高扬,庞棋月
基于切换网络的一类适型分数阶耦合非线性系统的稳定性
高扬1,庞棋月2
(1. 大庆师范学院 数学科学学院,黑龙江 大庆 163712;2. 东北石油大学 数学与统计学院,黑龙江 大庆 163711)
Caputo导数;适型分数阶导数;分数阶指数稳定;Mittag-Leffler型稳定
由于在物理和工程领域的强大应用性,分数阶微积分理论得到广泛关注[1-4].2014年,Khalil[5]等提出一个新的分数阶导数,命名为适型分数阶导数,同3种常见的Riemann-Liouville型、Grunwald型和Caputo型分数阶导数相比,适型分数阶导数更接近实际,因而一经提出就引起了广泛关注[6-8].近年来,虽然一些学者已经着手建立适型分数阶系统微积分理论,但是基于适型分数阶导数的稳定性理论研究结果还较少.比较经典的是文献[8],建立了适型分数阶非线性系统的稳定性与渐进稳定性Lyapunov理论.
文献[9]研究了基于网络的分数阶微分方程耦合系统
考虑适型分数阶微分方程系统
考虑适型分数阶切换线性系统
定理1假设系统(3)满足条件:
则系统(3)为分数阶指数稳定的.
证毕.
本文在文献[5-6]的基础上进一步推广,从2个方面进行探索:(1)用适型分数阶导数取代Caputo导数;(2)考虑网络顶点之间关系依赖时间,也就是引入切换拓扑情形.
考虑适型分数阶系统
定理2若系统(4)满足条件:
利用条件(1)~(2)和文献[9]的引理2.4,有
例 设有适型分数阶系统
[1] 严烨.分数阶微分系统稳定性及其应用的研究[D].上海:东华大学,2012.
[2] 张凤荣. 分数阶微分系统的稳定性分析[D].上海:上海大学,2012.
[3] 孙轶男,徐晓明,冯立婷.Caputo型分数阶导数的一个离散格式[J].科学技术创新,2020(18):152-153.
[4] 梁家辉.Caputo分数阶导数的一些性质[J].数学的实践与认识,2021,51(9):256-269.
[5] Khalil R,Al Horani M,Yousef A,et al.A new definition of fractional derivative[J].J Comput Appl Math,2014(264):65-70.
[6] Abdeljawad T.On conformable fractional calculus[J].J Comput Appl Math,2015(279):57-66.
[7] Benkhettou N,Hassani S,Torres D F M.A conformable fractional calculus on arbitrary time scales[J].J King Saud Univ Sci,2016,28:3-98.
[8] Abdourazek S,Abdellatif B M,Ali H M,et al.Stability analysis of conformable fractional-order nonlinear systems[J].Indagationes Mathematicae,2017,28:1265-1274.
[9] Li H L,Jiang Y L,Wang Z L,et al.Globlal Mittag-Leffler stability of coupled system of fractional-order differential equations on network[J].Applied Mathematics and Computation,2015,270: 269-277.
[10] Li H L,Hu C,Jiang Y L,et al. Global Mittag-Leffler stability for a coupled system of fractional-order differential equations on network with feedback controls[J].Neurocomputing,2016,214:233-241.
[11] Luo R Z,Su H P.The stability of impulsive incommensurate fractional order chaotic systems with Caputo derivative[J].Chinese Journal of Physics,2018,56:1599-1608.
[12] Zahariev A,Kiskinov H,Angelova E.Linear fractional system of incommensurate type with distributed delay bounded Lebesgue measurable initial condition[J].Dynamic Systems and Applications,2019,28(2):491-506.
[13] Lekdee N,Sirisubtawee S,Koonprasert S.Bifurcations in a delayed fractional model of glucose-insulin interaction with income-
mensurate orders[J].Advances in Difference Equations,2019,318:1-22.
[14] Li Y,Chen Y Q,Podlubny I.Stability of fractional-order nonlinear dynamic systems:Lyapunov direct method and generalized Mittag-Leffler stability[J].Computers & Mathematics with Applications,2010,59(5):1810-1821.
The stability for one class of the conformable fractional order coupled nonlinear system on switched network
GAO Yang1,PANG Qiyue2
(1. School of Mathematics,Daqing Normal University,Daqing 163712,China;2. School of Mathematics and Statistical,Northeast Petroleum University,Daqing 163711,China)
Caputo derivative;conformable fractional order derivative;fractional exponential stability;Mittag-Leffler type stability
1007-9831(2022)04-0001-05
O175.6
A
10.3969/j.issn.1007-9831.2022.04.001
2021-10-23
黑龙江省自然科学基金项目(HL2020A017)
高扬(1979-),男,黑龙江大庆人,教授,博士,从事非线性系统研究.E-mail:gy19790607@163.com