低毒、高度靶向、功能一体化的方向发展。
利益冲突 所有作者均声明不存在利益冲突
[1] 魏秋红, 刘晓月, 王盼, 等. 抗肿瘤药物的分类和药效学研究进展 [J]. 医学综述, 2020, 26(18): 3707-3711.
[2] Sohail M F, Rehman M, Sarwar H S,. Advancements in the oral delivery of docetaxel: Challenges, current state-of-the-art and future trends [J]., 2018, 13: 3145-3161.
[3] Hashida M. Advocation and advancements of EPR effect theory in drug delivery science: A commentary [J]., 2022, 346: 355-357.
[4] Deirram N, Zhang C H, Kermaniyan S S,. pH-responsive polymer nanoparticles for drug delivery [J]., 2019, 40(10): e1800917.
[5] Li D D, Zhang R H, Liu G T,. Redox-responsive self-assembled nanoparticles for cancer therapy [J]., 2020, 9(20): e2000605.
[6] Li M Q, Zhao G K, Su W K,. Enzyme-responsive nanoparticles for anti-tumor drug delivery [J]., 2020, 8: 647.
[7] Bian T, Chu Z L, Klajn R. The many ways to assemble nanoparticles using light [J]., 2020, 32(20): e1905866.
[8] Huang J Z, Zhang X Y, Fu K,. Stimulus-responsive nanomaterials under physical regulation for biomedical applications [J]., 2021, 9(47): 9642-9657.
[9] 陈仕红. 姜黄素和阿霉素双载药靶向脂质体的制备及抗肿瘤活性研究[D]. 武汉: 湖北中医药大学, 2019.
[10] 李继昭, 袁志强, 闫萌, 等. cRGD介导的pH敏感性紫杉醇羧甲基壳聚糖-软脂酸胶束 [J]. 药学学报, 2016, 51(4): 642-649.
[11] Yang Q, Xiao Y, Yin Y L,. Erythrocyte membrane-camouflaged IR780 and DTX coloading polymeric nanoparticles for imaging-guided cancer photo-chemo combination therapy [J]., 2019, 16(7): 3208-3220.
[12] Wang X W, Gu Y X, Li Q,. Synergistic chemo-photothermal cancer therapy of pH-responsive polymeric nanoparticles loaded IR825 and DTX with charge-reversal property [J]., 2022, 209(Pt 2): 112164.
[13] Wang R J, Yang H T, Khan A R,. Redox-responsive hyaluronic acid-based nanoparticles for targeted photodynamic therapy/chemotherapy against breast cancer [J]., 2021, 598: 213-228.
[14] Icard P, Shulman S, Farhat D,. How the Warburg effect supports aggressiveness and drug resistance of cancer cells? [J]., 2018, 38: 1-11.
[15] Nilsson C, Kågedal K, Johansson U,. Analysis of cytosolic and lysosomal pH in apoptotic cells by flow cytometry [J]., 2003, 25(3/4): 185-194.
[16] Cai X Q, Yang X Y, Wang F,. Multifunctional pH-responsive folate receptor mediated polymer nanoparticles for drug delivery [J]., 2016, 12(7): 1453-1462.
[17] Zhang Y Z, Zhu W F, Zhang H R,. Carboxymethyl chitosan/phospholipid bilayer-capped mesoporous carbon nanoparticles with pH-responsive and prolonged release properties for oral delivery of the antitumor drug, Docetaxel [J]., 2017, 532(1): 384-392.
[18] Su M F, Xiao S T, Shu M,. Enzymatic multifunctional biodegradable polymers for pH- and ROS-responsive anticancer drug delivery [J]., 2020, 193: 111067.
[19] Huo Q Q, Liang Y, Lu W,. Integrated metalloproteinase, pH and glutathione responsive prodrug-based nanomedicine for efficient target chemotherapy [J]., 2019, 15(8): 1673-1687.
[20] Yang Q Q, Li L, Sun W,. Dual stimuli-responsive hybrid polymeric nanoparticles self-assembled from POSS-based starlike copolymer-drug conjugates for efficient intracellular delivery of hydrophobic drugs [J]., 2016, 8(21): 13251-13261.
[21] Tran T H, Ramasamy T, Choi J Y,. Tumor-targeting, pH-sensitive nanoparticles for docetaxel delivery to drug-resistant cancer cells [J]., 2015, 10: 5249-5262.
[22] Li L J, Sun W, Li L,. A pH-responsive sequential-disassembly nanohybrid for mitochondrial targeting [J]., 2017, 9(1): 314-325.
