俞嘉卿,邱 涵,程 新,李汉广,黄 林,魏赛金*
诱导子对植物次生代谢产物积累的影响研究进展
俞嘉卿1,2,邱 涵1,2,程 新1,2,李汉广1,2,黄 林1,2,魏赛金1,2*
(1. 江西农业大学 生物科学与工程学院,江西 南昌 330045;2. 江西农业大学 应用微生物研究所,江西 南昌 330045)
次生代谢过程是植物在面临环境胁迫、病原微生物侵染以及草食性动物采食等过程时激活的一种防御反应,通常伴随着次生代谢产物的合成与大量积累,以增强自身的免疫力和抵抗力。次生代谢产物可划分为苯丙素类、黄酮类、单宁类、醌类、类萜、甾体及其甙、生物碱七大类,主要作为原料被广泛用于医药、化工、食品等其他领域,然而天然次生代谢产物产量较低,因此利用诱导子提高植物次生代谢产物产量开启了一项新的研究领域,可以显著提高经济效益,降低生产成本。通过系统介绍诱导子的分类及其诱导植物次生代谢产物合成的作用机制,并对生物诱导子(多糖、酵母提取物、细菌诱导子、真菌诱导子)与非生物诱导子(光照、高低温、干旱、重金属、激素等)的研究与应用进行阐述,以期为次生代谢产物的利用与发展提供理论依据。
诱导子;次生代谢产物;应用
植物与人类的日常生活密切相关,不仅具有一定的营养价值,其产出的活性成分也具有极高的研究价值。除了有对植物生长发育以及生命活动不可或缺的初级代谢产物,如碳水化合物、有机酸、氨基酸、核苷酸、脂质分子等,植物还会产生次生代谢物,如黄酮类、生物碱、酚类、萜类等,已被广泛用于医药、化工、食品等领域。植物次生代谢产物是一类具有多种化学结构和生物活性的小分子物质,这些物质在植物体内具有不同的代谢途径,还有独特的酶促反应机制。研究表明苯丙氨酸解氨酶(PAL)、肉桂酸-4-羟基化酶(C4H)、4-香豆酰-CoA-连接酶(4CL)是苯丙烷代谢途径的关键酶,位于植物次生代谢途径的下游,负责合成酚类物质的前体。异戊二烯代谢途径同时受关键酶和限速酶的调控,如合酶、转移酶、环化酶,其中3-羟甲基戊二酸酰-CoA还原酶(HMGR)是该途径的第一个限速酶。
植物次生代谢物不直接参与植物生长发育过程,但在提高植物对物理环境的适应性和种间竞争能力、抵御天敌的侵袭、增强抗病性等方面起着重要作用。例如,植保素能增强植物自身抵抗力以抵抗病原菌的入侵;木质化作用为植物提供了防护层,有利于阻止病原菌的进一步侵染;茉莉酸、水杨酸等信号分子的传输引发植物抗性导致开启防御方应。此外,植物次生代谢产物还具有广阔的药理活性与重要的生物功能,如类黄酮化合物已被证实具有抗炎症、抗变态反应、抗病毒和抗癌症特性,生物碱具有抗炎、抗菌、抗病毒、保肝、抗癌等多方面的药理活性。然而,植物本身合成的次生代谢产物含量低,无法满足人们日益增长的需求,因此其生物合成研究备受国内外关注。目前已采用多种策略解决次生代谢产物生产中遇到的问题,而诱导是一项能够提高植物细胞、器官及系统中次生代谢物产量的有效策略。本文综述了诱导子的分类、作用机制以及对植物次生代谢产物的影响,以期为次生代谢产物的利用与发展提供理论依据。
诱导子是一类特殊的触发因子,它能调控植物代谢过程中酶的活性,诱导植物对胁迫做出一系列的防御反应,从而加剧植物次生代谢产物的生物合成。根据来源不同,诱导子可分为两种类型,即生物诱导子与非生物诱导子。生物诱导子是指来源于动植物细胞或微生物中的物质,包括多糖、酵母菌、细菌以及真菌提取物[1]。多糖主要从动物细胞膜、植物及微生物细胞壁中分离提取获得,如几丁质、纤维素、果糖等。非生物诱导子不是植物细胞中的天然成分,但能触发植物形成抗毒素信号,包括物理、化学和激素3类诱导子[2],其中物理诱导子有光照、干旱、高低温等,化学诱导子以重金属胁迫为主,常用的激素包括茉莉酸甲酯、水杨酸、油菜素内酯等其他信号分子。
目前,普遍认为诱导机制主要包括信号识别、信号转导及基因表达调控3个关键环节。诱导子-受体识别是植物开启防御反应的第一步,大量研究表明诱导子受体位于细胞质膜上,是最先感知外界信号刺激的[3]。诱导子与受体的相互作用导致跨膜离子发生改变,如Ca2+、H+内流,K+、Cl-外流,也激活了植物细胞中相关酶的活性及蛋白质磷酸化,导致第二信使的形成,如G蛋白、cAMP、磷酸肌醇等[4]。随后细胞中的第二信使把信号传至细胞核中,激活转录因子,导致特定基因的表达,最终合成次生代谢产物[5]。在植物诱导过程中,诱导子通过调节关键酶基因及转录因子的表达来实现次生代谢产物的积累。Sabater-Jara等[6]发现环糊精与茉莉酸甲酯复配联用在红豆杉细胞培养时,编码转运酶基因和表达量增加,紫杉醇含量增加到对照的55倍。纳米粒子ZnO能增强亚麻细胞中苯丙氨酸解氨酶(PAL)和肉桂醇脱氢酶(CAD)的活性,ZnO和TiO2还能促进细胞合成总酚和木脂素[7]。
多糖(polysaccharide,PS)是一类参与诱导途径的信号分子,可以激活植物防御反应,以应对病原体的侵染。一直以来,植物及微生物细胞壁上的多糖如纤维素、果胶、壳聚糖和葡聚糖被广泛用作生物诱导子诱导次生代谢物,它们能使细胞在短期内大量积累目标产物,因此外源添加多糖是一条生产次生代谢产物的有效途径。不同类型的多糖被用来诱导特定次生代谢产物,壳聚糖在诱导酚类、黄酮类物质效果尤其有效,Simic等[8]研究发现几丁质诱导金丝桃()悬浮细胞合成金丝桃素(HYP)和假金丝桃素(PHYP),葡聚糖和果胶促进酚类物质、类黄酮、黄烷醇和花青素的积累。海带多糖的加入会抑制葛根(var. mirifica,var. candollei)悬浮细胞的生长,却能增加葛根素的含量[9]。
酵母提取物(yeast extract,YE)已被广泛用于植物次生代谢产物的积累,研究发现YE有效促进了马鞭草科植物((Mill.))中5-亚甲基-2-降冰片烯、4-戊烯酸乙酯、对伞花烃和柠檬烯的合成[10],罗勒(L.)悬浮细胞中菊苣酸、迷迭香酸、芦丁、异槲皮素含量显著增加[11],白花丹(L.)悬浮细胞不断积累白花丹素[12]。不同处理浓度和处理时间的YE会导致不同代谢产物的富集,如印楝()细胞在悬浮培养过程中,添加25 mg/L YE培养2 d印楝素含量最高,50 mg/L YE处理2 d达到最大甲羟戊酸积累量,4 d后角鲨烯累积量达到最大[13]。El-Serafy等[14]在茴香(spp.vulgareMill.)叶面喷施4 mg/L酵母菌提取物,增加了茴香醚的含量和降低了茴香脑的浓度。与之相反的是,当YE质量浓度为2 mg/L时,茴香油中的烯唑醇的比例最低,茴香脑的浓度最高,达到64.50%,改善了油质。
