邓玲玲 王如海 吴电明
全球变暖是全球气候变化的最主要特征,也是当今世界面临的最重要环境问题,是影响陆地生态系统碳循环过程的主要因素之一[1].实现中国碳达峰、碳中和目标,必须大力减少大气中的二氧化碳(CO2),同时增加生态系统碳汇是重要途径.湿地作为旱地和水生环境之间的过渡地带,覆盖约5%~8%的地球陆地表面,但其占全球12%~24%的陆地碳储量,碳汇功能强大,在降低大气CO2浓度、减缓全球气候变化中具有重要作用[2-6].近年来,科学家将滨海湿地等生态系统所固存的碳称为海岸带“蓝碳”(blue carbon)[2].研究发现,每平方千米的滨海湿地年碳埋藏量预计可达0.22 Gg(以C计),相当于3.36×105L汽油燃烧释放的CO2[2,7].气温升高导致滨海湿地植物生长与演替变化,改变碳循环的生产与分解过程,影响土壤碳库的分子结构特征,从而影响其固碳能力[2,8].湿地因其易变的动态异质环境与频繁的人类活动,是全球环境变化的敏感区与生态系统的脆弱区,其碳汇功能在人类活动和环境变化背景下的响应是当前的研究热点[9-10].
互花米草(Spartinaalterniflora)的入侵及扩张,是我国滨海湿地面临的严重生态问题之一.截至2015年,互花米草入侵面积在我国高达546 km2,其主要分布在江苏、浙江和上海等地[11].在上海九段沙湿地,与当地优势种芦苇(Phragmitesaustralis)相比,互花米草入侵增加了土壤碳汇强度与固碳能力[12].但也有研究发现,互花米草入侵促进了湿地的CO2、甲烷(CH4)和氧化亚氮(N2O)等温室气体排放[13].一般来说,互花米草入侵具有复杂的生态环境效应,因此探究湿地生态系统对互花米草入侵的碳响应具有重要意义[14-15].
土壤微生物是生态系统的重要组成部分,在养分循环和维持生态系统功能等方面具有重要作用,能够直接或间接地影响生态系统与动植物健康[16-17].微生物参与了多个碳循环代谢过程,包括碳降解(分解有机物的过程)、碳固定(将CO2转化为有机物的过程)和甲烷代谢(甲烷生成与氧化过程)等3个基本过程[18].增温和互花米草入侵能够改变土壤微生物活性、种群和群落结构与功能等[19-20].研究表明,增温增加了土壤中真菌数量,其中木质素的主要分解者是真菌,从而促进木质素的氧化,降低了碳库稳定性[21].因此,微生物群落在环境变化背景下的碳循环响应与反馈机制对全球碳循环、温室气体排放以及气候变化等至关重要.微生物群落对碳循环的响应和反馈机制也是近年来研究的热点之一.
微生物功能基因芯片(GeoChip)是一种高通量宏基因组学分析工具,主要用于分析微生物的功能特征,如不同代谢途径中相关的功能基因以及其对生态系统功能的响应与反馈,被广泛应用于多种生态系统研究中,如森林、草地和农田等生态系统[22-25].但关于湿地生态系统的研究较少,且在增温和互花米草入侵双因子交互作用下土壤碳循环过程的微生物调控机制尚不清楚.综上所述,本研究以不同种间竞争比例(0∶4、2∶2和4∶0)的互花米草和芦苇为研究对象,比较其在开顶箱(Open-Top Chamber,OTC)增温处理2年后表层土壤(0~5 cm)碳循环的代谢过程与功能基因的变化及差异,从而为深入了解湿地土壤碳循环微生物的代谢潜力及其对环境变化的响应,合理预测大气CO2浓度变化等提供科学依据.
增温和互花米草入侵试验地位于崇明岛东部华东师范大学长江口湿地生态系统野外研究站(121°58′E,31°38′N),该地所处东滩湿地位于长江入海口,潮滩面积广阔,为咸淡水交汇区,平均海拔4.7 m.该研究区域属于典型亚热带季风气候区,年平均气温15.3 ℃,年平均降雨量1 049.3 mm,年平均蒸发量718.0 mm.该区的植被类型以盐沼为主,芦苇(Phragmitesaustralis)和互花米草(Spartinaalterniflora)为主要优势种.
