热处理作用下页岩储层改造机理及提高采收率技术研究进展

2022-07-30 03:26李一波胡志明赵金洲
油气地质与采收率 2022年4期
关键词:热应力渗透率页岩

李一波,蔺 祥,彭 瑀,胡志明,张 理,赵金洲

(1.西南石油大学油气藏地质及开发工程国家重点实验室,四川成都 610500;2.中国石油勘探开发研究院廊坊分院,河北廊坊 065007;3.中国石油西南油气田分公司勘探开发研究院,四川成都 610051)

近20 a来,中国油气需求快速增长,对外依存度不断攀升,2019 年原油和天然气对外依存度分别达到72.5%和45.2%[1]。中国油气勘探开发历经半个多世纪的发展,主力常规含油气储层已进入开发中后期阶段,非常规油气成为增储上产的主力,中国页岩油气资源丰富,可采资源量为43.93×108t[2]。近几年在准噶尔盆地、渤海湾盆地、鄂尔多斯盆地和四川盆地等地区取得了重大突破,页岩油气资源的高效开发将会深刻影响中国未来的能源安全。

中国海陆相地层中广泛发育页岩油气,页岩既是烃源岩又是储集岩,油气一般以游离态和吸附态2 种形式存在,主要储集于纳米级孔喉和裂缝系统中,多沿片状层理面或与其平行的微裂缝分布,孔径普遍小于2 μm,有机质孔喉半径为100~200 nm[3-4]。页岩储层为特低孔渗储层,在不发育裂缝的情况下,页岩渗流能力非常低,直接影响页岩内部排烃输导条件[5]。为保证高效经济开采页岩油气资源,针对页岩储层开采时必须进行储层改造,在储层内部形成大规模复杂裂缝网络,扩大可动资源量,同时为油气提供优势渗流通道。

储层热处理技术(Formation Heat Treatment,FHT)由JAMALUDDIN 等于1995年基于储层保护而提出,实验发现将致密砂岩加热至600 ℃不仅缓解了水相圈闭造成的伤害,而且显著提高了岩石的有效渗透率[6]。针对页岩储层低孔低渗透的特点,目前有学者提出通过改变储层温度的方法改造页岩储层[7-9],主要是通过改变储层的温度梯度进而产生热应力,利用岩石矿物非均匀热膨胀等机理造成页岩内部结构的变化,改变页岩的力学性能,诱导形成微观裂缝网络,最终提高页岩渗流能力。笔者基于页岩储层的物理性质,对热处理过程中页岩物理性质变化规律及相应的提高采收率方法进行总结,以期为中国页岩油气资源的高效开发提供借鉴。

1 热应力作用下页岩储层改造机理

页岩富含黏土矿物,对温度较敏感,即使在较低的温差范围内孔渗特征和力学性质等也有明显变化[10]。当页岩内部温度梯度改变时,其在热应力作用下会发生孔隙空间增大、裂缝热扩展等反应,对页岩储层进行就地改善,可有效改善其渗流能力。

1.1 矿物非均匀热膨胀

页岩中石英、方解石等脆性矿物含量大于40%,黏土矿物有蒙脱石、高岭石、伊利石等[11]。由于矿物的热膨胀系数具有非均质性和各向异性,在热处理后各种矿物会发生不同程度的形变,一旦热应力超过胶结强度,就会导致颗粒间的胶结结构失效,热应力会使矿物界面滑动或矿物颗粒破碎,进而促使孔隙数量和矿物间穿晶裂缝增多(图1)。同时裂缝受应力作用向两侧开裂,裂缝开度、长度明显增加,最终裂缝间相互沟通,形成裂缝网络[12]。基于温差状态下的物理性质变化,降温也能导致矿物颗粒收缩,产生热应力促进裂缝扩展。此外,黄铁矿的热膨胀系数为27.3×10-6K-1,远大于其他黏土矿物,页岩中黄铁矿含量越高,裂缝热扩展效果就越好[13]。在加热温度约为573 ℃时,石英矿物发生相态变化导致体积增大,促使岩石强度降低[14],在更高温度下,会发生白云石氧化反应、方解石分解反应等物理化学反应改变页岩的性质,有助于岩石发生破裂[15]。