细菌作为生物诱导子也能诱导植物次生代谢产物的积累,如大肠杆菌()可以增加火索麻(L.)悬浮培养中薯蓣皂素的含量[15],蜡样芽孢杆菌()和金黄色葡萄球菌()诱导洋金花()毛状根产生东莨菪碱,白色念珠菌()和金黄色葡萄球菌促进银杏()悬浮细胞合成银杏内酯(BB)、银杏内酯A(GA)和银杏内酯B(GB)[16]。
冠菌素(coronatine,COR)是一种由丁香假单胞菌产生的非宿主特异性植物毒素,它能诱导红豆杉(,)产生紫杉烷[17],研究表明经过诱导得到的主要产物是三尖杉宁碱和10-去乙酰紫杉醇,而的主要产物为紫杉醇和巴卡亭Ⅲ,这些次生代谢产物都具有很强的抗肿瘤活性,COR也被报道对豆科植物中的黄酮类化合物有显著的诱导作用[18]。此外,诱导时间是影响次生代谢产物产量的重要因素,随着COR处理时间的加长,浮萍()中羟基肉桂酸如咖啡酸、异阿魏酸、对香豆酸、芥子酸和植物甾醇(如菜油甾醇和β-谷甾醇的含量不断增高)[19]。COR是JA的结构类似物,可作为诱导信号调控植物次生代谢产物的合成,然而有关冠菌素诱导次生代谢产物的合成机制尚不明确。一些研究显示,COR通过诱导植物代谢途径相关酶基因的表达促进次生代谢产物的积累。3-脱氧-D-7-磷酸阿拉伯庚酮糖酸合成酶(DAHPS)是莽草酸途径的关键酶,COR作用于海南粗榧()悬浮细胞时细胞中DAHPS的活性增强,促进了三尖杉碱的合成[20]。Escrich等[21]发现COR与杯[8]芳烃(CAL)联合使用提高了红豆杉中总紫杉烷含量,紫杉醇合成基因和的表达量增加。
环糊精(cyclodextrins,CDs)是由芽孢杆菌产生的一类环状低聚糖,具有诱导植物细胞防御反应和次生代谢产物积累的作用,包括苯丙素类、萜烯类、生物碱类、萘醌类和蒽醌类衍生物的生产。研究[22]发现CDs应用于水飞蓟()培养时增加了白藜芦醇(t-R)和柚皮素(Ng)产量,与MeJA联用促进海巴戟()和染色茜草()悬浮细胞生产蒽醌类物质(Aqs)[23],在欧洲红豆杉(L.)细胞培养液中同时添加COR和CDs能诱导基因过表达,显著提高紫杉醇的生物合成[24]。
真菌诱导子是一类能引起植物细胞合成积累次生代谢物的活性物质,不同类型真菌诱导出的次生代谢产物也有所差异。比如异形根孢囊霉()能够提高罗勒()毛状根内迷迭香酸、咖啡酸的含量[25],新月弯孢霉()使印楝()毛状根内印楝素的积累增强[26]。近年来,大量学者研究了真菌诱导子的诱导机制,发现真菌诱导子对植物的诱导途径主要包括信号识别、信号转导、基因表达及关键酶的激活[27]。从丹参()中分离得到的毛霉()菌丝体提取物通过调控关键基因(、和)的表达,促进丹参毛状根中丹酚酸B、迷迭香酸、硬脂酸和油酸的积累[28]。用印度梨形胞菌()和木霉()提取物处理长春花()细胞悬浮液能够显著提高和基因表达水平,进而增加长春花植株中长春碱和长春新碱含量[29]。
光是植物生长发育的能量来源,能调控植物次生代谢产物的合成与积累。研究表明,提高光照强度能增强芦荟(Mill.)中芦荟素A和芦荟素B的生物合成,与之相反,遮阴处理后异芦脂D含量最高[30]。此外,不同光质对植物次生代谢产物的影响不同,Yang等[31]通过研究不同光照条件对三枝九叶草((Sieb. et Zucc.)Maxim.)中黄酮类化合物合成的影响发现,蓝光能显著诱导淫羊藿苷的合成,而红光对淫羊藿苷的积累没有影响。Usman等[32]通过试验发现,使用连续白光和蓝光处理黄果茄()愈伤组织,总黄酮含量和总酚含量的积累均优于对照,其中咖啡酸、咖啡酸甲酯、东莨菪素和七叶内酯在蓝光培养下产量最佳。紫外线辐射(UV)已经被证明能诱导植物次生代谢产物的积累,其中主要用于酚类化合物的诱导合成。在研究UV-A(320~400 nm)对番茄理化性质和抗氧化特性的影响时,分析发现番茄中酚类化合物、类胡萝卜素和黄酮类化合物的总含量均呈现上升趋势,在365 nm范围内辐射360 min番茄的抗氧化活性最强[33]。UV也能诱导植物细胞黄酮类物质的合成,如大豆幼苗经UV-A辐射后,与异黄酮合成相关的等基因高度表达,根中异黄酮含量明显增加[34]。使用UV-B对油菜()进行短期照射处理,随着UV-B辐射强度和照射时间的增加,总酚、类黄酮、抗氧化剂和花青素含量显著增加,次生代谢产物生物合成相关基因在UV-B辐射后立即上调[35]。此外,生物碱的产量也会受到紫外线的调控影响,如茉莉酸甲酯与UV-B光组合诱导长春花()时,长春碱、长春新碱和阿吗碱的积累量得到提升[36]。
温度是影响植物生长发育的主要环境因子之一,当植物长期处于过高或过低温度时会触发氧化应激反应,导致ROS过多生成,造成细胞损伤[37]。一些研究表明,高低温胁迫能诱导植物次生代谢产物的合成。在4 ℃和35 ℃条件下,毛果茄(Dunal)植株中的甾体生物碱和糖苷类生物碱,酚酸类以及黄酮类化合物积累量最高[38]。此外高温提高了杨树(L.)幼苗中酚类物质的积累[39],独活属植物()中脯氨酸、花色苷和呋喃香豆素的积累[40]。芫荽(L.)在15 ℃和35 ℃组合培养下,抗坏血酸、类胡萝卜素、酚类化合物、绿原酸等次生代谢物的含量以及植物的抗氧化能力均得到提高[41]。
干旱作为植物面临的非生物胁迫之一,会造成经济作物的大幅度减产,但是在植物组织培养过程中,它可以促进目标代谢产物的积累,包括酚酸、萜类、生物碱、单宁以及其他硫化物。研究发现干旱胁迫增加了冬青栎(L.)叶片中表没食子儿茶素、鞣花酸、胡薄荷酮、吲哚-3-丙烯酸和二氢玉米素-O-葡萄糖苷等代谢产物的含量[42]。对两种侧金盏花属(Regel et Radde,W. T. Wang)植物进行干旱胁迫处理发现次生代谢产物黄酮、总酚和脱落酸(ABA)含量显著升高[43]。Hessini等[44]研究了不同缺水程度对大马士革玫瑰(Mill. var.)叶片次生代谢产物的影响,检测发现总酚含量增加,苯甲酸(没食子酸、对香豆酸和丁香酸)、肉桂酸(咖啡酸和反式肉桂酸)和黄酮(表儿茶素-3-O-没食子酸酯)含量较对照组分别提升了32%、19%和15%。Ahmed等[45]研究表明干旱胁迫显著诱导了杨树(717)体内类黄酮生物合成基因(、、、、、和)的表达,增强了具有抗逆性抗氧化活性的酚类和类黄酮化合物的积累。
