陈佳俊,秦雪梅,杜冠华,周玉枝*
基于内源性大麻素系统的抑郁症发病机制及其在中药研究中的应用
陈佳俊1, 2, 3,秦雪梅1, 2, 3,杜冠华1, 4,周玉枝1, 2, 3*
1. 山西大学 中医药现代研究中心,山西 太原 030006 2. 山西大学 化学生物学与分子工程教育部重点实验室,山西 太原 030006 3. 地产中药功效物质研究与利用山西省重点实验室,山西 太原 030006 4. 中国医学科学院 北京协和医学院药物研究所,北京 100050
抑郁症是一种难以调控的疾病,目前缺乏高效、稳定且安全的抗抑郁药,寻找抑郁症发病新机制对抗抑郁药物的研发具有重要意义。近年来,研究发现抑郁症与内源性大麻素系统(endocannabinoid system,ECS)的紊乱密切相关,然而涉及的机制较为复杂,亟待整理。当下,通过ECS的调控来治疗抑郁症是一种新途径,而中药在该途径上存在天然优势,从中开发抗抑郁新药具有广泛的研究前景。鉴于此,对ECS与抑郁症的关系及中药介导ECS发挥抗抑郁作用的潜力进行了分析,以期为抑郁症发病机制的研究提供参考,为抗抑郁药物的研发提供新策略。
内源性大麻素系统;抑郁症;发病机制;植物大麻素;大麻素受体
抑郁症是一种难以治疗的精神类疾病,严重影响社会生活,不幸的是,目前中国的抑郁症患者仅约0.5%得到充分治疗[1]。临床上常用的抗抑郁药起效慢,存在不良反应,药效也不尽人意,开发高效、稳定且安全的抗抑郁药物迫在眉睫[2]。探明抑郁症发病机制,并使用安全稳定的天然药物对症下药,有望成为高效治疗抑郁症的新途径。在对抑郁症发病机制的研究中,诸多假说支持了以往抗抑郁药物的研发,如单胺类神经递质缺乏假说、炎症假说、肠道菌群改变假说、神经营养因子障碍假说[3],但对抑郁症发病过程的阐释及治疗对策的供给仍不够全面。近年来,靶向内源性大麻素系统(endocannabinoid system,ECS)治疗抑郁症的思路越来越受到关注,增强ECS信号有潜力成为抑郁症治疗的新选择[4]。众所周知,中医药因其在抑郁症治疗中的独特疗效而深受重视,以往研究发现,一些中药及其活性成分能够介导ECS调控抑郁症,并且逐渐有证据表明从中药中寻找作用于ECS的抗抑郁活性物质具有广泛的研究前景。
ECS是人脑中分布最为广泛的神经递质系统之一,主要由大麻素受体、内源性大麻素及其合成和降解相关的酶组成[5]。大麻素受体研究最多的是大麻素1型/2型受体(type 1/2 cannabinoid receptor,CB1R/CB2R),主要位于γ-氨基丁酸(γ-aminobutyric acid,GABA)能和谷氨酸(glutamic acid,Glu)能神经元突触末梢,负责调控神经递质的释放[6-7]。除了调控神经递质,CB2R还可介导小胶质细胞、星形胶质细胞和神经元发挥免疫调节作用[8]。相对于经典的大麻素受体,一些非大麻素受体也参与了ECS的生物学过程,如瞬时受体电位阳离子通道亚家族V成员1(transient receptor potential vanilloid 1,TRPV1)和过氧化物酶体增殖物激活受体(peroxisome proliferator-activated receptors,PPARs)[9]。另外,G蛋白偶联受体(G protein-coupled receptor,GPR)18、GPR55、GPR119也能参与ECS的一些反应[10],其中,GPR55虽与经典的CB1R和CB2R结构上有所区别,但部分大麻素也能与GPR55结合并发挥作用,GPR55因此被认为是一种非典型的大麻素受体[11]。与大麻素受体结合的内源性大麻素主要有2种,分别是-花生四烯酰乙醇胺(-arachidonoyl- ethanolamide,AEA)和2-花生四烯酸甘油(2- arachidonoyl glycerol,2-AG),均从突触后末梢合成并释放,传递逆行信号并作用于突触前末梢的CB1R和CB2R[12]。此外,还有2种类内源性大麻素:-棕榈酰乙醇胺(-palmitoylethanolamide,PEA)和油酰乙醇酰胺(oleoylethanolamide,OEA),PEA、OEA与AEA一样,均在-酰基磷脂酰乙醇胺磷脂酶D(-acylphosphatidylethanolamine phospholipase D,NAPE-PLD)的生物作用下合成,作用于突触膜受体或与内源性大麻素膜转运体(endocannabinoid membrane transporters,EMT)在突触末梢结合,最终由脂肪酸酰胺水解酶(fatty acid amide hydrolase,FAAH)代谢为乙醇胺和花生四烯酸(arachidonic acid,AA)[12]。ECS中的大麻素合成酶是NAPE-PLD和二酰基甘油脂肪酶-α/β(diacylglycerol lipase-α/β,DAGL-α/β),NAPE-PLD主要将-酰基磷脂酰乙醇胺催化合成AEA,DAGL-α/β则主要将二酰基甘油催化合成2-AG,这2种大麻素合成酶均对钙水平敏感[13]。ECS中的大麻素代谢酶主要是FAAH和单酰甘油脂肪酶(monoacylglycerol lipase,MAGL),分别负责分解AEA和2-AG[13],除了这2种代谢酶,环氧合酶-2(cyclooxygenase-2,COX-2)也能代谢AEA和2-AG,并生成前列腺素衍生物[14]。