图1 页岩矿物非均匀热膨胀Fig.1 Non-uniform thermal expansion of shale minerals

1.2 有机质热解生烃

中国页岩富含有机质,且成熟度高。孔隙结构的发育程度直接决定页岩储集性能及开发难度,富有机质页岩孔隙类型主要有无机孔隙和有机孔隙,目前普遍认为有机孔隙的大小是由页岩有机质含量和热成熟度决定的,在热处理作用下有机质发生热解反应释放出烃类物质,从而在有机质颗粒内部产生有机孔[16]。在加热过程中,随着有机质的热解反应,有机孔隙数量和孔径增大,孔隙连通性增强,促使孔隙比表面积和孔隙体积增加[17]。JARVIE 等发现总有机碳含量为6.4%的页岩在热演化过程中会消耗35%的有机碳,导致孔隙度增加4.3%[18]。KIM等研究了富有机质页岩在加热过程中的有机质演化,认为温度升高使干酪根与沥青发生热解转化为烃类物质,岩心从温度为290~330 ℃开始产油,在330~365 ℃产油量达到最大值[19]。

1.3 流体蒸发增压及水岩作用促进岩石破裂

由于页岩具有纳米尺度的孔喉半径,当温度升高时水蒸发会导致孔隙压力迅速增加,促使岩石内部裂缝网络的形成[20]。CHEN 等基于状态方程得出随着温度的升高,孔隙水压力增大幅度取决于岩石基质模量、初始温度和压力条件,将岩石基质假设为弹性材料,温度与孔隙压力几乎呈线性关系,对于典型的页岩储层,孔隙压力可以超过90 MPa,足以使岩石发生破裂[21-22]。在电磁加热过程中,水的电导率比其他矿物材料高几个数量级,因此水在电磁能转化为热能环节中的作用不可替代。

页岩中黏土矿物含量高且具有强亲水性,因此页岩吸水能力强导致水岩作用显著,水岩作用可以降低页岩强度,增加孔隙度[23-24]。而热处理可以促进页岩的水岩作用,游利军等通过对比干燥页岩和含水页岩在加热后的宏观特征,得出含水页岩更易产生裂缝,渗透率增幅更大[25]。HU 等进一步分析了页岩饱和水前后孔径分布的变化,发现饱和水的页岩加热后中孔和大孔数量明显增加,说明水对热应力作用下页岩储层改造具有积极作用[26]。

2 热应力作用下页岩物理性质、微观结构及力学性能变化

温度改变使页岩内部发生矿物非均匀热膨胀产生热应力,使页岩内部微观结构发生变化,进而导致页岩宏观物理性质及力学性能改变,整体强度下降,促进其内部裂缝网络形成。

2.1 物理性质变化

2.1.1 质量变化

在高温作用下,岩石水分蒸发、有机质反应、矿物分解均会导致其质量改变。在初始升温阶段,质量损失主要为有机碳的燃烧、自由水和吸附水的蒸发;在高温条件下,质量损失主要为矿物分解与转化反应[27]。同时由于有机质反应的消耗,导致页岩的表观颜色由黑色变为灰白色。ZHAO 等用热重分析了页岩升温过程的质量损失,500 ℃前质量损失为13%,升温至900 ℃时累积质量损失约为20%[28]。游利军等发现黏土矿物含量越高,页岩在热处理脱水后质量损失越明显[29]。熊健等发现岩样体积膨胀率随着温度增高而逐渐增大[30]。综合分析页岩质量损失及体积膨胀,热处理后页岩整体密度下降,可能导致页岩内部胶结强度下降。