通过田间微区试验模拟增温和互花米草入侵之间的交互作用.微区试验建立于2016年,共包括15个地块,将其中OTC增温的地块作为增温处理(T),其余的地块作为对照处理(NT),并在地块上分别种植植株数量比例为4∶0(P4)、2∶2(P2S2)和0∶4(S4)的芦苇和互花米草,每种处理设置3个重复(表1).开顶箱的施工与设计及其增温效果量化的详细信息见文献[26].增温2年后,开顶箱中的空气温度比对照处理下的空气温度约高出1.5 ℃.
表1 试验设计Table 1 Experimental design
GeoChip 5.0中的60K版本是一个包含60 000个探针的综合基因阵列.该版本针对基础物质循环(碳、氮、磷和硫循环)、重金属抗性、抗生素抗性、致病性、次生代谢及有机污染降解等相关的12个功能类别下约400个关键的功能基因设计了大约6万种探针[29].其实验分析的具体步骤如下:
1)DNA提取与定量:使用提取试剂盒(Guangdong Magigene Biotechnology Co.,Ltd.,Guangzhou,China)按照说明提取相应土壤样品的基因组DNA.DNA质量由Nanodrop One(Thermo Fisher Scientific,Waltham,USA)评估,最终的DNA浓度由PicoGreen用FLUOstar Optima microplate reader(BMG Labtech,Jena,Germany)定量.
2)DNA标记杂交与扫描:用随机引物和DNA聚合酶Ⅰ的Klenow片段对纯化的DNA进行Cy3标记.用QIA快速纯化试剂盒(Qiagen,Valencia,CA,USA)纯化标记的DNA,随后在50 ℃的Labconco Centrivap Concentrator(Labconco Corp.,Kansas City,MO)中干燥45 min.将干燥的DNA稀释至相同浓度,然后在95 ℃下培养5 min,并在42 ℃下保持直到杂交.随后,将标记的DNA置于阵列上,然后在杂交站(MAUI,BioMicro Systems,Salt Lake City,UT,USA)将阵列预热至42 ℃至少5 min,再将样品装载到阵列表面并杂交大约16 h.最后,用NimbleGen MS200扫描仪(Roche,Madison,WI,USA)对芯片进行扫描,将得到的芯片信号用ImaGene 6.0软件(Biodiscovery Inc.,El Segundo,CA,USA)进行预处理,之后将信号强度标准化.
3)数据标准化处理:移除信噪比<2的信号点后得到原始探针信号强度,将原始探针信号强度进行标准化得到标准化的探针信号强度,再将标准化的探针信号强度中每个基因对应的所有探针信号强度汇总,得到基因的信号强度[30].
使用IBM SPSS Statistics 23软件对相关数据进行统计分析和显著性检验(独立样本T检验).使用R 4.0.5软件进行双因素方差分析(Two-way ANOVA),用“psych”软件包计算斯皮尔曼(Spearman)相关系数及显著性水平,并通过“corrplot”软件包进行可视化.使用Origin软件作图.
在18个土壤样品中检测到各类型功能基因共425 920 个,涉及到9个由微生物介导的关键代谢过程,包括碳、氮、磷、硫等生物地球化学循环过程(表2).增温处理下各类功能基因数量均显著低于对照处理(表2、表3).与芦苇群落相比,增温处理下互花米草入侵后的各类功能基因数量增加,对照处理下,则表现为P2S2处理 表2 土壤微生物功能基因数量Table 2 Number of soil microbial functional genes 表3 增温和植物入侵对功能基因数量的主要影响及其交互作用Table 3 The main and interactive effects of experimental warming and plant invasion on the number of functional genes 在各类功能基因的数量中,碳循环功能基因数量最多,共检测到181 441个与碳循环有关的功能基因.如表4和图1所示,增温处理下碳循环功能基因信号强度显著低于对照处理,其中芦苇群落表现最为敏感,温度升高后其碳循环功能基因信号强度显著降低(P<0.05),但是互花米草入侵及其与增温的交互作用并无显著差异(P>0.05).碳循环基因中的古菌、细菌和真菌群落均受到温度的显著影响(P<0.05),具体表现为在增温处理下其功能基因信号强度降低,其中种植芦苇土壤的微生物群落差异最为显著.相较于互花米草而言,芦苇土壤中的微生物群落对温度更为敏感.碳循环基因中的古菌、细菌和真菌群落在互花米草入侵及其与增温的交互作用下差异不显著(P>0.05,表4和图2a). 