堆置处理对蚕丝/涤纶交织物染色性能的影响

2022-05-25 20:51杨广青宋亚伟房宽峻
丝绸 2022年5期
关键词:涤纶蚕丝

杨广青 宋亚伟 房宽峻

摘要: 文章針对活性染料/分散染料混合染液对蚕丝/涤纶交织物轧染过程中存在的染色深度的问题,采用堆置法调节染料在两种纤维间的分配率并改善其染色性能。研究了堆置时间对分散染料在蚕丝和涤纶纤维上分配率的影响,探讨了蚕丝/涤纶交织物的染色深度和堆置时间的关系,考察了染色前后织物的耐摩擦色牢度和耐皂洗色牢度。结果表明,通过密封堆置浸轧活性染料/分散染料混合染液的蚕丝/涤纶交织物,提高了分散染料在涤纶纤维上的分配率,促进了活性染料对蚕丝的吸附和渗透,显著提升了蚕丝/涤纶交织物的染色深度。同时,染色织物具有良好的色牢度。

关键词: 蚕丝;涤纶;交织物;轧染;堆置;活性染料;分散染料

中图分类号: TS193.5文献标志码: A文章编号: 10017003(2022)05000806

引用页码: 051102DOI: 10.3969/j.issn.1001-7003.2022.05.002

蚕丝/涤纶交织物兼具蚕丝纤维和涤纶纤维的特点,具有优异的吸湿透气性和抗皱性[1],成为蚕丝制品提升服用性能和降低成本的重要选择[2]。蚕丝是亲水性纤维,通常用水溶性的阴离子染料进行染色,如酸性染料[3]、活性染料[4-5]等。涤纶为疏水性纤维,需使用具有极低水溶性的分散染料进行染色[6-8]。由于蚕丝和涤纶的适用染料和上染过程有明显区别,蚕丝/涤纶交织物染色过程中容易出现颜色不深、同色性差、染料固色率低等问题。为了降低蚕丝和涤纶之间的差异对蚕丝/涤纶交织物染色造成的影响,通常采用两浴法对其进行染色[9-10]。但这种染色方法工艺复杂、流程长、效率低、能耗大,不符合生态染整的发展趋势。因此,开发适合蚕丝/涤纶交织物的短流程清洁染色工艺具有良好的应用前景。

蚕丝/涤纶交织物染色困难的主要原因在于两种纤维的结构和亲疏水性差异较大,所适用染料的种类和染色机理完全不同。为了解决蚕丝/涤纶交织物的染色问题,近年来一些研究者对亲水性纤维/疏水性纤维交织或混纺织物的染色工艺进行了优化。唐人成等[11]筛选了对蚕丝沾色低、碱可洗性好的分散染料,并与活性染料一起配制染液,采用浸染法首先在高温下使分散染料上染涤纶,再降温加碱使活性染料进一步在蚕丝纤维上发生固着。在相关领域,王建庆等[12]利用浸染法对涤/棉混纺织物进行一浴两步法染色,首先用分散染料在130 ℃条件下对涤纶纤维染色60 min,然后使染液的温度降至60 ℃,加入活性染料对棉纤维进行染色,保温30 min后加入碳酸钠使活性染料完成固色。以上方法虽然能够在一定程度上降低亲水性纤维和疏水性纤维染色的差异性,但是均为浸染法染色,对于效率更高、成本更低的轧染法的研究较少。在轧染工艺中,两种染料在蚕丝/涤纶交织物不同纤维间的分配难以调控,容易造成染深性差、同色性差等问题。

本文将堆置处理应用于蚕丝/涤纶交织物的轧染过程,研究了堆置处理对分散染料在交织物蚕丝纤维和涤纶纤维间分配情况的影响,分析了分散染料在纤维间的分配率与染色深度的相关性,探究了堆置时间对织物染色效果的影响规律,实现了分散染料和活性染料对蚕丝/涤纶交织物的一浴法轧染染色,为开发蚕丝/涤纶交织物短流程清洁染色工艺提供了新思路。