2.1.2 孔渗特征变化

页岩储层的主要孔隙类型为纳米级孔隙,孔隙度为1%~6%,渗透率小于1×10-3mD,因此难以进行经济高效的开发。在页岩内部结构受到热损伤后,由于热应力的作用导致内部孔隙结构发生变化,热应力诱导新的裂缝产生,与天然裂缝互相连通,形成裂缝网络促进页岩渗流能力提升。KIM 等通过实验得出页岩在350 ℃恒温112 h后,渗透率由0.14 μD 增至50.2 μD[19]。CHEN 等通过实验得出页岩在电磁加热后,裂缝渗透率由7.61×103nD 增至5.00×105nD,基质渗透率由1 nD 增至243 nD[31]。姜广辉得出原始孔隙度为5.1%的彭水页岩在40~550 ℃时孔隙度平均增至9.8%,450~700 ℃时孔隙度平均增至30%,700 ℃时渗透率较原始渗透率增加 约25 倍[32]。此外,RAMEZANIAN等发现在100 ℃以下页岩渗透率随温度的上升而略有下降,主要是由于基质受热膨胀占据孔隙空间[33]。RYBACKI 等认为页岩在加热过程中存在蠕变效应,基质发生不可逆变形导致渗透率下降,低温状态下蠕变效应更明显[34-35]。通过上述研究可以将页岩在加热过程中的孔渗变化分为2 个阶段。第1 阶段为低温阶段,由于裂缝未发生热扩展导致孔渗变化不明显或有所下降;第2阶段为高温阶段,热应力持续增大导致裂缝热扩展,大裂缝作为最主要的渗流通道,对渗透率的增加有决定性作用,有效改善了页岩内渗流通道,孔隙度和渗透率出现大幅增加。但是目前仅研究了温度对孔渗特征的影响,对于升温速率、恒温时间及围压等影响因素研究较少。

2.1.3 导热特性变化

在热处理技术环节中,岩石导热特性的变化会影响地层温度梯度重新分布,进而影响温度波及范围和储层有效改造体积,热导率对于计算传热效率和热损失十分重要,岩石样品加热引起的矿物成分、孔隙结构变化通常会导致热导率的进一步降低[36-37]。热导率的降低程度与页岩样品中有机质含量有关[38],之前的研究发现,在25~300 ℃温度范围内,各页岩地层的热导率有不同程度的下降,变化范围为5%~35%[39],在低温阶段水蒸发及有机质反应是导致热导率降低的主要原因,在高温阶段热导率降低幅度减少,400~900 ℃热导率降低约为20%[40],这与页岩孔隙体积增大、裂缝热扩展有关。

2.2 微观结构变化

页岩是一种特殊的多孔介质,微孔是气体吸附的重要场所,具有较大的比表面积和较强的气体吸附能力,中孔和大孔是流体扩散和渗流的主要通道[41]。热处理技术主要通过增加页岩微观结构的中孔、大孔和裂缝的数量来为油气运移提供优势通道。研究岩石样品微观结构的常用方法如表1 所示。由于高压压汞法和氮气吸附法会严重破坏样品,实验多采用场发射扫描电镜法、CT扫描法、核磁共振法等方法。

表1 岩石微观结构分析方法比较Table1 Comparison of analysis methods of rock microstructure

HU 等利用核磁共振法表征了页岩电磁加热后孔径大小的分布,初始阶段页岩T2谱呈双峰分布,经加热后第1 个峰的面积减少,表明加热后微孔数量减少,第2个峰的面积增加,表明中孔和大孔数量增加,另外第2个峰移向更大的横向弛豫时间,对应更大的孔径[26]。JIANG 等也得出相似结论[47-48]。LI等利用CT 扫描法观察加热后的页岩裂缝变化,在200 ℃之前岩石内部无明显变化,400 ℃发生裂缝热扩展,但裂缝之间连通性较差,600 ℃裂缝持续扩展,微裂缝延伸并互相连通,导致裂缝数量减少,但裂缝总面积增加[49]。关东帅通过高压压汞法分析得出松辽盆地页岩经过400 ℃加热后,纳米级孔隙大量增加,孔隙连通性增强[50]。YANG 等利用场发射扫描电镜法观察到最初岩样内部不存在天然裂缝,经过液氮冷却后页岩表面产生大量裂缝并扩展到样品的内部,最大裂缝宽度约为670 nm[51]。

基于页岩内部微观结构变化,可以分析出岩石内部孔径分布规律及连通性,在热环境下温度变化引起的热应力是页岩储层改造的驱动力,页岩热损伤后微孔和中孔膨胀合并成更大的孔隙,导致平均孔径增大,中孔、大孔的数量和尺寸显著增加。温度持续升高导致矿物颗粒滑移或破碎,页岩内部发育大量微裂缝形成裂缝网络,页岩内部渗流通道增加,有效改善岩石整体渗流能力。