近年来,大量研究表明ECS中内源性大麻素及其受体介导的生物学过程参与抑郁症的发病机制,通过增强ECS信号可有效改善与抑郁症相关的功能障碍。
来自临床和临床前的研究表明,内源性大麻素水平的变化与抑郁症的调控密切相关。有研究在抑郁症患者的血清和大脑中发现AEA和2-AG浓度均有所降低[15-16],而在抑郁症动物模型的大脑中也发现了类似的情况[17-18],有趣的是,不同的抗抑郁治疗途径似乎都能显著提高AEA或2-AG水平[18-20],提示内源性大麻素可能具有抗抑郁活性,上调大麻素水平则具有一定的抗抑郁作用。经研究得知,AEA和2-AG介导的抗抑郁作用可能与脑源性神经营养因子(brain-derived neurotrophic factor,BDNF)水平的提高[16]、皮质酮水平的降低[21]、雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)信号的传递[22]、神经发生和突触可塑性的增强[23]有关。此外,有研究发现,与AEA结构类似的PEA可以增强西酞普兰的抗抑郁药效[24],提示PEA也有潜在的抗抑郁活性。随后,有研究考察了PEA的抗抑郁作用[25],发现PEA具有神经保护功能,外源增补PEA后显著改善了慢性不可预测温和应激(chronic unpredictable mild stress,CUMS)大鼠的抑郁样行为,并且降低了抑郁模型大鼠血清中异常升高的促肾上腺皮质激素和皮质酮,逆转了氧化应激反应,同时还增加了神经营养因子的浓度,而PPAR-α被认为是PEA发挥这些作用的潜在靶点。相隔不久,又有研究表明PEA可介导PPAR-α通过四氢孕酮的生物合成改善抑郁症[26],提示PPAR-α介导的相关生物学途径与PEA的抗抑郁作用有紧密联系。除了2-AG、AEA和PEA,OEA也表现出了一定的抗抑郁活性[27],据报道,OEA的抗抑郁作用与激素水平的调节和神经炎症的抑制相关[28],具体的调控机制仍需深入研究。值得注意的是,体育运动对抑郁症的缓解有很大帮助,有报道发现体育运动介导的抗抑郁作用与抑郁症患者体内AEA、OEA和PEA水平的提高有关[29],再次表明内源性大麻素信号的增强有助于减轻抑郁症状。除了以上生物学途径,内源性大麻素还可能在维持血脑屏障的完整性和功能方面对抑郁症的调节发挥积极作用[30],有待进一步研究。
CB1R和CB2R激活后介导的抗抑郁作用已被报道[31],其中,CB1R主要参与神经调节,而CB2R则侧重于免疫调节。经研究发现,CB1R激活后介导的抗抑郁作用主要与5-羟色胺(5-hydroxytryptamine,5-HT)能和去甲肾上腺素(noradrenaline,NA)能的调控[32]、神经发生和突触可塑性的增强[33]、基底外侧杏仁核-伏隔核神经环路突触传递的抑制[34]及细胞外调节蛋白激酶1/2(extracellular regulated protein kinase 1/2,ERK1/2)的激活[35]有关。相比于CB1R,CB2R激活后介导的抗抑郁作用似乎与神经炎症的缓解更为相关[36],CB2R激活后能够阻止应激诱导的肿瘤坏死因子-α(tumor necrosis factor,TNF-α)、CC趋化因子配体2(CC chemokine ligand 2,CCL2)、核因子-κB(nuclear factor-κB,NF-κB)、一氧化氮合成酶-2(nitric oxide synthetase-2,NOS-2)和COX-2的异常增加,此外,CB2R介导的抗抑郁作用与单胺能系统的调控[37]、BDNF水平的提高[38]也有一定联系。近期研究表明,CB1R的激活和CB2R的上调均能减少大脑中的氧化应激水平,从而减轻组织损伤和神经炎症[39],进一步提示CB1R和CB2R的激活有助于改善抑郁症导致的神经损伤。有趣的是,过去曾发现CB2R的激活能够促进神经前体细胞的增殖[40]、增强海马体CA2和CA3区锥体细胞的可塑性[41],而今又发现CB2R能介导小胶质细胞、星形胶质细胞和神经元参与免疫调节[8],提示CB2R激活后介导的抗抑郁作用可能与神经细胞的调节有关,需进一步探明。GPR55作为ECS中非典型的大麻素受体,在抑郁症的治疗中具有潜在前景[42]。最近研究表明,海马中GPR55蛋白表达的下降可能会介导抑郁样行为的发生,相反,GPR55的激活或上调则具有潜在的抗抑郁作用,而这种抗抑郁作用被认为与GPR55受体激活后产生的抗炎和神经保护作用有关[43]。
