刘 祯 (济南城建集团有限公司 山东 济南 250000)
桥梁结构在施工和营运使用过程中,常常会出现各种不同形式的裂缝。桥梁裂缝分为结构性裂缝和非结构性裂缝。结构性裂缝是指由外荷载引起的裂缝,这类裂缝的分布及宽度与外荷载有关。非结构性裂缝是指由变形引起的裂缝,如温度变化、混凝土收缩等因素引起的桥梁裂缝。桥梁裂缝的存在,势必降低钢筋混凝土材料的承载能力、耐久性及抗渗能力,影响建筑物的外观、使用寿命,严重的将威胁到人民生命、财产安全。因此,应分析产生桥梁裂缝的原因,采取行针对性措施修复裂缝。据有关统计数据显示,目前国内大多数市政桥梁尚处于使用初期,有相当一部分的混凝土桥梁在30年后要进行维修和加固。维修和加固,能提升桥梁的质量和寿命,保障桥梁在使用过程中的安全。
长期处于风雪雨霜的自然侵袭,会使桥梁局部产生裂缝,危及人们生命财产的安全。目前,国内已建成的混凝土结构的桥梁中普遍存在着裂缝,对其进行修复加固是一种较为科学的方法,其意义如下。
(一)提高市政桥梁的安全使用。对一些市政桥梁结构裂缝修复后,桥梁的安全性就会得到提高,不仅在很大程度上能够消除交通安全隐患,而且可以提高公路桥梁的通行能力和服务水平。
(二)提高市政桥梁的承载量。交通工具在我们的生活中出现的数量越来越多,我国之前部分市政桥梁已经不能满足现在的承载量,所以对市政桥梁结构裂缝进行修复,可以提高市政桥梁的承载能力及通行能力。
(三)延长桥梁寿命。对市政桥梁结构裂缝进行修复,会增长市政桥梁的使用寿命,减少对交通安全的影响,并且可以为国家资源进行合理充分地利用。
(四)控制成本支出。对市政桥梁结构裂缝进行修复,从经济角度来讲,会比新建桥梁的投资少,能有效地控制成本支出。
(一)塑性裂缝。混凝土浇筑后开始凝聚,由流态变成塑态,再变成固态,在塑态阶段产生的裂缝称为塑性裂缝,是一种早期裂缝。它主要是由施工不当引起的,如混凝土搅拌时间过长,使混凝土凝固速度加快,造成结构上的微裂缝;养护不好,造成现浇混凝土表面水分蒸发过快,产生的不规则的裂缝;施工时振捣不充分,或混凝土的析水过多等。
(二)收缩裂缝。混凝土凝固时由于体积变小发生收缩而产生收缩裂缝。收缩裂缝主要发生在混凝土的表面,裂缝细密,分布均匀,多沿梁、板的长边走向。大体积混凝土在平面部位较为多见,侧面也常见,预制构件多发生在箍筋位置上。高度较大的混凝土梁,一般在腰部产生竖向裂缝,集中于构件中部,中间宽两头细,而在底部则没有。这主要与配筋的密度相关,配筋密的地方裂缝少,配筋疏的地方,混凝土无法承受拉应力而开裂。另外,含泥量大的混凝土也容易产生收缩裂缝。
(三)拱桥径向裂缝。在拱桥设计中,拱圈均按整体的组合截面计算,但为了便于施工,拱桥(如双曲拱桥) 又常采用预制装配、化整为零的施工方法,导致截面的整体性较差。
(四)腹下箱间间隙处纵向裂缝。其原因是在原桥预制箱体间隙填筑混凝土时因粗骨料过大,卡在箱间使产生空洞,施工后再用砂浆抹平,从而使表面有裂缝。拱腹预制箱体纵向连接处的径向裂缝产生的原因与此相同。
(五)墩台帽裂缝。不论在主桥还是引桥的墩台帽处,沿桥轴线方向均有一上下贯穿墩帽的裂缝,其他裂纹呈放射性。这种裂缝的原因主要是局部应力所致,因桥面恒载和活载的作用力集中地通过立柱传至桥墩,使其周围墩顶其他部位产生拉应力。
(六)拱脚裂缝。我国修建的拱桥大多数为拱脚固结的无铰拱桥,拱脚处承受很大的负弯矩,是最易破坏的地方。拱脚处一旦出现较大的裂缝,拱肋在两个平面内的抗弯刚度和抗扭刚度都会产生很大变化。
裂缝是混凝土结构最常见的病害,市政桥梁工程也是如此。混凝土结构裂缝的成因复杂、繁多,有时多种因素互相影响,但每一条裂缝均有其产生的一种或几种主要因素。混凝土桥梁裂缝产生的原因,大致可划分如下几种。
(一)荷载引起的裂缝。混凝土桥梁在静、动荷载及次应力下产生的裂缝称荷载裂缝,主要有直接裂缝、次应力裂缝两种。直接应力裂缝是指外荷载引起的直接应力产生的裂缝,次应力裂缝是指由外荷载引起的次生应力产生裂缝。