2.3 力学性能变化

页岩储层岩石具有基质致密、层理面发育、岩石脆性强等地质特征,在热应力作用下,岩石内部结构发生变化,导致岩石的弹性模量、屈服强度、单轴抗拉强度等力学参数发生改变,关于页岩热损伤对力学性能的影响,目前已经存在一些理论分析和实验探索。页岩在加热过程中,基质发生膨胀,孔隙空间增大会导致页岩杨氏弹性模量和体积压缩系数均显著下降[52],泊松比变化没有明显规律[53],温度升高使页岩塑性更强[54],且温度对岩石弹性性能的影响比围压的影响更为显著[55],提高加热温度有助于加剧岩石损伤。对于冻结状态下的页岩,同样由于温差引起的热应力使岩石单轴抗压强度及杨氏模量降低[56-58]。在应力-应变曲线中,岩石变形行为主要分为4 个阶段:压密阶段、线弹性阶段、塑性变形阶段和峰后残余阶段。随着温度升高,应力-应变曲线逐渐趋于平缓,曲线的压密阶段缩短,线弹性阶段延长[59],说明岩石脆性降低、塑性增强,峰值应力显著下降,在达到临界温度后颗粒间相互作用力急剧减小,页岩变得越来越松散,岩石内部矿物的内聚力降低,致使页岩力学性能明显改变[60]。

YANG 等指出页岩在20~220 ℃存在临界温度点,在此临界温度之前,页岩的抗压强度随着温度的升高而增加,之后随着温度的升高而降低[61]。但在温度较低的情况下,一些页岩的力学性能变化并不明显,可能是岩样矿物组成不同所致。WONG 等结合矿物晶体模型得出,在低温范围加热过程中微裂缝的扩展造成的损伤较小,而矿物热膨胀产生的致密结构可以增加层理间的抗剪强度,从而提高岩石强度[62]。在高温下微裂缝密度增加、矿物颗粒破碎是岩石受热后强度降低的主要原因。HAN 等基于脆性、微裂缝/孔隙发育程度及断裂韧性,建立模型评估页岩热损伤后的可压裂性,结果表明虽然岩石脆性下降,但整体可压裂性增大[63]。

温差变化产生的热应力导致岩石内部结构发生破坏,有助于改善微裂缝/孔隙的发育条件。裂缝热扩展后裂缝网络的几何尺寸及复杂程度增强,为后续流体注入提供有利通道。力学性能降低后,为其他增产措施,例如水力压裂、热处理造缝等技术提供有利条件。

3 热处理技术可行性分析

基于热环境中页岩的物理性能变化特征,有学者提出了通过人工改变储层温度的方法来增加页岩储层中的孔隙和裂缝,进而增强储层连通性及渗流能力,具有避免储层伤害、增加储层改造体积以及节能环保等优势,有望弥补传统开采技术的不足,形成绿色环保高效页岩储层提高采收率技术。

3.1 电磁加热技术

电磁加热是一种新型的经济环保增产技术,该技术通过将电磁能转化为热能,一般可以将地层加热至300~400 ℃,在促使原油黏度下降的同时使储层产生内部热应力场,在热应力的作用下改造储层,对非均质和低渗透储层适用性强[64]。HU 等针对鄂尔多斯盆地页岩模拟了电磁加热下页岩的温度分布和应力分布,计算得出由矿物非均匀热膨胀引起的拉伸应力远大于岩石的破坏应力,但地层压力对温度扩散有限制作用,这可以通过增加电磁加热功率或加热时间来克服;频率不同的电磁波性质不同,由于微波的穿透性强及易吸收性,能量损耗很低,在页岩致裂促产方面存在诸多优点,例如不污染储层、储层压裂体积大、节能环保;但电磁加热的弊端在于对设备要求高,对储层进行辐射的功率、时间等参数要求也高,同时电磁会对井筒造成损伤,需经过技术改良才可应用[65]。