重金属会引起植物生理代谢活动的紊乱,当其在植物体内过度积累时会对植物造成一定毒害作用甚至导致植物死亡,然而使用适宜浓度的重金属能增强植物细胞产次生代谢物能力以提高其经济效益。一些金属,如锌(Zn)、镍(Ni)、银(Ag)、镉(Cd)、铅(Pb)和钴(Co),已经证明可以诱导多种植物产生次生代谢产物。研究发现过量Zn会使苋科植物(accessions(JB and GD))中花青素和β-蜕皮甾酮含量达到最高[46]。Kazemi等[47]研究了Cd对鹰嘴豆()幼苗影响,发现植株叶片色素、总酚和可溶性蛋白含量存在有明显变化。芫荽(L.)在Cd和Pb胁迫条件下,植物精油含量(0.18%~0.30%)、总酚含量(250~280 μg/kg)和总黄酮含量(142~167 μg/kg)均高于对照[48]。多数研究表明,金属盐对植物次生代谢产物的积累也有促进作用。如重金属离子(Co2+、Ag+、Cd2+)能显著增加葡萄()悬浮培养细胞中次生代谢产物含量,尤其是花青素和酚酸[49]。使用50 mmol/L和100 mmol/L Cd2+能提高蓝莓(L.)外植体中以绿原酸为主的酚类化合物含量,随着Cd2+的加入,绿原酸的丰度增加[50]。不同稀土元素也可作为外源诱导因素刺激次生代谢产物的合成,如铈(Ce)、镧(La)或镨(Pr)不仅能诱导丹参()不定根的形成,还能提高丹参次生代谢产物含量,其中丹参酮ⅡA含量较对照提高了54.84%[51]。适宜浓度的硝酸铈也能提高青钱柳()幼苗中三萜、槲皮素、山酚等次生代谢产物含量[51]。
茉莉酸(jasmonic acid,JA)是植物体内一类重要的脂质激素,参与调节植物生长发育等诸多过程,同时在抵抗生物胁迫和非生物胁迫过程中作为关键信号诱导植物产生防御反应。JAs是含有环戊烷酮基本结构的脂肪酸衍生物,包括茉莉酸、茉莉酸甲酯以及茉莉酸异亮氨酸,目前作为外源诱导子被广泛用于植物细胞悬浮培养积累次生代谢产物。如洋地黄(L.)细胞在悬浮培养时,加入50 mmol/L MeJA诱导48 h,毛蕊花糖苷的产量达到最大值[52]。薰衣草()是一种重要的芳香植物,用MeJA对其处理,单萜和倍半萜含量分别比对照提高了0.46倍和0.74倍[53]。绿原酸及其衍生物是栀子()中重要的次级代谢产物,在栀子细胞培养中添加MeJA会增强绿原酸及其衍生物的积累[54]。绞股蓝()可用于治疗肝炎、糖尿病、心血管疾病等,用不同浓度的MeJA作为诱导子,发现细胞中绞股蓝皂苷含量上升[55]。此外,在植物组织培养过程中,同时对外植体进行诱导处理也能产生次生代谢产物并提高其含量。在鼠尾草(Maxim.)根尖及叶片进行离体培养时,MeJA能显著促进其愈伤组织中酚类物质的产生,其中邻苯二酚、酚酸、原花青素含量最高[56]。诱导子浓度与诱导时间也会影响次生代谢产物的积累情况,用MeJA处理菜豆(L.)、大豆(L.)、绿豆(L. Wilczek)幼苗时,会增加幼苗中异黄酮类物质的含量,但是施用浓度高于2.22 mmol/L会对幼苗产生明显的毒害作用,导致异黄酮类物质浓度下降[18]。有研究发现,在培养大蒜(Boiss. & Buhse.)愈伤组织时添加50 mmol/L MeJA能增加总酚、总黄酮、总黄酮醇含量,但是添加25 mmol/L MeJA时花青素含量最高[57]。MeJA可以在细胞和分子水平上控制各种生化途径,主要表现为调控合成途径中相关酶基因和转录因子的表达。苯丙氨酸解氨酶是植物苯丙烷途径中的关键酶,当MeJA作用于西兰花细胞时,其苯丙氨酸解氨酶活性增强,促进了细胞内酚类化合物的合成积累[58]。
水杨酸(salicylic acid,SA)作为一种信号分子,在植物防御调节系统中起重要作用,众所周知,它能诱导植物对微生物侵染产生系统获得性抗性(SAR),从而引发SA局部积累触发防御反应,该过程通常伴随次生代谢产物的产生,因此SA也被普遍用作次级代谢物诱导子。许多有关SA诱导的研究已被报道,并证实了其对次生代谢产物合成的诱导效果。SA可用于诱导红豆杉属植物产生二萜生物碱,用5 μmol/L SA处理红豆杉()愈伤组织,以诱导紫杉醇的产生[59]。在培养平菇((Jacq.)P. Kumm)时添加SA,观察到抗生素和聚酮的含量增加[60]。SA还可以通过调节抗氧化酶活性刺激次级代谢产物的合成以缓解氧化应激反应,如冷冻的甘蓝(L.)叶片经SA灌溉处理,叶片细胞中的抗坏血酸过氧化物酶和超氧化物歧化酶活性增强,次生代谢物含量升高,包括酚类以及类黄酮[61]。
油菜素内酯(brassinolide,BR)是一种新型内源性植物激素,对植物生长发育至关重要,包括生根、开花、种子萌发等多种生理[62]。一般来说,这类激素通过与细胞表面受体结合形成复合物转运至细胞核以调节相关基因的表达,这一机制类似于类固醇激素。长期以来,学者们发现BR能诱导植物合成次生代谢产物,使用BR对刺梨仙人掌()进行叶面喷施,植物中亚油酸的比例得到提高,果肉中酚、黄酮等物质含量也呈现上升趋势[63]。在薄荷(L.)面临盐协迫时,添加BR能增加总酚与精油含量[64],在薰衣草(Emeric ex Loisel.)培养中也出现类似现象,即总酚与精油含量上升。此外,有研究指出, 24-表油菜素内酯能促进紫锥菊(L. Moench)毛状根生长,积累总酚、总黄酮和咖啡酸衍生物[65]。联合使用BR与SA能缓解重金属铅对芥菜(L.)的毒害作用,主要通过增强愈创木酚过氧化物酶、过氧化氢酶、谷胱甘肽还原酶和谷胱甘肽巯基转移酶的活性促进谷胱甘肽、生育酚和抗坏血酸的高度合成以抵御这种不利影响[66]。