[23] Li M, Xu Y S, Sun J L,. Fabrication of charge-conversion nanoparticles for cancer imaging by flash nanoprecipitation [J]., 2018, 10(13): 10752-10760.
[24] Li M, Zhao L W, Zhang T,. Redox-sensitive prodrug nanoassemblies based on linoleic acid-modified docetaxel to resist breast cancers [J]., 2019, 9(2): 421-432.
[25] Monteiro P F, Gulfam M, Monteiro C J,. Synthesis of micellar-like terpolymer nanoparticles with reductively-cleavable cross-links and evaluation of efficacy in 2D and 3D models of triple negative breast cancer [J]., 2020, 323: 549-564.
[26] Wu J, Zhao L L, Xu X D,. Hydrophobic cysteine poly(disulfide)-based redox-hypersensitive nanoparticle platform for cancer theranostics [J]., 2015, 54(32): 9218-9223.
[27] Gallego-Yerga L, de la Torre C, Sansone F,. Synthesis, self-assembly and anticancer drug encapsulation and delivery properties of cyclodextrin-based giant amphiphiles [J]., 2021, 252: 117135.
[28] Li Y M, Chen X L, Ji J B,. Redox-responsive nanoparticles based on chondroitin sulfate and docetaxel prodrug for tumor targeted delivery of docetaxel [J]., 2021, 255: 117393.
[29] Zuo S Y, Sun B J, Yang Y X,. Probing the superiority of diselenium bond on docetaxel dimeric prodrug nanoassemblies: Small roles taking big responsibilities [J]., 2020, 16(45): e2005039.
[30] Conte C, Monteiro P F, Gurnani P,. Multi-component bioresponsive nanoparticles for synchronous delivery of docetaxel and TUBB3 siRNA to lung cancer cells [J]., 2021, 13(26): 11414-11426.
[31] Li N, Guo W J, Li Y J,. Construction and anti-tumor activities of disulfide-linked docetaxel-dihydroartemisinin nanoconjugates [J]., 2020, 191: 111018.
[32] Kalyanaraman B, Cheng G, Hardy M,. Teaching the basics of reactive oxygen species and their relevance to cancer biology: Mitochondrial reactive oxygen species detection, redox signaling, and targeted therapies [J]., 2018, 15: 347-362.
[33] Xu X D, Saw P E, Tao W,. ROS-responsive polyprodrug nanoparticles for triggered drug delivery and effective cancer therapy [J]., 2017, 29(33): 10.
[34] Gorrini C, Harris I S, Mak T W. Modulation of oxidative stress as an anticancer strategy [J]., 2013, 12(12): 931-947.
[35] Gurer-Orhan H, Ince E, Konyar D,. The role of oxidative stress modulators in breast cancer [J]., 2018, 25(33): 4084-4101.
[36] 乔斌. 多烯紫杉醇诱导细胞凋亡与活性氧关系的研究[D]. 天津: 天津大学, 2004.
[37] 任振义, 白春学, 金一尊, 洪群英. 多烯紫杉醇诱导SPC-A1肺癌细胞凋亡与活性氧之间的关系 [J]. 中国癌症杂志, 2003, 13(4): 342-344.
[38] Zhu C Q, Luo L H, Jiang X D,. Selective intratumoral drug release and simultaneous inhibition of oxidative stress by a highly reductive nanosystem and its application as an anti-tumor agent [J]., 2020, 10(3): 1166-1180.
[39] Du B J, Tung C H. Enzyme-assisted photodynamic therapy based on nanomaterials [J]., 2020, 6(5): 2506-2517.
[40] Liu Q, Li R T, Qian H Q,. Gelatinase-stimuli strategy enhances the tumor delivery and therapeutic efficacy of docetaxel-loaded poly(ethylene glycol)-poly(ɛ-caprolactone) nanoparticles [J]., 2012, 7: 281-295.
[41] 李翀, 吴俊伟. 智能响应药物递送技术的开发与前沿进展[J]. 药学进展, 2021, 45(5): 321-324.
[42] 安静, 万江陵, 杨祥良, 等. 酶响应纳米药物的研究进展 [J]. 医药导报, 2020, 39(9): 1240-1251.
[43] Zhang X Y, Wang X F, Zhong W T,. Matrix metalloproteinases-2/9-sensitive peptide-conjugated polymer micelles for site-specific release of drugs and enhancing tumor accumulation: Preparation andandevaluation [J]., 2016, 11: 1643-1661.
[44] He Y C, Cong C, Li X L,. Nano-drug system based on hierarchical drug release for deep localized/systematic cascade tumor therapy stimulating antitumor immune responses [J]., 2019, 9(10): 2897-2909.