3.2 液氮压裂技术

液氮在常压下的温度为-196 ℃,将其注入页岩储层可以形成较大的温度梯度,基于温差状态下的物理性能变化,降温也能改善页岩的物理性质。在冻结状态下,页岩内部颗粒发生收缩变形,当降温引起的热应力超过岩石破坏强度时,岩石会发生致裂,同时岩石内水分冻结成冰后会促使内部颗粒发生滑移变形,诱导裂缝网络的形成,从而提高最终采收率。ELWEGAA 等认为低温压裂可以作为提高非常规储层孔隙度和渗透率的有效方法,保证最大限度地减少地层损害[66]。但液氮冷却作用对储层影响范围较小,液氮在地层中相变的过程极其复杂,液氮注入压力与时间需严格控制[67]。

3.3 蒸汽驱技术

目前蒸汽驱主要应用于稠油油藏的开发,蒸汽辅助重力驱油、蒸汽吞吐已成为稠油油藏开发的主要技术,在世界范围内已取得大规模工业化应用。蒸汽驱的机理比较复杂,蒸汽被注入储层后会在储层内形成蒸汽腔,注入蒸汽温度为250~300 ℃,蒸汽释放出的热量会改善原油流动性,对储层进行就地改造。随着原油产出,蒸汽腔逐渐扩展,进而提高原油的最终采收率[68]。SARKAR 等认为蒸汽进入页岩内部后,在高温下发生相变,形成溶解气驱将基质中原油排出,同时蒸汽释放的热量促使裂缝热扩展,增加储层渗流能力[69]。蒸汽驱可达到的波及效率主要取决于储层本身的特性,其主要的局限性为温度波及范围小、热损失大、消耗热能多[70]。

3.4 空气驱技术

空气由于气源广泛、易压缩、可注入性强,开发低渗透油藏效果明显。空气驱技术具有节能环保、采收率高、成本低的优势,不仅具有一般气驱的油藏增压作用、气体溶解降黏以及使得原油发生膨胀的作用,并且空气中的氧气能够与地层原油发生氧化反应释放出大量热量,形成450 ℃以上的燃烧前缘[71],在高温条件下对储层的物理性能进行改善,同时产生裂缝网络提高储层的综合渗流能力,具有广阔的应用前景。JIA 等认为在注空气时页岩储层具有自燃的潜力,超低渗透率基质具有高表面积,可促进原油在多孔介质中的氧化反应,另外页岩中丰富的黏土矿物对原油氧化有积极的催化作用,促使热效应发生[72]。但在注空气环节中,空气中氧气的浓度需严格调控,氧气含量过高将存在爆炸风险,同时在不同温度区间内,空气与原油表现出不同的氧化反应特征,进而导致氧化区及燃烧前缘的不确定性,对于氧化反应机理有待于进一步研究。

4 结论

页岩在热环境下由于矿物非均匀热膨胀、有机质热解发育有机孔隙、水蒸发增压致裂、水岩作用软化岩石等机理,致使页岩内部孔隙空间增大,诱导产生微裂缝与天然裂缝相互连通,形成复杂裂缝网络,最终提高页岩渗流能力。在热应力作用下页岩物理性能得到明显改善,岩石微观结构及整体力学性能发生显著变化,页岩整体强度下降,平均孔径和微裂缝总面积增大,孔隙度和渗透率大幅上升,为页岩提高采收率措施提供有利条件。但需综合考虑各类热损伤条件、不同围压条件等环境下岩石强度与变形规律,才能对其有全面系统的认识。电磁加热、液氮压裂、蒸汽驱和空气驱等页岩储层热处理技术具有绿色环保、减少储层伤害等优势,在地层中产生的热能可以促使页岩储层就地改造,有望成为新型储层改造及提高采收率技术,但对现场施工工艺和配套设备还需进一步研究。

猜你喜欢
热应力渗透率页岩
W/316L不锈钢第一壁材料热应力的模拟研究
涤纶POY动态热应力测试方法及影响因素
射孔带渗透率计算式的推导与应用
页岩油藏提高采收率技术及展望
高渗透率分布式电源控制方法
页岩气成藏及规律分析与探索
煤的方向渗透率的实验测定方法研究
阜康白杨河矿区煤储层渗透率主控因素的研究
“贵州复杂构造区页岩气赋存与渗透机制研究”项目通过验收
换热器真空钎焊卡具的热应力实验设计分析