本研究中检测了微生物驱动的碳降解、碳固定和甲烷代谢3个碳循环代谢过程基因.如表4所示,结果表明增温显著影响碳降解、碳固定和甲烷代谢基因(P<0.05),但互花米草入侵及其交互作用的影响不显著(P>0.05).如图3所示,温度升高后P4、P2S2和S4处理土壤的微生物群落碳降解、碳固定和甲烷代谢基因信号强度下降,其中增温显著降低了P4处理土壤的微生物群落中碳降解、碳固定和甲烷代谢的基因信号强度(P<0.05),以及P2S2处理土壤的微生物中甲烷代谢相关基因(P<0.05),而对S4处理中的碳循环代谢过程影响不显著(P>0.05). 表4 增温和植物入侵对微生物群落信号强度的主要影响及其交互作用Table 4 The main and interactive effects of experimental warming and plant invasion on microbial community signal intensity 注:试验处理参见表1;差异性检验采用独立样本T检验,*表示增温处理下差异显著(P<0.05).图1 碳循环功能基因标准化相对信号强度Fig.1 The normalized average signal intensities of carbon cycle functional genes 主要选取淀粉(Starch)、果胶(Pectin)、半纤维素(Hemicellulose)、纤维素(Cellulose)、几丁质(Chitin)和木质素(Lignin)等天然碳化合物降解过程.检测出的碳降解菌群主要包括细菌、真菌和古菌3大类,其中以细菌群落为主(图2c).细菌的优势门为放线菌门(Actinobacteria)和变形菌门(Proteobacteria),共占碳降解细菌的60%以上,其中与淀粉、半纤维素和几丁质降解有关基因大多来源于放线菌门和变形菌门.增温对碳降解菌群具有显著影响,而互花米草入侵及其交互作用的影响不显著(表4).其中,种植芦苇土壤的微生物群落中碳降解菌群更易受到温度的影响,具体表现为增温显著降低其细菌、真菌和古菌的基因丰度(P<0.05),而种植互花米草土壤的微生物群落碳降解菌群在温度升高后的变化不显著(P>0.05),相较于种植芦苇处理更为稳定(图2c). 碳降解过程更易受到温度变化的影响(表5).增温显著影响淀粉、果胶、半纤维素、纤维素、几丁质和木质素等天然碳化合物的降解过程及其有关的基因(P<0.05),而互花米草入侵及其交互作用对这些天然碳化合物分解的影响效果不显著(P>0.05).如图4所示,增温处理下的淀粉、果胶、半纤维素、纤维素、几丁质及木质素降解基因信号强度均低于对照处理.在增温处理下,碳降解基因信号强度表现为P4处理 注:试验处理参见表1;差异性检验采用独立样本T检验,*表示增温处理下差异显著(P<0.05).图2 碳循环中微生物群落功能基因标准化相对信号强度Fig.2 The normalized average signal intensities of microbial community functional genes in carbon cycle 注:试验处理参见表1;差异性检验采用独立样本T检验,*表示增温处理下差异显著(P<0.05).图3 碳循环代谢过程功能基因标准化相对信号强度Fig.3 The normalized average signal intensities of functional genes in carbon cycle metabolism 微生物碳固定途径主要包括卡尔文循环(Calvin cycle)、还原三羧酸循环(Reductive tricarboxylic acid cycle)、还原乙酰辅酶A途径(Reductive acetyl-CoA pathway)、3-羟基丙酸双循环(3-hydroxypropionate bicycle)、3-羟基丙酸/4-羟基丁酸循环(3-hydroxypropionate/4-hydroxybutylate cycle)、二羧酸/4-羟基丁酸循环(Dicarboxylate/4-hydroxybutyrate cycle)和细菌微区室(Bacterial Microcompartments).检测出的碳固定菌群主要包括细菌和古菌两大类,以细菌群落为主(图2b),其中变形菌门的丰度最高(~71%).通过卡尔文循环、还原乙酰辅酶A途径、还原三羧酸循环和细菌微区室固定CO2的基因大多存在于变形菌门,而检测到3-羟基丙酸双循环和二羧酸/4-羟基丁酸循环的基因则分别来源于古菌中的绿弯菌门(Chloroflexi)和泉古菌门(Crenarchaeota).