(二)温度变化引起的裂缝。桥梁上能够观察到的严重裂缝损害,很多都是由于温度引起的内应力和约束应力所造成的。温度裂缝是粗裂缝产生的重要原因,一般出现在配筋薄弱之处。由温度引起的内应力及约束应力的大小与温差有关,特别是与昼夜间的变化关系最大,当然温度变化的速度(例如冷却的速度)也是关键,桥梁上严重损害的裂缝往往发生在气候条件最差的时候。温度应力也与桥梁所处的地理位置有关,处于比较稳定的海洋性气候中的桥梁要比处于大陆性气候中的桥梁有利一些;在城市内的桥梁要比跨河的或山区的桥梁有利。另外,桥梁结构中的温度应力与太阳照射及照射面的颜色均有很大关系。
(三)收缩引起的裂缝。混凝土在凝结硬化过程中产生体积变化(多指收缩),当混凝土产生收缩而结构又受约束时,就可能会产生收缩裂缝。与温度应力相比,收缩裂缝仅起到次要作用。收缩引起的应力一般只相当于温度引起应力的10%~30%。根据裂缝产生机理的不同,收缩裂缝又可分为化学收缩、干燥收缩、塑性收缩、自收缩、碳化收缩裂缝等。
(四)混凝土沉缩裂缝。混凝土因流动性不好或捣实欠佳,或在混凝土硬化前有沉缩或沉缩不足就会发生裂缝。通常此类裂缝在混凝土尚处于塑性阶段(浇注后1~3h),沿梁上面或板上面钢筋的位置发生,裂缝呈梭形,深度通常达到钢筋面。
(五)地基变形引起的裂。由于基础竖向不均匀沉降或水平方向位移,使结构中产生附加应力,超出混凝土结构的抗拉能力,导致结构开裂。基础不均匀沉降的主要原因有:地质勘察精度不够、试验资料不准;地基地质差异太大;结构荷载差异太大;结构基础类型差别太大;地在冻胀;桥梁基础基于滑坡体、溶洞或活动断层等不良地质时,可能造成不均匀沉降。
(六)钢筋锈蚀引起的裂缝。由于混凝土质量较差或保护层厚度不足,二氧化碳侵蚀碳化至钢筋表面,使钢筋周围混凝土碱度降低,或由于氯化物浸入,钢筋周围氯离子含量较高,均可引起钢筋表面氧化膜破坏。钢筋中铁离子与侵入到混凝土中的氧气和水分发生锈蚀反应,其锈蚀物氢氧化铁体积比原来增长约2~4倍,从而对周围混凝土产生膨胀应力,导致保护层混凝土开裂、剥落,沿钢筋纵向产生裂缝,并有锈迹渗到混凝土表面。由于锈蚀,使钢筋有效断面积减小,钢筋与混凝土握裹力削弱,结构承载力下降,并将诱发其他形式的裂缝,加剧钢筋锈蚀,导致结构破坏。
(七)冻胀引起的裂缝。大气温度低于零度时,吸水饱和的混凝土出现冰冻,游离的水变成冰,体积膨胀9%,因而混凝土产生膨胀应力。同时混凝土浇孔中的过冷水(结冰温度在-78℃以下)在微观结构中迁移和重分布引起渗透压,使混凝土强度降低,并导致裂缝出现。温度低于零度和混凝土吸水饱和是发生冻胀破坏的必要条件。当混凝土中骨料空隙多、吸水性强,骨料中含泥土等杂质过多,水灰比偏大、振捣不密实,养护不力使混凝土早期受冻等,均可导致混凝土产生冻胀裂缝。
(八)施工材料质量引起的裂缝。混凝土主要由水泥、砂、骨料、拌和水及外加剂组成。配置混凝土所采用材料质量不合格,可能导致结构出现裂缝。如水泥、砂、石骨料、以及拌和水及外加剂等。
(九)施工工艺质量引起的裂缝。在混凝土结构浇筑、构件制作、起模、运输、堆放、拼装及吊装过程中,若施工工艺不合理、施工质量低劣,容易产生纵向的、横向等各种裂缝,特别是细长薄壁结构更容易出现。
(十)混凝土碱骨料反应(AAR)引起的裂缝。混凝土中的碱性物质同骨料中活性硅成分之间的反应就是碱骨料反应,这种反应是有害的,会使混凝土结构出现膨胀裂缝。发生碱骨料反应有两个必要条件,即骨料具有一定的碱活性和适宜的环境(潮湿、浸水)。碱骨料反映在骨料周围和混凝土缝隙中有硅酸碱胶滞体存在或挤出,在显微镜下观察,骨料颗粒周围出现反应环,砂浆或混凝土表面出现网状微裂缝,水泥浆出现碳化现象。
(十一)预应力张拉时引起的裂缝。在预应力梁端部,当进行预应力张拉时,梁端部受力状态非常复杂,目前预应力梁端部的非预应力配筋均为构造配筋,不能有效抑制预应力钢筋张拉时产生于梁端的诸多不利应力,往往使梁端产生裂缝。