1实验

1.1材料及仪器

材料:蚕丝/涤纶平纹交织物(滨州愉悦家纺有限公司),经向为蚕丝(360根/10 cm),纬向为涤纶(150根/10 cm),混纺比为66/34,织物平方米质量为88 g/m2;商品活性蓝MB(河北邢台欧阳化工有限公司),商品分散蓝2B、商品分散红3B、商品分散红玉167、商品分散深蓝79(浙江龙盛染料化工有限公司),N,N-二甲基甲酰胺(DMF)、十二烷基苯磺酸钠(LAS)(国药集团化学试剂有限公司),十二烷基二甲基甜菜碱(BS12)、脂肪醇聚氧乙烯醚(AEO9)、十二烷基三甲基氯化铵(1231)(山东优索化工科技有限公司)。

仪器:HF74320卧式轧车(瑞士Mathis公司),Hwl鼓风干燥箱(天津莱玻特瑞仪器设备有限公司),BHS-4数显恒温水浴锅(江阴市保利科研器械有限公司),LTE-S120920涂层焙烘机(瑞士Mathis公司),U-3900H分光光度计(日本株式会社日立高新技术科学那珂事业所),Datacolor850计算机测色配色仪(美国Datacolor公司),Q238BB耐摩擦色牢度仪(英国Gellowen公司),SW-20B耐水洗色牢度仪(泉州市美邦仪器有限公司)。

1.2染色方法

称取适量活性染料和分散染料,在磁力搅拌下先后缓慢加入盛有一定量去离子水的烧杯中,搅拌30 min后将混合染液转移至100 mL容量瓶中定容,配置成活性染料/分散染料混合染液。

将蚕丝/涤纶交织物浸轧混合染液,二浸二轧,轧余率为50%。将浸轧好的织物用自封袋密封并在室温下堆置0~2 h,然后在100 ℃鼓风干燥箱中烘干。织物烘干后在160~200 ℃条件下进行焙烘,之后置于饱和蒸汽中进行汽蒸处理,最后洗涤、烘干,得到染色织物。

1.3测试

1.3.1染料分配率

将蚕丝/涤纶交织物在分散染料染液中二浸二轧,烘干。将烘干布样的蚕丝纤维和涤纶纤维拆分并剪碎。定量称取蚕丝和涤纶,加入一定量的DMF中,于室温下静置30 min,得到提取液。测定提取液最大吸收波长对应的吸光度,根据下式计算出染料分配率。

式中:Ds、Dt分别表示分散染料在蚕丝和涤纶上的分配率;As、At分别为蚕丝和涤纶上染料提取液在最大波长处的吸光度;ms、mt分别为蚕丝纤维和涤纶纤维的质量。

1.3.2颜色参数

染色交织物颜色参数:染色织物用Datacolor850计算机测色配色仪在D65光源/10°视角下测试360~700 nm波长内的颜色参数。

染色交织物纤维颜色参数:将染色织物的纱线拆开,并折叠至光线无法透过,用Datacolor850计算机测色配色仪在D65光源/10°视角下测试360~700 nm波长内的颜色参数。

1.3.3色牢度

耐摩擦色牢度和耐皂洗色牢度分别参考GB/T 3920—2008《纺织品色牢度试验耐摩擦色牢度》和GB/T 3921—2008《纺织品色牢度试验耐皂洗色牢度》进行测试。

2结果与分析

2.1堆置时间对分散染料分配率的影响

将蚕丝/涤纶交织物浸轧分散蓝2B染液并立即在100 ℃鼓风干燥箱中放置1 min,使织物烘干,测试染料在涤纶和蚕丝纤维间的分配情况,结果如图1所示。由图1(a)可知,分散蓝2B在涤纶纤维上的分配率在20%左右,并且其不因染料质量浓度的增加而产生明显变化。如图1(b)所示,分散蓝2B在蚕丝组分上的分配率占织物上分散蓝2B总量的80%。这表明,蚕丝/涤纶交织物浸轧分散蓝2B染液后,分散染料主要存在于蚕丝纤维上,并且分配情况不受染料质量浓度的影响。蚕丝为亲水性纤维,而涤纶为疏水性纤维,织物浸轧染液后,商品分散染料会随着染液一起移动并大量吸附在蚕丝纤维上,导致分散蓝2B大量附着于蚕丝纤维。在蚕丝/涤纶交织物染色过程中,分散染料主要用于涤纶纤维的染色,但是由于分散染料主要存在于蚕丝纤维表面,不利于其上染涤纶纤维,导致涤纶的染色深度较浅。

