城市轨道交通车站智慧能耗管理系统研究

2022-08-18 07:45:40赵俊华王越彤韩佩瑶
现代城市轨道交通 2022年8期
关键词:车站轨道交通能耗

周 超,张 铭,赵俊华,王越彤,韩佩瑶

(1.中国铁道科学研究院集团有限公司电子计算技术研究所,北京 100081;2.北京经纬信息技术有限公司,北京 100081)

1 背景

随着城市轨道交通线网规模的扩大,其能源消耗也日益增加[1-2]。车站作为城市轨道交通系统的“最小单元”,能耗管理效应的发挥主要从“车站”入手。同时,为助推国家双碳战略目标实施,文章结合《中国城市轨道交通智慧城轨发展纲要》[3]及应用需求,以能耗管理智能化为主线,研究节能降耗关键技术,搭建车站能耗管理系统[4-5]。

通常情况下,车站内空调系统(大系统和空调水系统)能耗占整个车站常规用电的50%以上,尤其在制冷季节,甚至达到60%~80%。在前期设计阶段,空调系统均需要按照城市轨道交通运营的最大负荷进行设计,并预留一定的余量。而在实际运营过程中,空调系统运行在较大负荷水平的时间占比通常不到全部时间的20%,采用常规控制策略存在较大的能源浪费[6-8]。传统的能耗统计管理方法无法实现车站电梯系统、照明系统、环控设备、屏蔽门系统、自动售检票系统、消防设备等的用电量检测以及车站主供水管路、卫生间供水管路及冷却塔供水管路等的用水量检测。近年来,各地城市轨道交通运营企业开展了各类节能技术的产品应用,如变频空调技术、LED照明技术、空调温度智能调节技术、高频辅逆技术、空气净化技术、中压能馈设备等,以此达到节能降耗的目的。部分车站在现场加装智能电表和水表,通过远程通信实现与能耗管理系统后台的对接,并对车站内用电、用水量进行统计分析,以辅助实现节能控制[9-11]。这些举措虽然提高了车站对各专业能源使用的监视效率,但各专业能耗管理相对分散、独立,尚未深入开展对各专业的综合能耗管控研究,车站能源消耗的智能化分析和精准管理水平仍存在不足。因此,本文将深入分析车站能耗研究现状,研究城市轨道交通能耗管理系统架构及针对性的能耗管理策略,实现对车站水、气、电、热等多种的综合分析,在提升车站智慧化水平的同时实现车站节能增效。

2 车站能耗现状分析

2.1 高效能耗管理需求

城市轨道交通车站内传统的能耗统计管理存在周期长,风水系统无智能化联动,电表、水表出现故障时不能及时发现和处理等缺陷与不足,影响车站运营安全。在人工抄表情况下存在人工出错、数据重复统计修正、无法实时统计、上报数据的情况,造成人力物力资源浪费。冷却水与风机目前为定时任务模式,存在能耗进一步优化空间。因此,迫切需要一套智慧能耗管理系统,实现各类能源的节能管理与管控,对风、水、电及其他能源消耗进行实时监控,对能源消耗规律及趋势进行分析并提供数据支撑,以制定科学合理的节能策略。

2.2 站点环境特点分析

(1)站内热源常年存在。城市轨道交通地下建筑受室外气象条件影响较小,而地下车站内部存在显著的内热源,具有较大的热源属性,常年的冷负荷较高。

(2)空调负荷波动较大。车站空调通风负荷的设计标准通常长达20~30年。随着城市发展、沿线人口增长、换乘站点增多后,客流量将出现显著变化,最初的空调负荷设计和控制方案往往随着运营时间的推移而日趋不合理。同时,车站空调负荷也具有周期性变化和突发波动并存的特性。采用定流量、定风量的控制策略不合理,并且易造成一定的能耗浪费。

(3)通风要求高。高峰时段车站内高度密集的人群会释放出大量的异味和二氧化碳。由于车站作为长期固定建筑,因地层的蓄热作用,自运营初期起城市轨道交通系统内部的温度会逐年升高。若未能及时排出热量,会增大城市轨道交通系统的远期热负荷,增加空调系统能耗。