[45] Ren L L, Nie J F, Wei J,. RGD-targeted redox responsive nano micelle: Co-loading docetaxel and indocyanine green to treat the tumor [J]., 2021, 28(1): 2024-2032.
[46] Tan H S, Liu Y L, Hou N,. Tumor microenvironment pH-responsive pentagonal gold prism-based nanoplatform for multimodal imaging and combined therapy of castration-resistant prostate cancer [J]., 2022, 141: 408-417.
[47] Wang X, Li Y H, Cui Y K,. Hierarchical assembly of dual-responsive biomineralized polydopamine-calcium phosphate nanocomposites for enhancing chemo-photothermal therapy by autophagy inhibition [J]., 2020, 8(18): 5172-5182.
[48] Poudel K, Thapa R K, Gautam M,. Multifaceted NIR-responsive polymer-peptide-enveloped drug-loaded copper sulfide nanoplatform for chemo-phototherapy against highly tumorigenic prostate cancer [J]., 2019, 21: 102042.
[49] Su Y L, Chen K T, Sheu Y C,. The penetrated delivery of drug and energy to tumors by lipo-graphene nanosponges for photolytic therapy [J]., 2016, 10(10): 9420-9433.
[50] Sung S Y, Su Y L, Cheng W,. Graphene quantum dots-mediated theranostic penetrative delivery of drug and photolytics in deep tumors by targeted biomimetic nanosponges [J]., 2019, 19(1): 69-81.
[51] Goodman A M, Neumann O, Nørregaard K,. Near-infrared remotely triggered drug-release strategies for cancer treatment [J]., 2017, 114(47): 12419-12424.
[52] Villar-Alvarez E, Cambón A, Pardo A,. Combination of light-driven co-delivery of chemodrugs and plasmonic-induced heat for cancer therapeutics using hybrid protein nanocapsules [J]., 2019, 17(1): 106.
[53] Zhao F, Zhou J, Su X,. A smart responsive dual aptamers-targeted bubble-generating nanosystem for cancer triplex therapy and ultrasound imaging [J]., 2017, 13(20): 10.
[54] Li X S, Lovell J F, Yoon J,. Clinical development and potential of photothermal and photodynamic therapies for cancer [J]., 2020, 17(11): 657-674.
[55] Pucelik B, Sułek A, Barzowska A,. Recent advances in strategies for overcoming hypoxia in photodynamic therapy of cancer [J]., 2020, 492: 116-135.
[56] Jiang D, Xu M J, Pei Y Y,. Core-matched nanoassemblies for targeted co-delivery of chemotherapy and photosensitizer to treat drug-resistant cancer [J]., 2019, 88: 406-421.
[57] Manzano M, Vallet-Regí M. Ultrasound responsive mesoporous silica nanoparticles for biomedical applications [J]., 2019, 55(19): 2731-2740.
[58] Shi J J, Chen Z Y, Wang B H,. Reactive oxygen species-manipulated drug release from a smart envelope-type mesoporous titanium nanovehicle for tumor sonodynamic-chemotherapy [J]., 2015, 7(51): 28554-28565.
[59] Liu M R, Khan A R, Ji J B,. Crosslinked self-assembled nanoparticles for chemo-sonodynamic combination therapy favoring antitumor, antimetastasis management and immune responses [J]., 2018, 290: 150-164.
[60] Zhang Q, Wang W, Shen H Y,. Low-intensity focused ultrasound-augmented multifunctional nanoparticles for integrating ultrasound imaging and synergistic therapy of metastatic breast cancer [J]., 2021, 16(1): 73.
[61] Zhang Y N, Khan A R, Yang X Y,. A sonosensitiser-based polymeric nanoplatform for chemo-sonodynamic combination therapy of lung cancer [J]., 2021, 19(1): 57.
[62] Zhang Y N, Qiu N, Zhang Y,. Oxygen-carrying nanoparticle-based chemo-sonodynamic therapy for tumor suppression and autoimmunity activation [J]., 2021, 9(11): 3989-4004.
[63] Fan R R, Tong A P, Li X L,. Enhanced antitumor effects by docetaxel/LL37-loaded thermosensitive hydrogel nanoparticles in peritoneal carcinomatosis of colorectal cancer [J]., 2015, 10: 7291-7305.
[64] Sun C Y, Xu S, Guo J,. The inhibitory and apoptotic effects of docetaxel-loaded mesoporous magnetic colloidal nanocrystal clusters on bladder cancer T24 cells[J]., 2014, 10(3): 455-462.
[65] Xie W S, Gao Q, Guo Z H,. Injectable and self-healing thermosensitive magnetic hydrogel for asynchronous control release of doxorubicin and docetaxel to treat triple-negative breast cancer [J]., 2017, 9(39): 33660-33673.