多胺(ployamines,PA)广泛存在于动植物体内,能够促进植物生长与种子萌发,刺激不定根产生,延缓叶片衰老,调节开花过程,在抵御外界不利因素也起着一定的作用[67]。近年来,有研究表明添加外源多胺是获得高产量次生代谢物的有效手段,如腐胺(putrescine,PUT)、精胺(spermine,SPM)、亚精胺(spermidine,SPD)。在产黄顶头孢霉()发酵过程中,含有外源PA的培养液里头孢菌素C含量增加了15%~20%,并且上调β-内酰胺生物合成基因的表达[68]。外源PA也能通过促进次生代谢产物合成提高细胞抗氧化能力,对番茄(L.)施加SPM,细胞中的总酚和类黄酮物质增多,已知该类物质具有很好的抗氧化能力[69]。PA介导次生代谢产物的生物合成机制尚不明确,有研究指出,SPD通过增强真核起始因子(eIF5A)的催化作用促进线粒体活性氧(ROS)产生,正向调控赤霉素(GA)的生物合成[70]。
除上述应用较为广泛的植物激素,其他植物激素也可被用于诱导植物次生代谢产物的积累,如6-BA与2,4-二氯苯氧乙酸(2,4-dichlorophenoxyacetic acid,2,4-D)共同作用增强了大阿米芹()悬浮细胞中三萜的积累[71]。脱落酸(abscisic acid,ABA)是一种抑制植物生长的激素,能引发芽休眠、叶子脱落和抑制细胞生长[72]。将ABA施加到甘草(Fisch.)幼苗上能诱导4种活性化合物的含量大幅度增加[73],外源ABA还能促进草莓内源ABA、苯丙素类和L-抗坏血酸(AsA)的合成[74]。乙烯不常直接用作次生代谢物诱导剂,主要作为内源信号分子调控代谢产物合成[75],但是有文献表明,经乙烯处理的猕猴桃果实中总酚、类黄酮和维生素C等次生代谢产物发生了显著变化[76]。
纳米颗粒(NPs)是一种新型诱导材料,除了在药物制剂中发挥作用外,还可以增加植物次生代谢产物的含量。例如,CuO纳米颗粒可以提高唇科植物(Boiss.)根培养中总酚、花青素、黄酮醇和黄酮含量[77],还能促进罗勒[(Thai basil)]愈伤组织的生长以及迷迭香酸、菊苣酸、丁香酚等物质的合成[78]。已有研究报道金属纳米颗粒可以诱导某些特定次生代谢产物积累,在贯叶连翘(L.)细胞悬浮培养物中加入不同金属和金属氧化物纳米颗粒,发现Pd对大黄素、Cu对芹菜素、CeO2对大黄素蒽酮、TiO2对槲皮素、ZnO2对没食子酸的诱导效果最佳[79],添加金属纳米复合物(Mn、Cu、Zn、Ag)能增加天南星科植物大薸(L.)中酚类和萜类物质含量,而对槐叶萍[(L.)All.]、水鬼花[(Humb. amp; Bonpl.ex Willd.)]无明显效果。NPs能引起植物体内氧化应激,增加信号分子,上调合成酶基因表达,增加次生代谢产物的含量,多酚、总黄酮等成分的增加可能与氧化应激有关。
一氧化氮(NO)是一种潜在的非生物诱导子,研究表明它能调控次生代谢产物合成途径相关酶活性来诱导代谢物的合成。使用NO供体硝普钠(SNP)和SA刺激红花(L.)植株,发现细胞中PAL酶活性增强,次生代谢产物增加,包括黄酮、花青素和酚[80]。在狼爪瓦松(A. Bor.)细胞培养中,NO通过硝酸还原酶(NR)途径促进MeJA诱导类黄酮合成[81]。
次生代谢产物是植物在长期进化过程中同生物和非生物因素相互适应的结果,人类最初研究天然产物是源于其丰富的应用价值,19世纪50年代左右,化学家们对其化学特性进行了广泛的研究,近些年来,人们逐渐认识到植物次生代谢产物的生物学效应,开始重新定义这些化合物在植物生命活动中的作用。
随着人们对次生代谢产物的不断研究与开发,其供不应求的现象也日益凸显。与化学合成法相比,诱导子在提高次生代谢产物方面具有明显优势,其工艺流程简单,成本较低,不易对环境造成污染,最重要的是能实现资源的可持续利用和发展。目前植物次生代谢途径已被大致阐明,但人们对调控这些途径的酶和基因了解有限,相关转录因子的结构与功能仍有待探索。利用各种组学技术可以揭示代谢限速的原因,并为生物合成路线提供新的见解,这为探寻新的诱导子开辟了可能性。
[1] RAMIREZ-ESTRADA K, VIDAL-LIMON H, HIDALGO D, et al. Elicitation, an effective strategy for the biotechnological production of bioactive high-added value compounds in plant cell factories[J]. Molecules, 2016, 21(2): 182.
[2] ALSOUFI A S M, PĄCZKOWSKI C, DŁUGOSZ M, et al. Influence of selected abiotic factors on triterpenoid biosynthesis and saponin secretion in marigold (L.) in vitro hairy root cultures[J]. Molecules, 2019, 24(16): 2907.
[3] KÖHL J, KOLNAAR R, RAVENSBERG W J. Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy[J]. Frontiers in plant science, 2019, 10: 845.
[4] MAQBOOL S, HAFEEZ M, KARUNARATHNA S C, et al. Molecular and biochemical mechanisms of elicitors in pest resistance[J]. Life, 2022, 12(6): 844.
[5] WANG K, WANG Z, XU W. Induced oxidative equilibrium damage and reduced toxin synthesis inf. sp.by secondary metabolites fromWB[J]. FEMS microbiology ecology, 2022, 98(8): fiac080.