大麻二酚(cannabidiol,CBD)是药用植物大麻中的非成瘾性大麻素,自从ECS及其在神经精神疾病的作用被首次认识以来,CBD一直是许多临床和临床前研究的主题[44],CBD是ECS的基本组成部分,能够通过多种生物学途径改善抑郁症[4],提示ECS对抑郁症相关功能障碍的调节至关重要。首先,CBD可以调节单胺类神经递质,通过增加5-HT和NA水平发挥抗抑郁作用[45];其次,CBD能平衡下丘脑-垂体-肾上腺(hypothalamic-pituitary- adrenal,HPA)轴相关功能[46],改善激素水平,如调节皮质酮[47];另一方面,CBD还能通过激活BDNF-酪氨酸激酶受体B(tyrosine receptor kinase B,TrkB)通路来改善大脑突触可塑性[48]。不仅如此,ECS在抑郁症相关的代谢调控方面也有参与。曾有研究报道,促炎细胞因子水平的升高可能会过度激活犬尿氨酸途径(kynurenine pathway,KP),KP负责代谢色氨酸,色氨酸是5-HT合成的前体,而KP的过度激活会导致色氨酸耗竭和5-HT水平降低,从而引发抑郁症,该过程被认为与ECS的调控有关[49]。不久前有研究佐证了这一点,发现CBD的抗抑郁作用与抑制KP和NF-κB的激活及白细胞介素(interleukin,IL)-6的释放相关[50],但ECS参与调控的具体机制尚待细究。此外,Toll样受体(Toll-like receptor,TLR)3/4激活后介导的神经炎症与抑郁症发病机制也存在联系,而TLR相关炎症同样受ECS的调控,TLR相关神经炎症的ECS调节可能会成为抑郁症治疗的新方向[51]。肠道微生物通过多种途径与大脑沟通,包括HPA轴、免疫调节、色氨酸和5-HT代谢及各种神经活性化合物的产生,肠道微生物失调是抑郁症重要诱因之一[52]。近期研究表明,ECS可以介导肠道微生物群诱发抑郁症[53],提示ECS信号的增强还有助于改善肠道微生物失调诱发的抑郁症。综上所述,ECS与抑郁症的关联机制可见图1。
图1 ECS与抑郁症的关联机制
中医药治疗抑郁症有其独特的优势,近年来,在中医理论指导下,许多中药被用于缓解和治疗抑郁症[54]。已有研究发现一些中药复方、单味中药和中药有效成分具有介导ECS调控抑郁症的潜力,提示从中药中开发靶向ECS的抗抑郁药物具有广泛的研究前景。
在临床上,曾有研究发现,每日口服菖郁逍遥方(石菖蒲10 g、郁金10 g、白芍10 g、茯苓15 g、柴胡10 g、当归10 g、薄荷6 g、炒白术15 g、炙甘草6 g)1剂,持续12周,可明显改善慢性乙型肝炎伴抑郁症患者的抑郁状态[55]。值得注意的是,在治疗抑郁症患者的过程中,菖郁逍遥方显著增加了患者血清中AEA、2-AG和CB1R水平,提示菖郁逍遥方的抗抑郁作用与ECS信号的增强有关。在临床前研究中,网络药理学常被用于预测中药及其复方发挥药效的作用靶点,有研究采用该方法,预测了抗抑郁名方四逆散(由柴胡、白芍、枳实和炙甘草组成)的抗抑郁靶点[56],结果表明,四逆散的抗抑郁作用可能与逆行内源性大麻素信号的调节有关。另有报道还用网络药理学方法研究3种经典行气方剂(柴胡疏肝散、越鞠丸、半夏厚朴汤)的抗抑郁机制[57-58],构建了“化学成分-疾病”作用关系网络,结果表明,这3种行气复方也可能通过调节逆行内源性大麻素来发挥抗抑郁作用,尚待进一步验证。近期,有研究采用生物信息学结合实验验证的方法,探讨经典抗抑郁复方逍遥散(由柴胡、白芍、当归、白术、茯苓、炙甘草、生姜和薄荷组成)的抗抑郁机制[59],结果显示,2.2 g生药/kg的逍遥散能够显著回调CUMS大鼠前额皮层中CB1R和CB2R基因mRNA的表达,从而增强ECS信号的传递,不仅如此,此研究最后还发现逍遥散的抗抑郁作用可能与CB1R/CB2R-cAMP-PKA-环磷腺苷效应元件结合蛋白(cAMP-response element binding protein,CREB)-BDNF信号通路的激活有关。