[66] Li F Y, Qin Y, Lee J,. Stimuli-responsive nano-assemblies for remotely controlled drug delivery [J]., 2020, 322: 566-592.
[67] Chen F Q, Zhang J M, Wang L,. Tumor pH(e)-triggered charge-reversal and redox-responsive nanoparticles for docetaxel delivery in hepatocellular carcinoma treatment [J]., 2015, 7(38): 15763-15779.
[68] Taheri-Ledari R, Zhang W J, Radmanesh M,. Multi-stimuli nanocomposite therapeutic: Docetaxel targeted delivery and synergies in treatment of human breast cancer tumor [J]., 2020, 16(41): e2002733.
[69] Zhang L H, Zhang S Q, Li M X,. Reactive oxygen species and glutathione dual responsive nanoparticles for enhanced prostate cancer therapy [J]., 2021, 123: 111956.
[70] Chen Y, Su M F, Li Y Q,. Enzymatic PEG-poly(amine-co-disulfide ester) nanoparticles as pH- and redox-responsive drug nanocarriers for efficient antitumor treatment [J]., 2017, 9(36): 30519-30535.
[71] Gong Y H, Shu M, Xie J H,. Enzymatic synthesis of PEG-poly(amine-co-thioether esters) as highly efficient pH and ROS dual-responsive nanocarriers for anticancer drug delivery [J]., 2019, 7(4): 651-664.
[72] Liu M R, Du H L, Khan A R,. Redox/enzyme sensitive chondroitin sulfate-based self-assembled nanoparticles loading docetaxel for the inhibition of metastasis and growth of melanoma [J]., 2018, 184: 82-93.
[73] Liu G, Gao N S, Zhou Y,. Polydopamine-based “four-in-one” versatile nanoplatforms for targeted dual chemo and photothermal synergistic cancer therapy [J]., 2019, 11(10): 507.
[74] Wang Y, Zhang Z Z, Zheng C X,. Multistage adaptive nanoparticle overcomes biological barriers for effective chemotherapy [J]., 2021, 17(31): e2100578.
[75] Sajjad M, Khan M I, Naveed S,. Folate-functionalized thiomeric nanoparticles for enhanced docetaxel cytotoxicity and improved oral bioavailability [J]., 2019, 20(2): 81.
[76] Nie J P, Cheng W, Peng Y M,. Co-delivery of docetaxel and bortezomib based on a targeting nanoplatform for enhancing cancer chemotherapy effects [J]., 2017, 24(1): 1124-1138.
[77] Bai S B, Liu D Z, Cheng Y,. Osteoclasts and tumor cells dual targeting nanoparticle to treat bone metastases of lung cancer [J]., 2019, 21: 102054.
[78] Benito J M, Gómez-García M, Ortiz Mellet C,. Optimizing saccharide-directed molecular delivery to biological receptors: Design, synthesis, and biological evaluation of glycodendrimer-cyclodextrin conjugates [J]., 2004, 126(33): 10355-10363.
[79] Tekchandani P, Kurmi B D, Paliwal R,. Galactosylated TPGS micelles for docetaxel targeting to hepatic carcinoma: Development, characterization, and biodistribution study [J]., 2020, 21(5): 174.
[80] McDaid W J, Lissin N, Pollheimer E,. Enhanced target-specific delivery of docetaxel-loaded nanoparticles using engineered T cell receptors [J]., 2021, 13(35): 15010-15020.
[81] Guo X H, Zhang J Y, Cai Q Q,. Acetic acid transporter-mediated, oral, multifunctional polymer liposomes for oral delivery of docetaxel [J]., 2021, 198: 111499.
[82] Saravanakumar K, Sathiyaseelan A, Mariadoss A V A,. Dual stimuli-responsive release of aptamer AS1411 decorated erlotinib loaded chitosan nanoparticles for non-small-cell lung carcinoma therapy [J]., 2020, 245: 116407.
[83] Guo X X, Guo Z H, Lu J S,. All-purpose nanostrategy based on dose deposition enhancement, cell cycle arrest, DNA damage, and ROS production as prostate cancer radiosensitizer for potential clinical translation [J]., 2021, 13(34): 14525-14537.
[84] Hrkach J, von Hoff D, Ali M M,. Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile [J]., 2012, 4(128): 128ra39.
[85] Deng L, Zhu X J, Yu Z J,. Novel T7-modified pH-responsive targeted nanosystem for co-delivery of docetaxel and curcumin in the treatment of esophageal cancer [J]., 2020, 15: 7745-7762.
