刘 柳,姚 燕,蔡晋辉,梁晓瑜
(中国计量大学 计量测试工程学院,杭州 310018)
洞悉温度场的时空分布特性是燃烧学领域中的重要研究内容之一。数字全息技术作为近年来迅速成长起来的一个新颖的科学计量手段,可实现可视化整个区域的实时流体运动和温度分布[1-2],有着实时监测、非接触测量等[3]优点,它还能存储数据,通过测量对象的幅度和相位,得到折射率、表面变形、表面形状、振动条件等[4-6]信息,并且能全程迅速记录瞬时温度场。传统的火焰温度传感器,如热电偶[7]在测温时由于其侵入式测量的特点,会对火焰产生干扰,且传统手段无法提供火焰温度的立体分布。对此,国内外学者开展了开拓性的研究。ZHANG[8]和ZHU等人[9]利用数字全息干涉技术成功实现对轴对称型温度场的测量。 HERREZ等人[2]基于全息干涉法探讨了表面温度和不同直径对水平加热筒周围空气对流的影响,并通过实验定义相应的温度场方程和传热系数。全息干涉术可通过可视化流体中的密度场,进而深入了解其温度分布。 QI等人[10]利用马赫-曾德尔干涉法测定不同等效比率和不同雷诺数的预混丁烷/空气槽层火焰射流的温度场。根据现有的研究结果不难得出:数字全息技术利用数字再现,通过编程手段消除在记录过程中引入的噪声等不利因素的影响,能完整快速地再现温度场,大大提高了再现质量;且其测量过程无滞后、无干扰,节省了大量处理数据的时间和空间,显著提高了测量精度。
由于利用预混燃气(如丁烷-空气、丙烷-空气)的燃烧器,能在低雷诺数和低压下完全燃烧和快速传热,因此,利用预混燃气的燃烧器被广泛用于轻型工业领域[11-13]。Mckenna燃烧器作为能模拟实际电厂燃烧环境的新型装置,是实验室燃烧实验的首选燃烧器。以甲烷-氧气为主的预混气是目前应用较为广泛的气体燃料[14]。在国内外研究中,利用数字全息技术探索不同甲烷-氧气比对甲烷-氧气预混火焰温度稳定性的研究尚且不足。因此,本文中借助Mckenna燃烧器,利用数字全息法得到不同甲烷-氧气比下的预混湍流火焰的干涉条纹图,并借助巴赫沃斯低通滤波、改进的四向最小二乘法等手段获取原始干涉条纹对应的2维相位分布图。基于温度与相位的关系,通过实验得到的2维和3维的相位分布,研究不同甲烷-氧气比下,其预混火焰在高度15mm处的温度分布,并用B型热电偶进行验证,成功找到使得预混火焰温度分布稳定的甲烷-氧气比。本实验对研究甲烷-氧气预混湍流火焰的燃烧温度场的测量和Mckenna燃烧器的应用具有实际指导借鉴意义。
数字全息技术以传统光学全息为理论基础,其记录光路与传统光学全息基本相同。不同的是,传统光学全息以全息干板为介质记录干涉图,利用光学手段(如曝光、显影、定影等)对干涉图进行处理与再现,其过程繁琐、对环境要求较高,难以做到实时记录与再现。而数字全息以CCD等光学探测器件作为记录干涉图的介质,将干涉图直接输入计算机进行数字处理与再现。数字全息较传统光学全息最为优越的一点是,它能连续记录变化物场的多幅全息图,利用定量得到的被记录物体再现像的振幅和相位信息,实现对变化物场的实时测量。此处物场为甲烷-氧气预混火焰的燃烧场,通过处理燃烧场的相位即可得到其温度场变化情况。
光是一种电磁波,在介质中传播时,其相位周期变化。当光束向前一个波长时,相位变化为2π,由此可得,对某束光而言,其光程与相位的对应关系为:
(1)
式中,l为理论光程距离,L为实际光程距离,λ为光波长,n为光经过的场的气体折射率。当波长相同的两束光发生干涉时,由(1)式可得到相位差:
(2)
式中,φ1和φ2分别为物光和参考光的相位,n1和n2分别为物光和参考光所经过的透明场的气体折射率,L1和L2分别为物光和参考光的传播距离,如图1所示,L1=L2=L1′+L2′。该相位差被记录在通过CCD得到的干涉图中。
Fig.1 Schematic diagram of digital holography optical path
物光和参考光在CCD感光面上叠加,得到干涉条纹的光强[15-17]为:
Er(xH,yH)Eo*(xH,yH)+Er*(xH,yH)Eo(xH,yH)
(3)
式中,Er(xH,yH)为参考光复振幅,Eo(xH,yH)为物光复振幅,*表示复共轭振幅,xH和yH是图像全息平面H上的x和y坐标,(3)式的最后两项包含与使用快速傅里叶变换方法检索物光的振幅和相位所相应的信息。用振幅和相位表示物光和参考光:
(4)
式中,er(xH,yH)和eo(xH,yH)分别为参考光和物光记录在CCD上的振幅,φ(xH,yH)表示物光记录在CCD上的相位分布,fx和fy为x,y方向的光波频率,fxxH和fyyH分别表示沿xH和yH方向的空间载波频率。
将(4)式代入(3)式得:
E(xH,yH)=α(xH,yH)+c(xH,yH)e2πi(fxxH+fyyH)+
c*(xH,yH)e-2πi(fxxH+fyyH)
(5)
其中,
(6)
式中,α(xH,yH)表示物光和参考光的强度分布,c(xH,yH)表示干涉干扰项,c*为c的复共轭振幅。(5)式的后面两项表示由于干扰信号而引入项φ(xH,yH)对空间载波进行相位调制。为了获取光学相位,对(5)式进行2维傅里叶变换得:
FT{E(xH,yH)}=I(fxH,fyH)+C(fxH-fxxH,fyH-
fyyH)+C*(fxH+fxxH,fyH+fyyH)
(7)
式中,fxH,fyH为光波在图像全息平面H上的频率,I(fxH,fyH)是频率坐标为(fxH,fyH)的低频背景照明;C和C*分别表示c和c*的傅里叶变换,且每个都包含相同的相位信息φ(xH,yH),由于它们在傅里叶频谱中空间分离,因此可使用滤波器消除I和C*项。C项以频率为中心,且对每个滤波后的全息图进行傅里叶逆变换操作。接着可以用:
(8)
式中,Imc(xH,yH)和Rec(xH,yH)是逆傅里叶全息图C项的虚部和实部,变化前后两个相位相减得到包裹相位图,其相对相位差为:
Δφ(xH,yH)=φ(xH,yH)-φ′(xH,yH)
(9)
对得到的包裹相位图进行相位展开,即相位解包裹,就能从图中提取相位变化,原理如(9)式所示。由于相位差与折射率满足[7,18]:
Δφ=2πd(n-1)/λ
(10)
式中,d为有效温度场的长度。通过(10)式可得温度场内折射率n的变化。
通过VANDERWEGE,REUSS和STELLA等人[19-21]的研究发现,将甲烷-氧气预混火焰的温度场视为轴对称且介质透明均匀,对结果不会产生重大误差。因此,此处可根据Lorenz-Lorentz关系式和Gladstone-Dale公式得:
1/Tr-1/T0=R(nr-1)/(pKM)
(11)
式中,Tr和nr为某点的温度和气体折射率,T0为初始温度;p=1.01×105Pa为气体压强;M=29g/mol为空气摩尔质量;K=2.43×10-4m3/kg,是Gladstone-Dale常数;R=8.31J/mol/K,是气体普适常量。通过(11)式进一步得到温度Tr。
结合(10)式和(11)式不难看出,相位变化与温度变化存在一致性,因此通过观察相位变化即可得到温度变化。
本实验中采用的马赫-曾德尔干涉光路,是一种常用的数字全息光路,如图1所示。以He-Ne激光器(波长λ=632.8nm)为光源,光束通过偏振器、衰减器和扩束准直器后,形成一束平行光,调节光阑,得到合适直径大小(约3mm)的光束,使其通过可调分光镜1后,分成物光和参考光。其中,在CCD相机前的分光镜2处,参考光和载有燃烧温度场信息的物光汇合。经过分光镜的两束光以一定夹角在CCD上形成干涉条纹图,并存储于PC端。实验对象为带中心管的Mckenna燃烧器,甲烷和空气按一定流量配比混合燃烧以获得稳定的平面火焰,为后续的生物质样本燃烧提供高温环境。