厚朴具有良好的抗抑郁作用[60],据报道,厚朴中的化学成分广泛参与ECS的调控[61],其中,主要活性成分和厚朴酚与厚朴酚可选择性激活CB1R与CB2R,提示厚朴的抗抑郁作用可能通过ECS中大麻素受体的激活来实现。此外,具有抗抑郁作用的酸枣仁[62]和五味子[63]组成的药对[酸枣仁-五味子(2∶1),1.5 g生药/kg、3 g生药/kg]能够介导ECS-BDNF-ERK信号通路改善与抑郁症发病机制相近的焦虑症[64],提示ECS的调控可能在酸枣仁和五味子的抗抑郁机制中同样起着重要作用。最近,有研究采用网络药理学的方法剖析牛大力改善抑郁症的作用机制[65],研究显示,CB1R可能是牛大力发挥抗抑郁作用的关键靶点,但需要进一步验证。蜘蛛香的95%乙醇提取物具有良好的抗抑郁作用,最近的研究表明,40 mg/kg或80 mg/kg蜘蛛香的95%乙醇提取物还可以有效缓解小鼠的创伤后应激障碍,并且与回调异常降低的CB1R、DAGL-α和异常增加的FAAH和MAGL有关[66],创伤后应激障碍与抑郁症的病因和发病机制相似,提示蜘蛛香的抗抑郁作用可能与大麻素信号的增强也存在联系。中药之所以能产生抗抑郁作用,是因为中药中含有大量的天然抗抑郁活性成分[67],其中包含植物大麻素类化合物,如CBD,然而中药中可能还有其他植物大麻素尚待发现。不久前,有研究采用无标记表型动态质量再分配技术找到了灵芝中存在的4种新型大麻素(Kfb68、Kga1、Kfb28和Kfb77)[68],其中,Kfb68可同时拮抗CB1R和CB2R,而Kga1和Kfb28对CB1R和CB2R有选择性拮抗作用,Kfb77则是从灵芝中纯化出的CB1R激动剂,灵芝具有一定的抗抑郁作用[69],提示灵芝的抗抑郁机制可能源于灵芝中天然外源性大麻素对抑郁症机体ECS的调控,具体机制有待进一步研究。
中药活性成分的抗抑郁作用也有ECS的参与,曾有报道发现具有抗抑郁作用的姜黄素可以介导ECS信号发挥神经调节作用[70],150 mg/kg的姜黄素通过增加皮层、海马、杏仁核、脑干中AEA和2-AG的水平来增强ECS信号的传递,进而促进大脑中神经营养因子的释放,提示姜黄素可能通过该途径减轻抑郁症引起的神经损伤。早期研究还发现,肉豆蔻醚具有良好的抗抑郁效果,单次ip 3 mg/kg的肉豆蔻醚对行为绝望抑郁模型小鼠、利血平抑郁模型小鼠和慢性应激抑郁模型小鼠均有显著的抗抑郁作用,并且在强迫游泳实验中发现,CB1R和CB2R拮抗剂(AM251和AM630)能够消除肉豆蔻醚的改善作用[71],提示肉豆蔻醚的抗抑郁作用可能与大麻素受体的激活有关。另外,桂枝中主要成分反式肉桂醛的抗抑郁作用已被发现与ECS信号的调控有关[72],研究表明,50 mg/kg的反式肉桂醛参与了抑郁模型小鼠海马中COX-2、CB1R和TRPV1蛋白表达的调节。有趣的是,近期有研究表明萜烯和萜类化合物可能会增强大麻素对情绪障碍的治疗活性,其中包括抑郁症[73],而药用植物中富含具有抗抑郁作用的萜烯和萜类活性成分,如β-石竹烯[74]、芳樟醇和β-蒎烯[75],其中,β-石竹烯(25 mg/kg)的抗抑郁作用已被发现与增加CB2R蛋白的表达有关[76],提示中药中萜烯和萜类活性成分是靶向ECS抗抑郁新药的潜在开发来源。
当前证据表明,中药介导ECS发挥抗抑郁作用的途径主要有2种,其一是中药中含有植物大麻素类化合物,通过调节大麻素受体的活性来改善神经损伤和免疫失调;另一方面是中药通过提高内源性大麻素的水平,进而增强ECS对抑郁症机体的保护作用,增加体内内源性大麻素水平的途径可以是抑制代谢酶的活性,也可以是增强合成酶的功能。中药介导ECS发挥抗抑郁作用的潜力可见图2。
图2 中药介导ECS发挥抗抑郁作用的潜在途径
植物大麻素曾被认为是天然存在于大麻属植物中的大麻素,然而,越来越多的天然大麻素被发现分布在大麻以外的物种中,中药中新型大麻素的发现,源于中药富含结构和功能多样性的化合物,中药中天然大麻素的开发对大麻素库存的完善[77]及抑郁症的治疗具有重要意义。除了植物大麻素,FAAH和MAGL抑制剂也被认为是未来抑郁症治疗的新药物[78]。总的来说,中药中植物大麻素及ECS代谢酶抑制剂的探索是开发抗抑郁药物的新策略。近年来,随着CB1R和CB2R结构的逐渐清晰及激活途径和信号机制的不断完善[79-81],中药中新型植物大麻素的寻找以及靶向ECS抗抑郁新药的研发日益高效。
有趣的是,ECS信号曾被报道与嘌呤能信号存在相互作用,如嘌呤能信号中腺苷刺激的A1受体可介导CB1R参与神经调节[82],而CB1R的激活还能抑制嘌呤能P2X受体的生物学作用[83];另有研究表明嘌呤能P2Y受体是内源性大麻素的潜在靶点,发现P2Y1受体在内源性大麻素抑制小胶质细胞的炎症反应中起重要作用[84]。不仅如此,目前已有研究检测到由CB1R与嘌呤能A2A受体构成的聚合物[85],可以共同控制Glu的释放[86]。事实上,嘌呤能系统也已被证明与抑郁症发病机制密切相关[87],提示ECS和嘌呤能系统的相互作用可能在抑郁症发病机制中起着关键作用。中药在抑郁症治疗应用中具有多靶点的优势,因此具备嘌呤能系统调节活性的中药资源也是ECS调节剂的潜在研究对象。
利益冲突 所有作者均声明不存在利益冲突
[1] Lu J, Xu X F, Huang Y Q,. Prevalence of depressive disorders and treatment in China: A cross-sectional epidemiological study [J]., 2021, 8(11): 981-990.