为提高分散蓝2B在涤纶纤维上的分配量,将蚕丝/涤纶交织物浸轧分散蓝2B染液并密封堆置,测得的分散蓝2B在交织物上的分配情况如图2所示。由图2(a)可知,经过堆置后,交织物涤纶纤维上的分散蓝2B的分配率明显增大。在堆置时间达到1.5 h后,分散蓝2B在交织物涤纶组分上的分配率从22%提升到了30%。而分散蓝2B在蚕丝纤维上的分配率随堆置时间的延长从78%降低至70%,如图2(b)所示。因此,适当延长堆置时间可以提高分散蓝2B在涤纶纤维上的分配率。这是因为蚕丝纤维和涤纶纤维上的染料质量浓度不同,在堆置过程中,分散蓝2B由于质量浓度梯度的作用,部分移向质量浓度较低的涤纶表面。

图3(a)为堆置处理对不同类型分散染料在涤纶纤维上分配率的影响,可以看出,对于不同类型的分散染料,经过堆置处理后,染料在涤纶组分上的分配率均得到明显提高。图3(b)为蚕丝/涤纶交织物以不同轧余率浸轧分散蓝2B染液,测得堆置前后的染料分配率。当织物的轧余率小于50%时,堆置处理对染料分配率的影响不大;当轧余率达到50%及以上时,织物经过堆置处理后,分散染料在涤纶上的分配率明显增加。图3(c)为不同表面活性剂对堆置前后分散蓝2B分配率的影响,可以看出,在表面活性剂存在时,堆置处理对分散染料在涤纶上分配率的提升作用依然十分明显,并且该现象不会因表面活性剂种类的变化而发生改变。由于蚕丝和涤纶的亲疏水性差异较大,织物浸轧染液后,绝大部分活性染料和分散染料会随着水分子吸附到蚕丝纤维表面。在堆置过程中,分散染料和蚕丝的相互作用较小,因此其会在质量浓度梯度的作用下向涤纶表面迁移,并通过疏水作用力与涤纶结合。提高轧余率,蚕丝和涤纶表面分散染料的质量浓度梯度逐渐增大,因此堆置处理后分散染料在涤纶表面的分配率逐渐增加。除此之外,向染液中添加表面活性剂能够提升染液对织物的润湿性,但是两种纤维的亲疏水性的差异不会有明显变化,分散染料依然会首先集中在蚕丝纤维表面,然后向涤纶纤维迁移。

2.2堆置时间与分散染料染色效果的关系

为探究堆置时间对分散蓝2B染色结果的影响,本文将蚕丝/涤纶交织物浸轧分散蓝2B染液,堆置、固色、洗涤,拆去交织物中的蚕丝纤维,并测试染色涤纶纤维的颜色参数,结果如表1所示。由表1可知,随着堆置时间的适当延长,染色涤纶纤维的各颜色参数均发生了改變,染色后的涤纶纤维的L*值(明度值)减小,K/S值增大,表明涤纶纤维颜色加深;a*值(红-绿色光)增加,表明涤纶纤维的红色光提升;b*值(黄-蓝色光)减小,表明涤纶纤维的蓝色光提升;此外,染色涤纶纤维的c*值(饱和度)增大,表明其颜色更加鲜艳。由此可见,适当延长堆置时间能够提高分散蓝2B对涤纶纤维的染色深度。堆置过程中,分散染料在涤纶上的分配率提高,有利于涤纶获得更高的染色深度。