所用CCD感光面尺寸为512mm×512mm,分辨率为2016pixel×2016pixel,像素尺寸为3.1μm。拍摄全息时,物参光夹角的选取需要考虑两个条件[22]:(1)全息图的±1级和0级频谱可以在空间分离;(2)记录在CCD上的微干涉条纹的空间频率fmax必须大于CCD截止频率1/(2Δx),Δx为CCD的像素尺寸,即每一个条纹周期内最少需要两个采样点。满足上述条件后,记录在CCD上的物参光夹角满足θ≤λ/(2Δx)。实验中采用He-Ne激光器,波长为λ=632.8nm,所用CCD的像素尺寸为3.1μm。由于所用光束直径较小,仅为3mm,而燃烧器中心送样空气出口直径为6mm,因此本实验中得到的全息干涉图是燃烧温度场的一部分。为方便衍射计算,在实际计算中,使用MATLAB软件定位截取原始全息图(2016pixel×2016pixel)的中间部分(256pixel×256pixel)进行数据处理。
实验室燃烧环境一般分为3类,分别是富氧环境(甲烷-氧气质量分数之比小于1.0)、完全反应环境(甲烷-氧气质量分数比为1.0)和富燃料环境(甲烷-氧气质量分数比大于1.0)。本次实验中设计5种不同的工况,5种工况的各气体进口体积流量见表1。
Table 1 Volume flow of each gas inlet under different working conditions
实验室测得燃烧环境的冷态温度为293K,以轴向15mm、径向距中心2mm处的燃烧温度场为例,得到未通入甲烷燃烧时(即初始状态下的全息图)和燃烧器在工况1、工况2、工况3、工况4和工况5下的6幅全息干涉图。由于6幅干涉图显示相似,此处以工况1为例说明,将MATLAB软件定位截取256pixel×256pixel的全息图放大观察,如图2所示,实际数据处理时不进行放大。
Fig.2 Interferogram of the temperature field at 15mm in the axial direction and 2mm from the center in the radial direction under working condition 1
图2干涉图明暗条纹相间,反映了物体周围温度随燃烧工况的变化,温度相同处光程相同,折射率也相同,即每一干涉条纹就是一条等温线。由于温度变化前后物光波的相位分布直接决定干涉条纹的分布,利用(11)式就可以精确计算出物场中每一像素所对应得空间位置处得温度变化。
在记录数字全息干涉图时,会引入多种噪声,如散斑噪声、环境噪声和拍摄噪声等。其中,尽可能减小散斑噪声的影响成为全息技术的一个研究重点[23-25]。高度相干光源产生的光容易和其它光发生干涉,导致形成散斑噪声,可表示为:
g(a,b)=f(a,b)·u(a,b)+v(a,b)
(12)
式中,f(a,b)为原始全息图在坐标(a,b)处的数值,g(a,b)为原始全息图像受到散斑噪声污染后的图像,u(a,b),v(a,b)分别是和原始图像分布相互独立的乘性噪声分量和加性噪声分量。本文中利用傅里叶变换、巴赫沃斯低通滤波和傅里叶逆变换等手段降低散斑噪声,即采用各种图像处理的算法对全息图进行处理,并通过软件处理图像达到降噪的目的。将未燃烧状态下的干涉图分别和工况1~工况5的干涉图做数字处理得到相位被压缩在(-π,+π)区间内的包裹相位图,如图3a~图3e所示,接着分别将其解包裹相位[26-30]分别得到图4和图5,图中色度条表示相位变化,单位为rad。
从图3、图4中得到的被测空气区域的相位变化Δφ表示未通入甲烷燃烧时与燃烧器分别在工况1~工况5情况下该区域温度变化的情况,其中,横、纵坐标分别表示数字矩阵的行列数。由于燃烧器的燃气是从面板上的多个小孔输出,即会产生无数个小火焰从而形成燃烧器整个平面的大火焰,因此图3中的每一个封闭等温环均表示为一个小火焰。图3中条纹密集处表示温度梯度大,温度变化剧烈,反之亦然。火焰干涉条纹的明亮区域被认为基本不受火焰的影响,即温度不变。由图4可以看出,相比较而言,工况1、工况2和工况4下温度干涉图中的明亮区域较多,且工况1、工况2和工况4下的等温环分布较为均匀,因此较工况3和工况5而言,工况1、工况2和工况4的燃烧温度较为稳定。