[2] Li X, Qin X M, Tian J S,. Integrated network pharmacology and metabolomics to dissect the combination mechanisms ofDC-Pall herb pair for treating depression [J]., 2021, 264: 113281.
[3] 曾九僧, 纪雅菲, 方洋, 等. NLRP3炎症小体在抑郁症中的作用及中药干预研究进展 [J]. 中草药, 2021, 52(11): 3418-3428.
[4] Yarar E. Role and function of endocannabinoid system in major depressive disease [J]., 2020, 4(1): 1-12.
[5] Navarrete F, García-Gutiérrez M S, Jurado-Barba R,. Endocannabinoid system components as potential biomarkers in psychiatry [J]., 2020, 11: 315.
[6] Ibarra-Lecue I, Pilar-Cuéllar F, Muguruza C,. The endocannabinoid system in mental disorders: Evidence from human brain studies [J]., 2018, 157: 97-107.
[7] Boorman E, Zajkowska Z, Ahmed R,. Crosstalk between endocannabinoid and immune systems: A potential dysregulation in depression? [J]., 2016, 233(9): 1591-1604.
[8] Morcuende A, García-Gutiérrez M S, Tambaro S,. Immunomodulatory role of CB2 receptors in emotional and cognitive disorders [J]., 2022, 13: 866052.
[9] Reddy V, Grogan D, Ahluwalia M,. Targeting the endocannabinoid system: A predictive, preventive, and personalized medicine-directed approach to the management of brain pathologies [J]., 2020, 11(2): 217-250.
[10] Rana T, Behl T, Sehgal A,. Integrating endocannabinoid signalling in depression [J]., 2021, 71(10): 2022-2034.
[11] Mannekote Thippaiah S, Iyengar S S, Vinod K Y. Exo- and endo-cannabinoids in depressive and suicidal behaviors [J]., 2021, 12: 636228.
[12] Pinna G. Endocannabinoids and precision medicine for mood disorders and suicide [J]., 2021, 12: 658433.
[13] Morris G, Walder K, Kloiber S,. The endocannabinoidome in neuropsychiatry: Opportunities and potential risks [J]., 2021, 170: 105729.
[14] Kudalkar S N, Kingsley P J, Marnett L J. Assay of endocannabinoid oxidation by cyclooxygenase-2 [J]., 2016, 1412: 205-215.
[15] Hill M N, Miller G E, Carrier E J,. Circulating endocannabinoids and-acyl ethanolamines are differentially regulated in major depression and following exposure to social stress [J]., 2009, 34(8): 1257-1262.
[16] Dong B, Shilpa B M, Shah R,. Dual pharmacological inhibitor of endocannabinoid degrading enzymes reduces depressive-like behavior in female rats [J]., 2020, 120: 103-112.
[17] Carnevali L, Statello R, Vacondio F,. Antidepressant-like effects of pharmacological inhibition of FAAH activity in socially isolated female rats [J]., 2020, 32: 77-87.
[18] Fang G X, Wang Y. Effects of rTMS on hippocampal endocannabinoids and depressive-like behaviors in adolescent rats [J]., 2018, 43(9): 1756-1765.
[19] Smaga I, Bystrowska B, Gawliński D,. Antidepressants and changes in concentration of endocannabinoids and-acylethanolamines in rat brain structures [J]., 2014, 26(2): 190-206.
[20] Kranaster L, Hoyer C, Aksay S S,. Electroconvulsive therapy enhances endocannabinoids in the cerebrospinal fluid of patients with major depression: A preliminary prospective study [J]., 2017, 267(8): 781-786.
[21] 龚源. 内源性大麻素系统在荷瘤应激诱发抑郁中的作用 [D]. 上海: 上海交通大学, 2015.
[22] Zhong P, Wang W, Pan B,. Monoacylglycerol lipase inhibition blocks chronic stress-induced depressive-like behaviors via activation of mTOR signaling [J]., 2014, 39(7): 1763-1776.
[23] Zhang Z, Wang W, Zhong P,. Blockade of 2-arachidonoylglycerol hydrolysis produces antidepressant-like effects and enhances adult hippocampal neurogenesis and synaptic plasticity [J]., 2015, 25(1): 16-26.
[24] Ghazizadeh-Hashemi M, Ghajar A, Shalbafan M R,. Palmitoylethanolamide as adjunctive therapy in major depressive disorder: A double-blind, randomized and placebo-controlled trial [J]., 2018, 232: 127-133.