2.3堆置时间与活性染料染色效果的关系

为探究堆置时间对活性蓝MB染色效果的影响,本文将蚕丝/涤纶交织物浸轧活性蓝MB染液,堆置、固色、洗涤并烘干,最后拆下交织物中的蚕丝组分,测试其颜色参数,结果如表2所示。由表2可以看出,随着堆置时间延长至1.5 h,蚕丝的L*值由60.8降至56.6,而K/S值有所提升,表明染色后蚕丝颜色加深。另外,染色后蚕丝的a*值增大,b*值减小,分别表明其绿色光降低、蓝色光提升;染色后蚕丝的c*值随堆置时间的延长而增大,表明堆置处理使染色蚕丝的色彩饱和度提高,色光变得更加鲜艳。综上所述,适当延长堆置时间能有效提升活性蓝MB对蚕丝的染色深度,且堆置处理使活性染料分子对蚕丝的吸附渗透更加充分,导致蚕丝的染色深度提高。

2.4堆置处理对蚕丝/涤纶交织物染色效果的影响

本文研究了堆置时间对活性蓝MB/分散蓝2B混合染液染色蚕丝/涤纶交织物颜色参数的影响,测试结果如表3所示。由表3可以看出,随着堆置时间的延长,染色交织物的颜色参数发生了明显的变化,染色交织物的L*值减小,K/S值增大,表明其颜色加深;染色交织物的a*值增大,b*值减小,c*值增大,表明织物的红光和蓝光增加,色彩饱和度提高,颜色更加鲜艳。因此,利用活性蓝MB/分散蓝2B混合染液对蚕丝/涤纶交织物进行染色时,适当延长堆置时间能够使织物的染色深度显著提升。堆置处理改善了蚕丝纤维和涤纶纤维的染色效果,进而提升了染色织物的颜色深度。

染色后蚕丝/涤纶交织物的耐摩擦色牢度和耐皂洗色牢度如表4所示。由表4可以看出,活性染料/分散染料混合染色的蚕丝/涤纶织物的耐摩擦色牢度和耐皂洗沾色牢度均在4~5级,耐皂洗变色牢度在3~4级,说明染色织物具有较高的耐摩擦色牢度和良好的耐皂洗色牢度。

3结论

本文使用活性染料和分散染料,通过“浸轧-堆置-固色-洗涤”工艺对蚕丝/涤纶交织物染色,测定了染料分配率和染色织物的颜色参数,探讨了堆置处理对蚕丝/涤纶交织物染色效果的影响。结果表明,堆置处理对织物的染色效果具有提升作用。

1) 蚕丝/涤纶交织物浸轧染液并烘干以后,染料主要分布于蚕丝纤维上。对浸轧染液后的蚕丝/涤纶交织物作堆置处理能够提高分散染料在涤纶纤维上的分配率,且其效果不因染料类型不同和表面活性剂存在与否而改变。

2) 织物的轧余率对堆置处理的作用影响较大,当轧余率达到50%及以上时,适当延长堆置时间能够促进活性染料/分散染料混合染液对蚕丝/涤纶交织物的染色。

3) 堆置处理能够提高蚕丝/涤纶交织物的染色深度,且染色织物具有良好的耐摩擦色牢度和耐皂洗色牢度。

《丝绸》官网下载中国知网下载

参考文献:

[1]胥鑫萌, 刘伟, 童天娇, 等. 天然蚕丝在纺织中的应用[J]. 蚕桑茶叶通讯, 2021(3): 9-12.XU Xinmeng, LIU Wei, TONG Tianjiao, et al. Application of natural silk in textile industry[J]. Sericulture and Tea Newsletter, 2021(3): 9-12.

[2]程岚, 李彩彩, 蔡梦瑶, 等. 蚕丝混纺纱线的研发现状[J]. 蚕学通讯, 2021, 41(3): 17-24.CHENG Lan, LI Caicai, CAI Mengyao, et al. Research and development of silk blended yarn[J]. Sericulture Newsletter, 2021, 41(3): 17-24.

[3]项伟, 蔡再生. 桑蚕丝织物酸性染料清洁染色工艺[J]. 纺织学报, 2010, 31(11): 77-82.XIANG Wei, CAI Zaisheng. Clean dyeing of silk fabric with acid dyes[J]. Journal of Textile Research, 2010, 31(11): 77-82.