[6] SABATER‐JARA A B, ONRUBIA M, MOYANO E, et al. Synergistic effect of cyclodextrins and methyl jasmonate on taxane production inxcell cultures[J]. Plant biotechnology journal, 2014, 12(8): 1075-1084.
[7] KARIMZADEH F, HADDAD R, GAROOSI G, et al. Effects of nanoparticles on activity of lignan biosynthesis enzymes in cell suspension culture ofL.[J]. Russian journal of plant physiology, 2019, 66(5): 756-762.
[8] SIMIC S G, TUSEVSKI O, MAURY S, et al. Polysaccharide elicitors enhance phenylpropanoid and naphtodianthrone production in cell suspension cultures of[J]. Plant cell, tissue and organ culture, 2015, 122(3): 649-663.
[9] KORSANGRUANG S, SOONTHORNCHAREONNON N, CHINTAPAKORN Y, et al. Effects of abiotic and biotic elicitors on growth and isoflavonoid accumulation invar. candollei andvar. mirifica cell suspension cultures[J]. Plant cell, tissue and organ culture, 2010, 103(3): 333-342.
[10] DE SOUZA SILVA P T, DE SOUZA L M, DE MORAIS M B, et al. Effect of biotic elicitors on the physiology, redox system, and secondary metabolite composition of(Mill.) cultivated in vitro[J]. South African journal of botany, 2022, 147: 415-424.
[11] AÇIKGÖZ M A. Establishment of cell suspension cultures ofL. and enhanced production of pharmaceutical active ingredients[J]. Industrial crops and products, 2020, 148(C): 112278.
[12] ROY A, BHARADVAJA N. Establishment of root suspension culture ofand enhanced production of plumbagin[J]. Industrial crops and products, 2019, 137: 419-427.
[13] FARJAMINEZHAD R, GAROOSI G. Improvement and prediction of secondary metabolites production under yeast extract elicitation ofcell suspension culture using response surface methodology[J]. AMB express, 2021, 11(1): 43.
[14] EL-SERAFY R S, EL-SHESHTAWY A-N A, DAHAB A A, et al. Can yeast extract and chitosan-oligosaccharide improve fruit yield and modify the pharmaceutical active ingredients of organic fennel?[J]. Industrial crops and products, 2021, 173: 114130.
[15] SAMRIN S, VARSHA S, TUSHAR K, et al. Biotic elicitors enhance diosgenin production inL. suspension cultures via up-regulation of CAS and HMGR genes[J]. Physiology and molecular biology of plants : an international journal of functional plant biology, 2020, 26(3): 593-604.
[16] KANG S-M, MIN J-Y, KIM Y-D, et al. Effect of biotic elicitors on the accumulation of bilobalide and ginkgolides incell cultures[J]. Journal of biotechnology, 2008, 139(1): 84-88.
[17] RAMIREZ-ESTRADA K, OSUNA L, MOYANO E, et al. Changes in gene transcription and taxane production in elicited cell cultures of×and[J]. Phytochemistry, 2015, 117: 174-184.