[25] Li M M, Wang D, Bi W P,.-palmitoylethanolamide exerts antidepressant-like effects in rats: Involvement of PPARα pathway in the hippocampus [J]., 2019, 369(1): 163-172.
[26] Locci A, Pinna G. Stimulation of peroxisome proliferator-activated receptor-α by-palmitoylethanolamine engages allopregnanolone biosynthesis to modulate emotional behavior [J]., 2019, 85(12): 1036-1045.
[27] Romero-Sanchiz P, Nogueira-Arjona R, Pastor A,. Plasma concentrations of oleoylethanolamide in a primary care sample of depressed patients are increased in those treated with selective serotonin reuptake inhibitor-type antidepressants [J]., 2019, 149: 212-220.
[28] Antón M, Alén F, Gómez de Heras R,. Oleoylethanolamide prevents neuroimmune HMGB1/ TLR4/NF-kB danger signaling in rat frontal cortex and depressive-like behavior induced by ethanol binge administration [J]., 2017, 22(3): 724-741.
[29] Heyman E, Gamelin F X, Goekint M,. Intense exercise increases circulating endocannabinoid and BDNF levels in humans: Possible implications for reward and depression [J]., 2012, 37(6): 844-851.
[30] Calapai F, Cardia L, Sorbara E E,. Cannabinoids, blood-brain barrier, and brain disposition [J]., 2020, 12(3): 265.
[31] Haj-Mirzaian A, Amini-Khoei H, Haj-Mirzaian A,. Activation of cannabinoid receptors elicits antidepressant-like effects in a mouse model of social isolation stress [J]., 2017, 130: 200-210.
[32] Poleszak E, Wośko S, Sławińska K,. Influence of the CB1 cannabinoid receptors on the activity of the monoaminergic system in the behavioural tests in mice [J]., 2019, 150: 179-185.
[33] Zimmermann T, Maroso M, Beer A,. Neural stem cell lineage-specific cannabinoid type-1 receptor regulates neurogenesis and plasticity in the adult mouse hippocampus [J]., 2018, 28(12): 4454-4471.
[34] Shen C J, Zheng D, Li K X,. Cannabinoid CB 1 receptors in the amygdalar cholecystokinin glutamatergic afferents to nucleus accumbens modulate depressive-like behavior [J]., 2019, 25(2): 337-349.
[35] Zhang H Z, Li L, Sun Y L,. Sevoflurane prevents stroke-induced depressive and anxiety behaviors by promoting cannabinoid receptor subtype I-dependent interaction between β-arrestin 2 and extracellular signal-regulated kinases 1/2 in the rat[J]., 2016, 137(4): 618-629.
[36] Zoppi S, Madrigal J L, Caso J R,. Regulatory role of the cannabinoid CB2 receptor in stress-induced neuroinflammation in mice [J]., 2014, 171(11): 2814-2826.
[37] Poleszak E, Wośko S, Sławińska K,. Ligands of the CB2 cannabinoid receptors augment activity of the conventional antidepressant drugs in the behavioural tests in mice [J]., 2020, 378: 112297.
[38] Hwang E S, Kim H B, Lee S,. Antidepressant-like effects of β-caryophyllene on restraint plus stress-induced depression [J]., 2020, 380: 112439.
[39] Morris G, Walder K, Berk M,. Intertwined associations between oxidative and nitrosative stress and endocannabinoid system pathways: Relevance for neuropsychiatric disorders [J]., 2022, 114: 110481.
[40] Palazuelos J, Ortega Z, Díaz-Alonso J,. CB2cannabinoid receptors promote neural progenitor cell proliferation via mTORC1 signaling [J]., 2012, 287(2): 1198-1209.
[41] Stempel A V, Stumpf A, Zhang H Y,. Cannabinoid type 2 receptors mediate a cell type-specific plasticity in the hippocampus [J]., 2016, 90(4): 795-809.
[42] Wróbel A, Serefko A, Szopa A,. O-1602, an agonist of atypical cannabinoid receptors GPR55, reverses the symptoms of depression and detrusor overactivity in rats subjected to corticosterone treatment [J]., 2020, 11: 1002.
[43] Shen S Y, Yu R, Li W,. The neuroprotective effects of GPR55 against hippocampal neuroinflammation and impaired adult neurogenesis in CSDS mice [J]., 2022, 169: 105743.
[44] Gáll Z, Farkas S, Albert Á,. Effects of chronic cannabidiol treatment in the rat chronic unpredictable mild stress model of depression [J]., 2020, 10(5): 801.
[45] Abame M A, He Y, Wu S,. Chronic administration of synthetic cannabidiol induces antidepressant effects involving modulation of serotonin and noradrenaline levels in the hippocampus [J]., 2021, 744: 135594.
[46] Viudez-Martínez A, García-Gutiérrez M S, Manzanares J. Cannabidiol regulates the expression of hypothalamus-pituitary-adrenal axis-related genes in response to acute restraint stress [J]., 2018, 32(12): 1379-1384.