[86] Wang F H, Dong X F, Xiu P,. T7 peptide inhibits angiogenesis via downregulation of angiopoietin-2 and autophagy [J]., 2015, 33(2): 675-684.
[87] Zhu X J, Yu Z J, Feng L B,. Chitosan-based nanoparticle co-delivery of docetaxel and curcumin ameliorates anti-tumor chemoimmunotherapy in lung cancer [J]., 2021, 268: 118237.
[88] Wang R T, Zhi X Y, Yao S Y,. LFC131 peptide-conjugated polymeric nanoparticles for the effective delivery of docetaxel in CXCR4 overexpressed lung cancer cells [J]., 2015, 133: 43-50.
[89] Hua H C, Zhang X M, Mu H J,. RVG29-modified docetaxel-loaded nanoparticles for brain-targeted glioma therapy [J]., 2018, 543(1/2): 179-189.
[90] Zhang W, Song Y M, Eldi P,. Targeting prostate cancer cells with hybrid elastin-like polypeptide/ liposome nanoparticles [J]., 2018, 13: 293-305.
[91] Park J Y, Shin Y, Won W R,. Development of AE147 peptide-conjugated nanocarriers for targeting uPAR-overexpressing cancer cells [J]., 2021, 16: 5437-5449.
[92] Hamidi H, Ivaska J. Every step of the way: Integrins in cancer progression and metastasis [J]., 2018, 18(9): 533-548.
[93] Yan H J, You Y, Li X J,. Preparation of RGD peptide/folate acid double-targeted mesoporous silica nanoparticles and its application in human breast cancer MCF-7 cells [J]., 2020, 11: 898.
[94] Viswanadh M K, Vikas, Jha A,. Formulation andefficacy study of cetuximab decorated targeted bioadhesive nanomedicine for non-small-cell lung cancer therapy [J]., 2020, 15(24): 2345-2367.
[95] Maya S, Sarmento B, Lakshmanan V K,. Chitosan cross-linked docetaxel loaded EGF receptor targeted nanoparticles for lung cancer cells [J]., 2014, 69: 532-541.
[96] Sumer Bolu B, Golba B, Sanyal A,. Trastuzumab targeted micellar delivery of docetaxel using dendron-polymer conjugates [J]., 2020, 8(9): 2600-2610.
[97] Sánchez-Moreno P, Ortega-Vinuesa J L, Boulaiz H,. Synthesis and characterization of lipid immuno-nanocapsules for directed drug delivery: Selective antitumor activity against HER2 positive breast-cancer cells [J]., 2013, 14(12): 4248-4259.
[98] Castro A, Berois N, Malanga A,. Docetaxel in chitosan-based nanocapsules conjugated with an anti-Tn antigen mouse/human chimeric antibody as a promising targeting strategy of lung tumors [J]., 2021, 182: 806-814.
Research progress on docetaxel loaded nano delivery system based on stimulus response and targeting factors
SUI Fang-qian, LI Jie-yu, YANG Shan-jing, JIANG Hai-mei, YANG Shi-yu, LI Ling-jun, CAI Xiao-qing
College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
Docetaxel, a derivative of natural antitumor drug paclitaxel, has broad-spectrum and highly effictive antitumor activity, but its low solubility and wide tissue distribution limit its clinical application. The stimulation responsive nano delivery system effectively improves the above defects by diversity of carrier material structure and environment sensitive drug release. On this basis, modifying the targeting factor can make the drug targeted delivery, change the organization distribution of the drug and further improve the antitumor effect. This paper reviews the research progress on stimulation responsive and modifier modified nano delivery system of docetaxel in recent years, and puts forward the key problems such as its development challenges and future trend, in order to provide reference for the research and development of docetaxel in antitumor drugs.
docetaxel; stimulus response; targeting factor; antitumor activity;nano delivery system
R283
A
0253 - 2670(2022)19 - 6296 - 10
10.7501/j.issn.0253-2670.2022.19.034
2022-03-20
国家自然科学基金资助项目(81803474);山东中医药大学药学院“药苑育研”优秀研究生创新基金(2021-0027)
隋芳茜(1997—),女,硕士研究生,主要研究方向为中药新制剂、新剂型研究及药物体内过程。Tel: 18340077520 E-mail: 18340077520@163.com
李凌军(1966—),男,博士生导师,教授,从事中药新制剂、新剂型研究及药物体内过程研究。Tel: 13853157076 E-mail: sdzyylilingjun@163.com
蔡晓青(1982—),女,硕士生导师,副教授,从事智能靶向给药系统研究。Tel: 18753103526 E-mail: caixiaoqing0901@163.com
[责任编辑 潘明佳]