[18] KAREN G, FRANKLIN Q, DIEGO A, et al. Elicitation of isoflavonoids in Colombian edible legume plants with jasmonates and structurally related compounds[J]. Heliyon, 2022, 8(2): e08979.
[19] JIN-YOUNG K, HYE-YOUN K, JUN-YEONG J, et al. Effects of coronatine elicitation on growth and metabolic profiles ofculture[J]. Plos one, 2017, 12(11): e0187622.
[20] WANG L-Y, ZHANG Q, WANG Z-Q, et al. Effect of coronatine on synthesis of cephalotaxine in suspension cells ofand its transcriptome analysis[J]. Plant cell, tissue and organ culture, 2021, 147(2): 1-12.
[21] ESCRICH A, ALMAGRO L, MOYANO E, et al. Improved biotechnological production of paclitaxel incell cultures by the combined action of coronatine and calix[8] arenes[J]. Plant physiology and biochemistry, 2021, 163: 68-75.
[22] PURIFICACIÓN C, LORENA A, ANTONIO G J, et al. Phenylpropanoids incultures treated with cyclodextrins coated with magnetic nanoparticles[J]. Applied microbiology and biotechnology, 2022, 106(7): 2393-2401.
[23] PERASSOLO M, SMITH M E, GIULIETTI A M, et al. Synergistic effect of methyl jasmonate and cyclodextrins on anthraquinone accumulation in cell suspension cultures ofand[J]. Plant cell, tissue and organ culture, 2016, 124(2): 319-330.
[24] KIMIA K, SADEGH S M, MOKHTAR J J, et al. Bottleneck removal of paclitaxel biosynthetic pathway by overexpression of DBTNBT gene under methyl-β-cyclodextrin and coronatine elicitation inL.[J]. Plant cell, tissue and organ culture, 2022, 149(1/2): 485-495.
[25] SRIVASTAVA S, CONLAN X A, CAHILL D M, et al. Rhizophagus irregularis as an elicitor of rosmarinic acid and antioxidant production by transformed roots ofin an in vitro co-culture system[J]. Mycorrhiza, 2016, 26(8): 919-930.
[26] SRIVASTAVA S, SRIVASTAVA A. Effect of elicitors and precursors on azadirachtin production in hairy root culture of[J]. Applied biochemistry and biotechnology, 2014, 172(4): 2286-2297.
[27] ZHAI X, JIA M, CHEN L, et al. The regulatory mechanism of fungal elicitor-induced secondary metabolite biosynthesis in medical plants[J]. Critical reviews in microbiology, 2017, 43(2): 238-261.
[28] XU W, JIN X, YANG M, et al. Primary and secondary metabolites produced inhairy roots by an endophytic fungal elicitor from[J]. Plant physiology and biochemistry, 2021, 160: 404-412.
[29] RAMEZANI A, HADDAD R, SEDAGHATI B, et al. Effects of fungal extracts on vinblastine and vincristine production and their biosynthesis pathway genes in[J]. South African journal of botany, 2018, 119: 163-171.
[30] LAZZARA S, CARRUBBA A, NAPOLI E, et al. Increased illumination levels enhance biosynthesis of aloenin A and aloin B inMill., but lower their per-plant yield[J]. Industrial crops and products, 2021, 164: 113379.
[31] YANG L, ZHOU S, HOU Y, et al. Blue light induces biosynthesis of flavonoids in(Sieb. et Zucc.) Maxim. leaves, a study on a light-demanding medicinal shade herb[J]. Industrial crops and products, 2022, 187: 115512.
[32] USMAN H, ULLAH M A, JAN H, et al. Interactive effects of wide-spectrum monochromatic lights on phytochemical production, antioxidant and biological activities ofcallus cultures[J]. Molecules, 2020, 25(9): 2201.
[33] DYSHLYUK L, BABICH O, PROSEKOV A, et al. The effect of postharvest ultraviolet irradiation on the content of antioxidant compounds and the activity of antioxidant enzymes in tomato[J]. Heliyon, 2020, 6(1): e03288.
[34] LIM Y J, LYU J I, KWON S-J, et al. Effects of UV-A radiation on organ-specific accumulation and gene expression of isoflavones and flavonols in soybean sprout[J]. Food chemistry, 2021, 339: 128080.
[35] LEE J-H, SHIBATA S, GOTO E. Time-course of changes in photosynthesis and secondary metabolites in canola () under different UV-B irradiation levels in a plant factory with artificial light[J]. Frontiers in plant science, 2021, 12: 786555.
[36] RADY M R, GIERCZIK K, IBRAHEM M M, et al. Anticancer compounds production inby methyl jasmonate and UV-B elicitation[J]. South African journal of botany, 2021, 142: 34-41.
[37] LI Y, KONG D, FU Y, et al. The effect of developmental and environmental factors on secondary metabolites in medicinal plants[J]. Plant physiology and biochemistry, 2020, 148: 80-89.
[38] PATEL P, PRASAD A, SRIVASTAVA D, et al. Genotype-dependent and temperature-induced modulation of secondary metabolites, antioxidative defense and gene expression profile inDunal[J]. Environmental and experimental botany, 2022, 194: 104686.
[39] SOBUJ N, NISSINEN K, VIRJAMO V, et al. Accumulation of phenolics and growth of dioecious(L.) seedlings over three growing seasons under elevated temperature and UVB radiation[J]. Plant physiology and biochemistry, 2021, 165: 114-122.
[40] RYSIAK A, DRESLER S, HANAKA A, et al. High temperature alters secondary metabolites and photosynthetic efficiency in[J]. Multidisciplinary digital publishing institute, 2021, 22(9): 4756.
[41] NGUYEN D T P, LU N, KAGAWA N, et al. Short-term root-zone temperature treatment enhanced the accumulation of secondary metabolites of hydroponic coriander (L.) grown in a plant factory[J]. Agronomy, 2020, 10(3): 413.
[42] TIENDA-PARRILLA M, LÓPEZ-HIDALGO C, GUERRERO-SANCHEZ V M, et al. Untargeted MS-based metabolomics analysis of the responses to drought stress inL. leaf seedlings and the identification of putative compounds related to tolerance[J]. Forests, 2022, 13(4): 551.