2.3 现有控制技术缺陷

(1)冷源系统运行与风系统舒适度脱节。站内不同区域对空调的需求量各不相同,而且随着人流量、季节、天气、时间等因素的变化,空调的负荷需求也动态变化。常规的冷源群控系统与风控系统一般独立设计、独立运行,水系统与风系统的运行信息没有互通互联。供应侧的运行无法参考需求侧的信息,系统一定程度上处于“盲控”状态,人工或常规的群控策略不可避免地造成冷/热量的过供应,造成一定能源浪费,末端服务质量也难以持续保证。

(2)未采用有效的变流量控制。暖通水系统设计通常是针对设计日工况(即末端负荷最大的工况)进行系统管路和动力设备的选型配置。而设计日工况的运行时间,在空调系统全年运行的时间占比不到20%,大部分时段系统都处于部分负荷,系统水流量有较大富余,存在一定的能源浪费。此外,当前一次泵和冷却水泵以工频方式运行也存在大量能源耗费。即使采用基于压差的变频控制策略,也仅考虑到管路压力信息,没有考虑末端负荷需求情况,水泵的频率控制存在一定盲目性。

(3)系统工况复杂,节能难度高。站内风水系统涉及冷主机、冷冻循环泵、冷却循环泵、冷却塔以及多台风机设备,实际运行环境下的设备运行组合表现为空调系统的运行能耗。常规的群控系统不能实时提供所需的决策支持信息,实际运行过程中也未对上述信息进行粗略汇总。因此,有必要采用更加智能的风水联动智能控制单元,全时段、全自动地对空调系统运行进行优化。

(4)设备运行维护缺乏决策支持系统。车站空调系统每年的设备维保费用超过年能耗成本的10%,设备维保直接关系到系统的能效水平和稳定运行。对于冷水主机、组合式空调箱等设备,投资大且维护成本高,没有制定相应的设备维保策略。因此,有必要通过性能检测跟踪技术,实时检测设备性能变化,对异常的性能衰减给出提示信息并针对性给出维护建议。

综上所述,城市轨道交通车站的能源种类繁多,包括水、电、气、太阳能等,因其大面积、多专业的系统设计、现代化的高标准服务要求,车站内设施耗能不断增加。此外,由于城市轨道交通车站地下空间居多,水、电、气等各个系统重要负荷多,与乘客出行的舒适度及运营服务水平紧密相关,在疫情防控常态化的背景下,车站设备使用强度和频率呈现不规律性,因此需要结合实际需求,构建智慧能耗管理系统,实现主要高能耗设备系统的集中化管理,提高车站的综合运营效能。智慧能耗管理系统以综合监管为核心,利用图像高度可视化,直观准确地对各系统的用电量与用水量进行评估管理;建立车站的能耗运营管理信息统计数据库,提供各项信息服务并进行数据分析;建立趋势分析预案,丰富充实本地化信息数据库;同时可利用数字化智能监管技术,进行全天候的信息捕获、分析、处理,提高事件处置效率,实现设备与信息的高度共享与智能决策。

3 智慧能耗管理系统架构

智慧能耗管理系统的建设重点包括3个方面:细颗粒度的能源信息采集、管控范围的补强、环境与设备监控系统(BAS)深度联动控制,具体如下。

(1)对能源信息采集、存储、管理和利用进行完善,通过数据分析获取调整能耗应用方案的策略。

(2)在原有用电管理的基础上,智慧能耗管理系统增加对用水、变电所及热力的管理,将车站内智能水表与智能热力表进行连接,相关数据汇总到采集箱内进行集中处理。

(3)智慧能耗管理系统可通过BAS系统获取城市轨道交通设备的运行状态及数据,并将相关能源管控策略通过BAS系统下达至各系统设备实现合理控制。

3.1 系统架构

智慧能耗管理系统主要对能耗设备进行信息采集、监控,根据能耗数据分析挖掘有针对性的节能降耗策略,与设备系统联动控制,从而达到节能降耗的效果。根据城市轨道交通列车早、晚发车和停运信息制定照明、空调等设备的相关能耗管控策略,由智慧能耗管理系统配置控制策略并执行节能控制。通过采集不同区域、不同设备的能耗相关数据,对分类分项能耗使用情况进行分析,为能耗评估分析提供数据支撑。智慧能耗管理系统架构分为5层:基础层、网络层、平台层、应用层、展现层。每层之间通过制定接口协议对接,如图1所示。