[47] Gáll Z, Farkas S, Albert Á,. Effects of chronic cannabidiol treatment in the rat chronic unpredictable mild stress model of depression [J]., 2020, 10(5): 801.
[48] Sales A J, Fogaça M V, Sartim A G,. Cannabidiol induces rapid and sustained antidepressant-like effects through increased BDNF signaling and synaptogenesis in the prefrontal cortex [J]., 2019, 56(2): 1070-1081.
[49] Zádor F, Joca S, Nagy-Grócz G,. Pro-inflammatory cytokines: Potential links between the endocannabinoid system and the kynurenine pathway in depression [J]., 2021, 22(11): 5903.
[50] Florensa-Zanuy E, Garro-Martínez E, Adell A,. Cannabidiol antidepressant-like effect in the lipopolysaccharide model in mice: Modulation of inflammatory pathways [J]., 2021, 185: 114433.
[51] Henry R J, Kerr D M, Finn D P,. For whom the endocannabinoid tolls: Modulation of innate immune function and implications for psychiatric disorders [J]., 2016, 64: 167-180.
[52] Butler M I, Cryan J F, Dinan T G. Man and the microbiome: A new theory of everything? [J]., 2019, 15: 371-398.
[53] Chevalier G, Siopi E, Guenin-Macé L,. Effect of gut microbiota on depressive-like behaviors in mice is mediated by the endocannabinoid system [J]., 2020, 11(1): 6363.
[54] 孙颖哲, 郭颖, 高扬, 等. 中医治疗抑郁症的治则[J].世界中医药, 2021, 16(18): 2747-2750.
[55] 梁惠卿, 蔡洋, 毛乾国, 等. 菖郁逍遥方治疗慢性乙型肝炎伴抑郁症的临床疗效及作用机制探讨 [J]. 中国中西医结合杂志, 2018, 38(12): 1420-1424.
[56] 徐甜, 樊姝宁, 邓楠, 等. 基于分子网络研究四逆散抗抑郁症作用的潜在生物学机制 [J]. 药物评价研究, 2019, 42(9): 1723-1729.
[57] 程辉, 张贵金, 钟梅. 柴胡疏肝汤联合重复经颅磁刺激治疗围绝经期抑郁观察[J]. 世界中医药, 2020, 15(19): 2950-2954.
[58] 王慧慧. 行气方剂对抑郁症作用机制的系统药理学研究 [D]. 北京: 北京中医药大学, 2017.
[59] 卞庆来. 抑郁症调控网络及逍遥散抗抑郁模块的生物信息学分析与实验研究 [D]. 北京: 北京中医药大学, 2020.
[60] 黄世敬, 陈宇霞, 张颖. 厚朴治疗抑郁症及抗抑郁机理探讨 [J]. 世界中西医结合杂志, 2015, 10(7): 1023-1026.
[61] Rempel V, Fuchs A, Hinz S,.extract, magnolol, and metabolites: Activation of cannabinoid CB2 receptors and blockade of the related GPR55 [J]., 2012, 4(1): 41-45.
[62] Tran D N H, Hwang I H, Chen F J,. Core prescription pattern of Chinese herbal medicine for depressive disorders in Taiwan: A nationwide population-based study [J]., 2021, 10(3): 100707.
[63] Zhang Y W, Lv X Y, Liu R,. An integrated strategy for ascertaining quality marker of(Turcz.) Baill based on correlation analysis between depression-related monoaminergic metabolites and chemical components profiling [J]., 2019, 1598: 122-131.
[64] Zhao C B, Liu J, Shi J L,. Anxiolytic effect of alcohol-water extracted Suanzaoren-Wuweizi herb-pair by regulating ECS-BDNF-ERK signaling pathway expression in acute restraint stress male rats [J]., 2020, 2020: 2078932.
[65] 郭玥, 王倩怡, 莫祎祎, 等. 基于网络药理学探讨牛大力治疗抑郁症的活性成分及分子机制 [J]. 广西医科大学学报, 2021, 38(1): 76-83.
[66] Yang X, Guo J Y, Jiang Y N,.Jones ex Roxb. against post-traumatic stress disorder, network pharmacological analysis, andevaluation [J]., 2021, 12: 764548.
[67] Wang Y S, Shen C Y, Jiang J G. Antidepressant active ingredients from herbs and nutraceuticals used in TCM: Pharmacological mechanisms and prospects for drug discovery [J]., 2019, 150: 104520.
[68] Zhou H, Peng X R, Hou T,. Identification of novel phytocannabinoids fromby label-free dynamic mass redistribution assay [J]., 2020, 246: 112218.
[69] Ahmad R, Riaz M, Khan A,.(Reishi) an edible mushroom; a comprehensive and critical review of its nutritional, cosmeceutical, mycochemical, pharmacological, clinical, and toxicological properties [J]., 2021, 35(11): 6030-6062.
[70] Hassanzadeh P, Hassanzadeh A. The CB1 receptor- mediated endocannabinoid signaling and NGF: The novel targets of curcumin [J]., 2012, 37(5): 1112-1120.
[71] 魏肇余. 氯胺酮、肉豆蔻醚防治应激性精神障碍的药理作用及机制研究 [D]. 张家口: 河北北方学院, 2020.