[43] GAO S, WANG Y, YU S, et al. Effects of drought stress on growth, physiology and secondary metabolites ofspecies in Northeast China[J]. Scientia horticulturae, 2020, 259(C): 108795.
[44] HESSINI K, WASLI H, AL-YASI H M, et al. Graded moisture deficit effect on secondary metabolites, antioxidant, and inhibitory enzyme activities in leaf extracts ofMill. var.[J]. Horticulturae, 2022, 8(2): 177.
[45] AHMED U, RAO M J, QI C, et al. Expression profiling of flavonoid biosynthesis genes and secondary metabolites accumulation inunder drought stress[J]. Molecules, 2021, 26(18): 5546.
[46] BERNARDY K, FARIAS J G, PEREIRA A S, et al. Plants’ genetic variation approach applied to zinc contamination: secondary metabolites and enzymes of the antioxidant system inaccessions[J]. Chemosphere, 2020, 253(C): 126692.
[47] KAZEMI E M, KOLAHI M, YAZDI M, et al. Anatomic features, tolerance index, secondary metabolites and protein content of chickpea () seedlings under cadmium induction and identification of PCS and FC genes[J]. Physiology and molecular biology of plants, 2020, 26(8): 1551-1568.
[48] FATTAHI B, ARZANI K, SOURI M K, et al. Morphophysiological and phytochemical responses to cadmium and lead stress in coriander (L.)[J]. Industrial crops and products, 2021, 171: 113979.
[49] CAI Z, KASTELL A, SPEISER C, et al. Enhanced resveratrol production incell suspension cultures by heavy metals without loss of cell viability[J]. Applied biochemistry and biotechnology, 2013, 171(2): 330-340.
[50] MANQUIÁN-CERDA K, ESCUDEY M, ZÚÑIGA G, et al. Effect of cadmium on phenolic compounds, antioxidant enzyme activity and oxidative stress in blueberry (L.) plantlets grown in vitro[J]. Ecotoxicology and environmental safety, 2016, 133: 316-326.
[51] FAN Z, ZHANG K, WANG F, et al. Effects of rare earth elements on growth and determination of secondary metabolites under in vitro conditions in[J]. HortScience, 2020, 55(3): 310-316.
[52] ARANO-VARELA H, CRUZ-SOSA F, ESTRADA-ZÚÑIGA M E, et al. Effects of phenylalanine and methyl jasmonate on verbascoside production inKunth cell suspension cultures[J]. South African journal of botany, 2020, 135: 41-49.
[53] DONG Y, LI J, ZHANG W, et al. Exogenous application of methyl jasmonate affects the emissions of volatile compounds in lavender ()[J]. Plant physiology and biochemistry, 2022, 185: 25-34.
[54] LIU Z, MOHSIN A, WANG Z, et al. Enhanced biosynthesis of chlorogenic acid and its derivatives in methyl-jasmonate-treatedcells: a study on metabolic and transcriptional responses of cells[J]. Frontiers in bioengineering and biotechnology, 2021, 8: 604957.
[55] QUANG H T, THI P T D, SANG D N, et al. Effects of plant elicitors on growth and gypenosides biosynthesis in cell culture of Giao co lam ()[J]. Molecules, 2022, 27(9): 2972.
[56] SHOJA A A, ÇIRAK C, GANJEALI A, et al. Stimulation of phenolic compounds accumulation and antioxidant activity in in vitro culture ofBunge in response to nano-TiO2and methyl jasmonate elicitors[J]. Plant cell, tissue and organ culture, 2022, 149(1): 423-440.
[57] YAZDANIAN E, GOLKAR P, VAHABI M R, et al. Elicitation Effects on Some secondary metabolites and antioxidant activity in callus cultures ofBoiss. & Buhse.: methyl jasmonate and putrescine[J]. Applied biochemistry and biotechnology, 2022, 194(2): 601-619.
[58] SÁNCHEZ-PUJANTE P J, GIONFRIDDO M, SABATER-JARA A B, et al. Enhanced bioactive compound production in broccoli cells due to coronatine and methyl jasmonate is linked to antioxidative metabolism[J]. Journal of plant physiology, 2020, 248: 153136.
[59] SARMADI M, KARIMI N, PALAZÓN J, et al. The effects of salicylic acid and glucose on biochemical traits and taxane production in acallus culture[J]. Plant physiology and biochemistry, 2018, 132: 271-280.
[60] HU Y, CHAI Q, WANG Y, et al. Effects of heat stress and exogenous salicylic acid on secondary metabolites biosynthesis in(Jacq.) P. Kumm[J]. Life, 2022, 12(6): 915.
[61] MIN K, LEE S-R. Exogenous salicylic acid alleviates freeze-thaw injury of cabbage (L.) leaves[J]. Sustainability, 2021, 13(20): 11437.
[62] SINGH A, DWIVEDI P, KUMAR V, et al. Brassinosteroids and their analogs: feedback in plants under in vitro condition[J]. South African journal of botany, 2021, 143: 256-265.
[63] ATTEYA A K, EL-SERAFY R S, EL-ZABALAWY K M, et al. Brassinolide maximized the fruit and oil yield, induced the secondary metabolites, and stimulated linoleic acid synthesis ofoil[J]. Horticulturae, 2022, 8(5): 452.
[64] ÇOBAN Ö, BAYDAR N G. Brassinosteroid effects on some physical and biochemical properties and secondary metabolite accumulation in peppermint (L.) under salt stress[J]. Industrial crops and products, 2016, 86: 251-258.
[65] DEMIRCI T, ÇELIKKOL AKÇAY U, GÖKTÜRK BAYDAR N. Effects of 24-epibrassinolide and l-phenylalanine on growth and caffeic acid derivative production in hairy root culture ofL. Moench[J]. Acta physiologiae plantarum, 2020, 42(4): 1-11.
[66] KOHLI S K, HANDA N, BALI S, et al. Modulation of antioxidative defense expression and osmolyte content by co-application of 24-epibrassinolide and salicylic acid in Pb exposed Indian mustard plants[J]. Ecotoxicology and environmental safety, 2018, 147: 382-393.