图1 系统架构图

(1)基础层。作为系统数据场景设备采集的组成部分,包括智能基表、传感器、智能检测主机等。

(2)网络层。作为整个系统网络传输设备的组成部分,提供系统运行的通信和运行环境。

(3)平台层。主要为系统做接口,通过为数据提供接口将各设备数据采集到数据库中。系统主站与测量仪表之间通过现场总线或电力载波进行通信,与变电所测量仪表之间通过通信管理机进行通信。

(4)应用层。进行日常能源使用的监控、管理,制定节能策略,如用电量监控管理、用水量监控管理等。

(5)展现层。作为与用户交互的终端,如应用软件、Web端网页等。

3.2 网络架构

车站智慧能耗管理系统计算机网络架构如图2所示,通过通信网络(根据需求不同采用有线或无线的通信方式)将分布在车站不同空间位置的各专业系统设备连接起来,设置智能载波采集器、智能电表、集中器等动态采集空调机组、电梯扶梯供电回路及其他重要负荷或用电量大的能耗数据,然后通过网络交换机接入车站内局域网,进一步传输至车站能耗管理服务器,在智慧能耗管理系统上将监测与数据分析结果进行可视化展示。

图2 网络拓扑图

3.3 功能架构

智慧能耗管理系统具备各种能耗设备的数据采集、监测、统计、分析、报警功能,可对能源供应的安全性、能耗量、设备运行能耗的数据进行清洗、过滤、加载,运用建模方法挖掘能耗降低的关键性状态,同时可结合场景条件与设备的自动控制相融合。功能架构如图3所示。

图3 功能架构

(1)能耗监测。该功能可实现能源使用全过程精细化监测管理,实现能源消耗状态的可视化、监测实时化,通过分类分项能耗监测、重点设备能耗监测、区域能耗监测,全面综合的将车站能耗清晰展示于系统中,如各条支路的耗电量、功率等参数,水管的跑冒滴漏等状态。

(2)数据统计查询。运行过程中会产生海量数据信息,系统基于完善的数据分类管理策略,可以查询任意时段内、任意能耗设备或能耗单元的数据信息,实现对历史数据信息的快速查询;同时,可显示全车站不同区域、不同时间段内的整体能耗以及单位面积能耗情况,能够按照配置的建筑环境参考因素形成对比,根据相应环境因素特点,形成相应曲线趋势图。

(3)能源报警管理。该功能模块可实现配电回路、用能设备单位时间的能耗监测报警,当用电回路的日能耗超出设定阈值时,进行异常报警。该系统可对城市轨道交通车站内所有基础设施的能耗过程进行全面监测报警。

(4)能源数据分析。数据分析是智慧能耗管理系统的核心功能,针对各类能源的消耗过程,该功能以能耗数据为基础,通过与机电设备监控系统数据交换,分析现场室内外环境状态、设备实时能耗数据等信息,建立能耗数据分析模型,并自动对比历史数据,发现能耗管理存在的问题,进而从能耗管理的角度对设备能耗、车站能耗水平、能耗管理流程等给出分析评估,从而推荐机电设备采用最优的节能控制策略,达到优化设备运行及管理流程、提高能源效率、降低能源消耗的目的。

(5)报表管理。报表功能是基于数据库中的历史、实时数据,根据日常办公、管理需求,提供能耗统计、能源分析、综合报表等各类报表。

(6)能源看板。能源看板是系统提供的一项系统概览功能,可以根据管理需求,以各类图表的方式从时间、空间、统计的维度直接呈现整体能耗、各分类分项能耗及能耗趋势等信息,可实现同比、环比能耗对比和趋势分析,也可呈现车站能耗管理制度、指标内容等。