从图5中可以看到,工况1(即甲烷-氧气质量分数之比为0.8)时,被测区域温度场的相位差约为1.6rad;工况2(即甲烷-氧气质量分数之比为0.9)时,被测区域温度场的相位差约为1.2rad;工况3(即甲烷-氧气质量分数之比为1.0)时,被测区域温度场的相位差约为3.0rad;工况4(即甲烷-氧气质量分数之比为1.1)时,被测区域温度场的相位差约为3.0rad;工况3(即甲烷-氧气质量分数之比为1.2)时,被测区域温度场的相位差约为2.5rad。由于相位变化幅度体现出温度变化趋势,两者变化一致,因此可以看出,随着甲烷-氧气比的增加,即甲烷含量变多,甲烷-氧气预混火焰在15mm高度处的温度场变化情况是先变小后变大。不难发现,工况2温度场的最大相位与最小相位之差最小,即甲烷-氧气比为0.9时,该区域温度变化最平缓。
Fig.3 Temperature field distribution change diagram of the measured area under the five working conditions (not unwrapped)a—condition 1 b—condition 2 c— condition 3 d—condition 4 e—condition 5
Fig.4 Temperature field distribution change diagram of the measured area under five working conditions (unwrapping 2-D)a—condition 1 b—condition 2 c—condition 3 d—condition 4 e—condition 5
Fig.5 Temperature field distribution change diagram of the measured area under five working conditions (unwrapping 3-D)
将3支B型热电偶以120°夹角分布在燃烧器周围,采用温度记录仪记录不同工况下燃烧器出口15mm高度处的温度值,每隔0.005s记录一次,在45s内记录9000次,并对3支热电偶测得数据平均处理,得到温度变化曲线图,由于曲线数值点过多,此处采用拟合平滑处理,如图6所示,更有利于查看温度曲线变化趋势。
Fig.6 Line graph of average temperature of type B thermocouple under five working conditions
由于热电偶从冷态突然进入燃烧环境,热电偶在0s~10s左右时间内测得的温度起伏大,如图6所示,无实际参考意义,因此对10s后的温度曲线进行观察。由于温度点过于密集,10s后的温度变化采用箱线图表示,如图7所示。从图7中不难发现,相比其它工况而言,工况2在10s后的温度变化范围最小,约为10K,验证了从图5得出的工况2的温度变化最为平缓的结论。从实验结果中发现,随着甲烷含量变多,甲烷-氧气预混火焰燃烧情况并不是一直趋向平稳,甲烷含量过少或过多,都会导致甲烷-氧气预混火焰的温度变化激烈。
Fig.7 Box diagram of average temperature of type-B thermocouple under five working conditions
采用数字全息技术,得到不同甲烷-氧气比的预混火焰的干涉条纹图,并对所得条纹图进行傅里叶变换,获取对应的频域图像。接着利用巴赫沃斯低通滤波对频域图像进行滤波和傅里叶逆变换处理,获得相应包裹相位。最后借助改进的四向最小二乘法等手段获取原始干涉条纹对应的2维和3维的相位图。
本实验中借助Mckenna燃烧器,通过2维和3维的相位图研究不同比例下甲烷-氧气预混火焰的空间温度分布,得到了在工况2(即甲烷-氧气质量分数之比为0.9)条件下,15mm高度处的甲烷-氧气预混火焰温度场最为稳定,约为10K的结论,并用B型热电偶验证该结论的准确性。实验成功验证了数字全息技术对于检测温度场等流场分布测量在技术上的优越性和灵敏度较高的特点。