[67] MUSTAFAVI S H, BADI H N, SĘKARA A, et al. Polyamines and their possible mechanisms involved in plant physiological processes and elicitation of secondary metabolites[J]. Acta physiologiae plantarum, 2018, 40(6): 1-19.
[68] ZHGUN A A, ELDAROV M A. Polyamines upregulate cephalosporin C production and expression of β-lactam biosynthetic genes in high-yieldingstrain[J]. Molecules, 2021, 26(21): 6636.
[69] AHANGER M A, QIN C, MAODONG Q, et al. Spermine application alleviates salinity induced growth and photosynthetic inhibition inby modulating osmolyte and secondary metabolite accumulation and differentially regulating antioxidant metabolism[J]. Plant physiology and biochemistry, 2019, 144(C): 1-13.
[70] HAN X, SHANGGUAN J, WANG Z, et al. Spermidine regulates mitochondrial function by enhancing eIF5A hypusination and contributes to reactive oxygen species production and ganoderic acid biosynthesis in[J]. Applied and environmental microbiology, 2022, 88(6): e0203721.
[71] TAHMASEBI A, EBRAHIMIE E, PAKNIYAT H, et al. Tissue-specific transcriptional biomarkers in medicinal plants: application of large-scale meta-analysis and computational systems biology[J]. Gene, 2018, 691: 114-124.
[72] CHEN K, LI G J, BRESSAN R A, et al. Abscisic acid dynamics, signaling, and functions in plants[J]. Journal of integrative plant biology, 2020, 62(1): 25-54.
[73] HAN Y, HOU Z, ZHANG X, et al. Multi-dimensional" projection"-the impact of abiotic stresses on the content of seven active compounds and expression of related genes inFisch[J]. Environmental and experimental botany, 2022, 197: 104846.
[74] CRIZEL R L, PERIN E C, SIEBENEICHLER T J, et al. Abscisic acid and stress induced by salt: effect on the phenylpropanoid, L-ascorbic acid and abscisic acid metabolism of strawberry fruits[J]. Plant physiology and biochemistry, 2020, 152(C): 211-220.
[75] MA W, XU L, GAO S, et al. Melatonin alters the secondary metabolite profile of grape berry skin by promoting VvMYB14-mediated ethylene biosynthesis[J]. Horticulture research, 2021, 8(1): 43.
[76] CHOI H R, BAEK M W, CHEOL L H, et al. Changes in metabolites and antioxidant activities of green ‘Hayward’and gold ‘Haegeum’kiwifruits during ripening with ethylene treatment[J]. Food chemistry, 2022, 384: 132490.
[77] ASADOLLAHEI M V, YOUSEFIFARD M, TABATABAEIAN J, et al. Effect of elicitors on secondary metabolites biosynthesis inBoiss[J]. Industrial crops and products, 2022, 181: 114789.
[78] NAZIR S, JAN H, ZAMAN G, et al. Copper oxide (CuO) and manganese oxide (MnO) nanoparticles induced biomass accumulation, antioxidants biosynthesis and abiotic elicitation of bioactive compounds in callus cultures of(Thai basil)[J]. Artificial cells, nanomedicine, and biotechnology, 2021, 49(1): 625-633.
[79] KRUSZKA D, SELVAKESAVAN R K, KACHLICKI P, et al. Untargeted metabolomics analysis reveals the elicitation of important secondary metabolites upon treatment with various metal and metal oxide nanoparticles inL. cell suspension cultures[J]. Industrial crops and products, 2022, 178: 114561.
[80] CHAVOUSHI M, NAJAFI F, SALIMI A, et al. Effect of salicylic acid and sodium nitroprusside on growth parameters, photosynthetic pigments and secondary metabolites of safflower under drought stress[J]. Scientia horticulturae, 2020, 259(C): 108823.
[81] HAO Y J, CUI X H, LI J R, et al. Cell bioreactor culture ofA. Bor. and involvement of nitric oxide in methyl jasmonate-induced flavonoid synthesis[J]. Acta physiologiae plantarum, 2020, 42(1): 1-10.
Research Progress in Effects of Elicitors on the Accumulation of Secondary Metabolites in Plants
YU Jiaqing1,2,QIU Han1,2, CHENG Xin1,2, LI Hanguang1,2, HUANG Lin1,2, WEI Saijin1,2*
(1. School of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; 2. Institute of Applied Microbiology, Jiangxi Agricultural University, Nanchang 330045, China)
Secondary metabolism is a defensive response activated by plants in face of environmental stress, pathogenic microbial infection and herbivorous animal feeding. It is usually accompanied by the synthesis and accumulation of secondary metabolites to enhance their immunity and resistance. Secondary metabolites can be divided into seven categories: phenylpropanoids, flavonoids, tannins, quinones, terpenoids, steroids and their glycosides, alkaloids, mainly used as raw materials in medicine, chemicals, food and other fields. However, the yield of natural secondary metabolites is low, so the use of inducers to increase the production of plant secondary metabolites has opened a new research field, which can significantly improve economic benefits and reduce production costs. In this paper, the classification of inducers and the mechanism in inducing the synthesis of plant secondary metabolites are systematically introduced, and the research and application of biotic inducers (polysaccharides, yeast extracts, bacterial inducers, fungal inducers) and abiotic inducers (light, high and low temperature, drought, heavy metals, hormones, etc.) are also described, hoping to provide a theoretical basis for the utilization and development of secondary metabolites.
elicitors; secondary metabolites; application
Q946
A
2095-3704(2022)03-0255-11
俞嘉卿, 邱涵, 程新, 等. 诱导子对植物次生代谢产物积累的影响研究进展[J]. 生物灾害科学, 2022, 45(3): 255-265.
10.3969/j.issn.2095-3704.2022.03.44
2022-09-03
2022-09-14
江西省自然科学基金重点项目(20202ACBL205003)
俞嘉卿(1998—),女,硕士生,主要从事微生物与植物相互作用研究,yujiaqing0825@163.com;*通信作者:魏赛金,教授,博士,weisaijin@126.com。