4 能耗管理与控制策略

结合车站的能耗管理业务特点,智慧能耗管理系统在用电、用水、用热方面与设备系统联动控制,设计专项节能策略以达到智慧化节能的目的。

4.1 能耗管理策略

能耗管理策略应分类建立能耗基线,通过逐步迭代不断优化以确定更加精准的节能控制方案。车站能耗管理的重点专业包括:冷热源、暖通空调、新风、水泵、电热设备、照明系统、电扶梯等。

(1)用电管理策略。对于照明与插座用电按照公共区照明、工作区照明、广告照明和其他照明进行分类采集,能耗计量装置根据不同的管理单位进行分类设置;通风空调系统用电可按照生产工作区域、乘客服务区域、设备机房区域等进行分类采集。

(2)用水管理策略。对站内用水能耗按照用水类型制定相应的能耗采集策略。在各个水表位置增加压力传感器,通过流量压力检测给水系统漏损情况,在供暖管网中地暖总管进出水位置增加压力传感器,检测漏损情况。

(3)用热管理策略。集中供热时,在供热一次侧和二次侧增设热量表,在二次侧增设电动调节阀,同时在地暖总管位置加装电动调节阀,以便根据供热负荷实时调节达到节能的目的。

4.2 节能控制策略

以车站能耗重点系统给排水系统、空调系统、智能照明系统为例进行节能控制策略分析。

(1)给排水系统节能控制策略。对车站、区间各种水泵(包括集水井、污水坑、电梯基坑等)均采用液位监控和自动控制,通过控制水泵的运行方式、台数和相应阀门的动作来进行污水、积水的及时排放,达到供水量与需水量之间的平衡,实现对给排水系统最优控制。

(2)空调系统节能控制策略。空调子系统通过采集各个暖通设备的运行信息,完成对控制系统设备的修复及增补,可实现暖通项目的监控与计量、各关键数据的报警以及数据信息的记录统计。增设室外微型气象站监测室外温湿度、空气质量以及增加风速风向传感器、雨量传感器等设备采集的数据作为空调控制系统、新风控制系统的控制依据,通过空调机理变量、环境变量、冷热水循环效率、冷热源负荷能效模型优化空调运行管理效率。此外,结合车站列车到发时间、区域客流情况,对车站的组合式空调进行预调节和重点区域定向调节。

(3)智能照明节能控制策略。针对大型车站出入口多以及乘客聚集等情况,在客流集散量大和乘客稀疏的出入口、电梯口、进出站通道等公共区域采用智能照明总线控制,在消防控制室集中控制照明状态的同时,在车站控制室、站台等处也可设置智能可编程控制单联面板以实现更加灵活的控制方式。在车站部分重点区域设置照度传感器,对受控区域的照明回路进行细化,可根据采光度调整相应照明区域光照强度,根据列车运行时间段及客流量进行分区域、分时段照明时间控制,进出站通道可利用广告屏照度兼做照明增强,从而实现照明节能。

5 结束语

碳达峰、碳中和战略对城市轨道交通行业既是挑战更是实现高质量发展的机遇,文章以智慧赋能城市轨道交通车站节能降碳为目标,提出智慧能耗管理系统架构及功能,通过物联网技术实现对风、水、电、热、气等各类能源的实时数据采集及监视,通过对能源消耗规律及趋势分析制定合理科学的节能策略,最终实现对车站能源的综合节能管理与管控。智慧能耗管理系统是城市轨道交通综合能耗智能管理的一种有益尝试,下一步要加强对节能降耗体系和评估指标的研究,同时通过示范项目打造绿色车站标杆,进一步引导行业积极开展绿色城市轨道交通落地实践。

猜你喜欢
车站轨道交通能耗
轨道交通产品CE认证论述
120t转炉降低工序能耗生产实践
昆钢科技(2022年2期)2022-07-08 06:36:14
能耗双控下,涨价潮再度来袭!
当代水产(2021年10期)2022-01-12 06:20:28
探讨如何设计零能耗住宅
高速轨道交通发展趋势
日本先进的“零能耗住宅”
华人时刊(2018年15期)2018-11-10 03:25:26
车站一角
热闹的车站
幼儿画刊(2016年9期)2016-02-28 21:01:10
热闹的车站
启蒙(3-7岁)(2016年10期)2016-02-28 12:27:06
基于CAN的冗余控制及其在轨道交通门禁环网中的应用