人们普遍认为,影响混凝土桥梁耐久性的一些主要原因,按主次顺序依次为:钢筋的腐蚀、循环性冷冻与融化环境、碱硅反应和硫酸盐侵袭。上述每一项的膨胀开裂的机制中都牵扯到了水。不仅如此,水还是侵蚀性离子进入混凝土内部的主要载体。裂缝及其宽度对混凝土桥梁耐久起着直挂重要的作用,裂缝宽度大,结构耐久性失效的可能性也大。裂缝宽度达某一值时,结构的耐久性不能满足要求。同时,钢筋并不能消除或削减混凝土的收缩裂缝,它只是把一些大的裂缝变成细纹和微裂。然而,恰恰是那些肉眼看不见也无法测量的细纹和微裂才构成潜在通道,最终为离子从混凝土表面运动到钢筋建立了必要的通道,从而加速了混凝土桥梁的耐久性损失。
无论对预应力混凝土结构或钢筋混凝土结构来说,裂缝及其宽度对力筋腐蚀都有影响,且宽度不同其影响程度也不同。首先,裂缝加快了腐蚀的发生。在早期,裂缝宽度对力筋腐蚀影响较大,因为力筋去钝化的时间取决于裂缝的宽度,然而腐蚀一旦开始,其影响程度大大降低。这时,腐蚀速度取决于未开裂处混凝土保护层的质量和渗透性,混凝土保护层的质量越好,渗透性越小,氧气及水分的供给量也越少,腐蚀速度越慢,随着碳化进程的深入,毛细孔将逐渐被堵塞,使混凝土渗透性逐步降低,腐蚀速度也随之下降。当力筋腐蚀速度小到一定程度时,即在设计寿命期内不影响其各项力学指标时,就称之为处于钝化状态。实际上,腐蚀一直在进行着,只不过有时腐蚀速率很小而已。混凝土结构的桥梁使用是最广泛的,其耐久性的研究主要是从材料的角度来探讨。目前的研究成果仅限于解决结构的局部耐久性问题,还有待于对市政桥梁结构的耐久性进行深入探讨。
裂缝修补的目的在于恢复结构物的防水性和耐久性,以及起到修饰美观的作用。结构有较严重的病害时,需要在加固前或在实施加固技术的过程中进行裂缝的修补。
(一)面处理法。这是一种在微裂缝(一般宽度小于0.2mm)的表面涂抹填料及防水材料,以提高其防水性和耐久性为目的的方法。这种方法的缺点是修补工作无法深入到裂缝内部,以及对延伸性裂缝难于追踪其变化。因此,对于宽度发生变化的裂缝,要设法使用有伸缩性的材料。表面处理方法所用材料视修补目的及其结构物所处环境不同而异,通常使用弹性涂抹防水材料(如玻璃布)、聚合物水泥膏及水泥填料等。
(二)注浆法。该方法系在裂缝中注入树脂或水泥类材料,以提高其防水性及耐久性。注浆材料是环氧树脂,以往均采用手动或脚踏式输液泵注入浆液,但存在无法控制注入量。对于不贯通的裂缝难于将浆液注入到内部,注入压力太大有可能使裂缝宽度扩大等问题。所以,现在多采用低压低速注入法。此法具有易于控制注入量且可注入到裂缝深部。
(三)充填法。这是一种适合于修补较宽裂缝(0.5mm以上)的方法,具体做法是沿裂缝凿一条深槽,然后在槽内嵌补各种粘结材料,如水泥砂浆、环氧砂浆、膨胀水泥砂浆、环氧树脂混凝土、沥青及各种化学补强剂等。对钢筋混凝土结构而言.这种修补方法视钢筋是否锈蚀而异。当钢筋未锈蚀时,沿裂缝处以大约l0mm 左右的宽度将混凝土凿成U 型或V型,在开槽处充填密封材料以修补裂缝;当钢筋已经锈蚀时,将混凝土凿除到能够充分处置已经生锈的钢筋部分。对钢筋除锈,然后在钢筋上涂抹防锈底涂料,再充填密封材料。
(四)表面喷涂法。喷浆修补是一种在经凿毛处理的裂缝表面,喷射一层密实而且牯度高的水泥砂浆保护层,来封闭裂缝的修补方法。喷浆前,需要把结构表面的剥离部分除去.再用水冲洗清洁,并在开始喷浆之前把基层湿润,然后再开始喷浆。
(五)混凝土因碱骨料而开裂的裂缝修补。因碱骨料反应产生的裂缝,一般为延伸性的,特别是钢筋用量较少时,对膨胀的约束较小,于是裂缝宽度显著变大。对这种裂缝,可以注入环氧树脂或涂抹防水材料,防止水分由外部浸入,从而控制碱骨料反应。
市政桥梁结构混凝土裂缝是桥梁主要的病害之一,它的形成和发展受到荷载、温度、施工等多种因素的影响,全面地检测出现裂缝的构件并掌握处理方法,是做好桥梁的施工和养护的关键。