[4]周家伟, 姚平, 许磊. 蚕丝织物活性染料冷轧堆染色工艺的优化[J]. 纺织学报, 2011, 32(4): 79-84.ZHOU Jiawei, YAO Ping, XU Lei. Optimizing cold pad-batch dyeing of silk fabric with reactive dyes[J]. Journal of Textile Research, 2011, 32(4): 79-84.[5]WANGATIA L M, CAI Z S, CHEN Y M, et al. Dyeing of male silk fibers with reactive dyes[J]. Journal of the Textile Institute, 2012, 103(1): 64-69.

[6]王小艳, 杜金梅, 彭铃淇, 等. 涤纶针织物碱减量和染色一浴一步法工艺[J]. 纺织学报, 2020, 41(1): 80-87.WANG Xiaoyan, DU Jinmei, PENG Lingqi, et al. Alkali reduction and one-bath-one-step process for dyeing polyester knitted fabric[J]. Journal of Textile Research, 2020, 41(1): 80-87.

[7]曹機良, 孟春丽, 陈云博. 涤纶碱减量和染色一浴处理工艺研究[J]. 丝绸, 2016, 53(2): 19-25.CAO Jiliang, MENG Chunli, CHEN Yunbo. One bath dyeing and alkali deweighting process of polyester fabric[J]. Journal of Silk, 2016, 53(2): 19-25.

[8]YOUSSEF Y A, AHMED N S E, MOUSA A A, et al. Alkaline dyeing of polyester and polyester/cotton blend fabrics using sodium edetate[J]. Journal of Applied Polymer Science, 2008, 108(1): 342-350.

[9]梅士英, 唐人成. 新型多组分纤维纺织品染整(十二)[J]. 印染, 2010, 36(2): 45-48.MEI Shiying, TANG Rencheng. Dyeing and finishing of novel multi-component fiber textiles (12)[J]. China Dyeing and Finishing, 2010, 36(2): 45-48.

[10]瞿永. 蚕丝复合织物染色技术的研究进展[J]. 纺织学报, 2007(10): 124-126.QU Yong. Progress in the research for dyeing of silk composite fabrics[J]. Journal of Textile Research, 2007(10): 124-126.

[11]唐人成, 夏永林, 趙建平, 等. 蚕丝/涤纶微纤维交织物活性/分散染料一浴法染色[J]. 丝绸, 2002(4): 10-13.TANG Rencheng, XIA Yonglin, ZHAO Jianping, et al. One bath dyeing of silk/polyster microfiber mixtures with reactive/disperse dyes[J]. Journal of Silk, 2002(4): 10-13.

[12]王建庆, 吴婵娟, 刘海林. 涤/棉织物分散/活性染料染色的免还原净洗技术[J]. 纺织学报, 2013, 34(4): 70-74.WANG Jianqing, WU Chanjuan, LIU Hailin. Reduction clearing-free dyeing of polyester/cotton fabrics with disperse/reactive dyes[J]. Journal of Textile Research, 2013, 34(4): 70-74.

The influence of batching treatment on dyeing performance of silk/polyester interwoven fabricsYANG Guangqing, SONG Yawei, FANG Kuanjun(a.College of Textiles & Clothing; b.State Key Laboratory for Biofibers and Eco-Textiles; c.Collaborative Innovation Center for

Eco-textiles of Shandong Province and the Ministry of Education, Qingdao University, Qingdao 266071, China)

Abstract: Silk, which is one of the earliest natural protein fibers used by human beings, has a long history of more than 6 000 years in China. Silk fabrics possess fine gloss, soft feel and excellent skin-friendly properties, which are incomparable to any other textile fiber products. Silk fabrics also have gorgeous appearance, are of high prices, and have become an important choice for high-grade textiles, so silk is known as the "queen" of fiber. Generally, for the purpose of improving the wrinkle resistance of silk fabrics, silk can be combined with polyester fibers, forming a kind of two-component interwoven fabrics. Silk/polyester interwoven fabrics not only show outstanding skin-friendly and hydrophilic properties, but also provide satisfactory wrinkle resistance, exhibiting excellent performance and unique style. In recent years, silk/polyester interwoven fabrics are widely used in the field of clothing and home textiles after dyeing. At present, silk/polyester interwoven fabrics are usually dyed by two-bath method, but the process of this method is complicated, long, inefficient, and high-energy consumed. Therefore, it is in great demand to develop a short-process cleaner dyeing method for the coloration of silk/polyester interwoven fabrics.