[72] Lin J C, Song Z J, Chen X L,. Trans-cinnamaldehyde shows anti-depression effect in the forced swimming test and possible involvement of the endocannabinoid system [J]., 2019, 518(2): 351-356.
[73] Ferber S G, Namdar D, Hen-Shoval D,. The “entourage effect”: Terpenes coupled with cannabinoids for the treatment of mood disorders and anxiety disorders [J]., 2020, 18(2): 87-96.
[74] de Oliveira D R, da Silva D M, Florentino I F,. Monoamine involvement in the antidepressant-like effect of β-caryophyllene [J]., 2018, 17(4): 309-320.
[75] Guzmán-Gutiérrez S L, Bonilla-Jaime H, Gómez-Cansino R,. Linalool and β-pinene exert their antidepressant-like activity through the monoaminergic pathway [J]., 2015, 128: 24-29.
[76] Hwang E S, Kim H B, Lee S,. Antidepressant-like effects of β-caryophyllene on restraint plus stress-induced depression [J]., 2020, 380: 112439.
[77] Hanuš L O, Meyer S M, Muñoz E,. Phytocannabinoids: A unified critical inventory [J]., 2016, 33(12): 1357-1392.
[78] Ren S Y, Wang Z Z, Zhang Y,. Potential application of endocannabinoid system agents in neuropsychiatric and neurodegenerative diseases-focusing on FAAH/MAGL inhibitors [J]., 2020, 41(10): 1263-1271.
[79] Li X T, Hua T, Vemuri K,. Crystal structure of the human cannabinoid receptor CB2 [J]., 2019, 176(3): 459-467.
[80] Xing C R, Zhuang Y W, Xu T H,. Cryo-EM structure of the human cannabinoid receptor CB2-G i signaling complex [J]., 2020, 180(4): 645-654.
[81] Hua T, Li X T, Wu L J,. Activation and signaling mechanism revealed by cannabinoid receptor-G i complex structures [J]., 2020, 180(4): 655-665.e18.
[82] Hoffman A F, Laaris N, Kawamura M,. Control of cannabinoid CB1 receptor function on glutamate axon terminals by endogenous adenosine acting at A1 receptors [J]., 2010, 30(2): 545-555.
[83] Baldassano S, Zizzo M G, Serio R,. Interaction between cannabinoid CB1 receptors and endogenous ATP in the control of spontaneous mechanical activity in mouse ileum [J]., 2009, 158(1): 243-251.
[84] Kita M, Ano Y, Inoue A,. Identification of P2Y receptors involved in oleamide-suppressing inflammatory responses in murine microglia and human dendritic cells [J]., 2019, 9(1): 3135.
[85] Carriba P, Navarro G, Ciruela F,. Detection of heteromerization of more than two proteins by sequential BRET-FRET [J]., 2008, 5(8): 727-733.
[86] Köfalvi A, Moreno E, Cordomí A,. Control of glutamate release by complexes of adenosine and cannabinoid receptors [J]., 2020, 18(1): 9.
[87] 陈佳俊, 秦雪梅, 杜冠华, 等. 基于嘌呤能系统及嘌呤代谢的抑郁症发病机制研究进展 [J]. 药学学报, 2021, 56(9): 2464-2471.
Pathogenesis of depression based on endocannabinoid system and its application in traditional Chinese medicine research
CHEN Jia-jun1, 2, 3, QIN Xue-mei1, 2, 3, DU Guan-hua1, 4, ZHOU Yu-zhi1, 2, 3
1. Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China 2. Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China 3. Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan 030006, China 4. Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
Depression was a disease that was difficult to control, and satisfactory medication was lacking. From this perspective, the discovery of new pathogenesis for depression had important significance for the development of antidepressant drugs. In recent years, studies have found that depression was closely related to the disturbance of endocannabinoid system (ECS), but the mechanism involved was complex. At present, it was a new way to treat depression through the regulation of ECS, and traditional Chinese medicine had some natural advantages in this way. In this regard, the development of new antidepressant drugs had broad research prospects. In view of this, present study analyzed the relationship between ECS and depression, and also analyzed the antidepressant effects of ECS mediated by traditional Chinese medicine. The main purpose of this study was to provide a reference for the research of the pathogenesis of depression, and provide new strategies for the development of antidepressant drugs.
endocannabinoid system; depression; pathogenesis; phytocannabinoid; cannabinoid receptor
R28
A
0253 - 2670(2022)19 - 6273 - 10
10.7501/j.issn.0253-2670.2022.19.032
2022-06-07
国家自然科学基金面上项目(82074323);国家自然科学基金面上项目(81673572);国家重大新药创制科技重大专项(2017ZX09301047);山西省留学回国人员科技活动择优资助项目(201991);山西省回国留学人员科研资助项目(2020019)
陈佳俊(1997—),男,硕士研究生,研究方向为中药药理及作用机制。E-mail: chen_jiajun999@163.com
周玉枝,教授,博士生导师,研究方向为中药药效物质基础及作用机制。Tel: (0351)7019178 E-mail: zhouyuzhi@sxu.edu.cn
[责任编辑 王文倩]