In order to develop a clean dyeing method for silk/polyester interwoven fabrics, a one-bath two-step pad dyeing process based on reactive dyes/disperse dyes mixed dyeing solution was studied. The amount of dyes on the surface of silk fibers and polyester fibers was measured after the extraction using N, N-dimethylformamide. The effects of batching treatment on dye distribution between silk and polyester, as well as the dyeing performance of silk/polyester interwoven fabrics were explored. The effects of batching time, dye structure, dye pick-up and surfactant on the distribution of disperse dyes on silk fibers and polyester fibers were studied. The effect of batching treatment on the migration of dyes between silk fibers and polyester fibers was analyzed. Due to the large difference in hydrophilicity and hydrophobicity between silk fibers and polyester fibers, reactive dyes and disperse dyes mainly adsorb to the surface of silk fibers with water molecules when the fabrics are in contact with the dyeing solution. Consequently, there is a large concentration gradient of disperse dyes between silk fibers and polyester fibers. The concentration of disperse dyes on silk fibers is much greater than that on polyester fibers. The disperse dyes migrate to polyester fibers under the action of the concentration gradient and are attatched to the polyester surface through hydrophobic force. The concentration gradient of disperse dyes on the surface of silk fibers and polyester fibers increases gradually when the pick-up is increased, which causes an increase in the distribution of disperse dyes on the surface of polyester. In addition, adding surfactant to the dyeing solution can improve the wetting ability of dyeing solution to fabrics, but the difference in the hydrophilicity and hydrophobicity of the silk fibers and polyester fibers has no change. So, the disperse dyes still mainly concentrate on the silk surface after padding, and then migrate to polyester fibers in the process of batching treatment. The relationship between batching time and color strength of silk/polyester interwoven fabrics was investigated, and the rubbing fastness and washing fastness of the silk/polyester interwoven fabrics dyed by traditional baking-steaming dyeing process and batching-baking-steaming dyeing method were finally studied. In pad-dyeing process of silk/polyester interwoven fabrics, the homogeneity of dyes distribution on the surface of silk fibers and polyester fibers can be effectively improved after batching treatment, which is beneficial to improve the color performance and utilization efficiency of dyes. The results show that the batching treatment for the silk/polyester interwoven fabrics after padding the reactive dye/disperse dye mixed dyeing solution improves the distribution rate of the disperse dyes on the surface of polyester fibers. Moreover, it promotes the adsorption and penetration of reactive dyes on silk fibers, which significantly improves the color strength of silk/polyester interwoven fabrics. The dyed fabrics exhibit excellent rubbing fastness and washing fastness.

Exploring the relationship between batching treatment and dyeing performance of silk/polyester interwoven fabrics is beneficial to improve the uneven distribution of dyes on the surfaces of the two kinds of fibers during the dyeing process, and can provide a unique solution and theoretical guidance for realizing continuous pad dyeing of silk/polyester interwoven fabrics. It is helpful to develop a short-process clean dyeing method for silk/polyester interwoven fabrics, which has promising application prospects.

Key words: silk; polyester; interwoven fabrics; pad dyeing; batching; reactive dyes; disperse dyes

猜你喜欢
涤纶蚕丝
Nissenken开展塑料瓶再生纤维判别试验
舒适首选,青岛新维纺织迭代涤纶受追捧
春蚕丝尽便会死吗
我的新发现
化工:看好涤纶长丝盈利提升
格栅对锥型量热仪最大热释放速率测试影响研究
石英砂固体分散剂制样的裂解气相色谱法测定涤/毛纤维混纺比列