通过双因素方差分析发现增温显著影响碳固定途径的细菌和古菌群落(P<0.05,表4),具体表现为增温降低其基因丰度,尤其是在种植芦苇土壤的微生物群落中变化最为显著(P<0.05,图2b),而在互花米草入侵及其交互作用下的变化不显著(P>0.05,表4). 增温显著影响了芦苇群落中土壤微生物碳固定途径,而在互花米草入侵及其交互作用下的影响不显著(表5).在种植芦苇土壤的微生物群落中,增温显著降低了微生物固碳途径的功能基因信号强度(图5),主要包括卡尔文循环、还原三羧酸循环、还原乙酰辅酶A途径、3-羟基丙酸双循环、二羧酸/4-羟基丁酸循环和细菌微区室等(P<0.05),尤其是二羧酸/4-羟基丁酸循环、与卡尔文循环相关的rubisco基因信号强度等更为显著(P<0.01).在芦苇与互花米草混种处理中,增温显著降低了3-羟基丙酸双循环的基因信号强度(P<0.01),也显著降低了还原乙酰辅酶A途径中的CODH基因信号强度(P<0.05).在种植互花米草土壤的微生物群落中,3-羟基丙酸双循环和3-羟基丙酸/4-羟基丁酸循环更易受到温度的影响. 甲烷代谢包括甲烷生成(Methanogenesis)和甲烷氧化(Methane oxidation)两类,检测出的甲烷代谢菌群主要包括细菌和古菌两大类,其中以广古菌门(Euryarchaeota)和变形菌门为主.参与到甲烷生成的mcrA基因均来源于广古菌门,而参与甲烷氧化的pmoA和mmoX基因均来源于细菌.如表4和表5所示,甲烷代谢的微生物菌群、甲烷生成与氧化以及关键功能基因均会受到温度的显著影响(P<0.05),但互花米草入侵及其相互作用的影响较小(P>0.05).增温显著降低了种植芦苇土壤的细菌和古菌基因丰度(P<0.05,图2d).土壤中参与甲烷生成的基因丰度大于甲烷氧化(图6).增温后mmoX、pmoA和mcrA基因信号强度均下降,尤其是增温显著降低了种植芦苇土壤的甲烷生成与氧化的基因丰度(P<0.05). 表5 增温和植物入侵对碳循环关键功能基因信号强度的主要影响及其交互作用Table 5 The main and interactive effects of experimental warming and plant invasion on signal intensities of key functional genes in carbon cycle 斯皮尔曼相关性分析结果表明,土壤微生物碳循环与活性氮气体排放、土壤pH高度相关(图7).土壤碳循环的微生物菌群(古菌、细菌和真菌)均与土壤HONO、NO和NOx的排放呈显著负相关,其中HONO气体排放与CODH、accD、RgaE、endochitinase和phenol_oxidase等基因的丰度高度相关(P<0.001),NO气体排放则与mmoX、CODH、accD、pme、RgaE、endochitinase和phenol_oxidase等基因的丰度高度相关(P<0.001).土壤pH则与古菌和真菌的基因丰度显著负相关(P<0.05),主要包括甲烷生成、果胶和几丁质降解、还原乙酰辅酶A途径、二羧酸/4-羟基丁酸循环等碳循环代谢过程. 注:差异性检验采用独立样本T检验,*表示增温处理下差异显著(*P<0.05;**P<0.01;***P<0.001).图4 碳降解过程功能基因标准化相对信号强度Fig.4 The normalized average signal intensities of functional genes in carbon degradation process 注:试验处理参见表1;甲烷氧化中的灰白柱子代表pmoA和mmoX基因信号强度之和;差异性检验采用独立样本T检验,*表示增温处理下差异显著(*P<0.05;**P<0.01;***P<0.001).图6 甲烷代谢过程功能基因标准化相对信号强度Fig.6 The normalized average signal intensities of functional genes in methane metabolism process 注:*表示差异显著(P<0.05).图7 基于斯皮尔曼相关性分析的土壤环境因子和微生物碳循环的相关矩阵Fig.7 Correlation matrix based on Spearman’s correlation analysis between environmental factors and soil microbial carbon cycle 碳是构成生命有机体的基本元素,碳的生物地球化学循环是生态系统中重要的物质循环,其微生物驱动机制和关键功能基因的作用是当前研究的热点[31].在本研究中,检测到的土壤碳循环功能基因数量及丰度均高于其他各类别的基因,表明崇明东滩湿地土壤中微生物碳代谢潜力巨大.同时发现,在相同温度处理下,种植互花米草的土壤碳循环代谢的基因信号强度均高于芦苇处理,表明种植互花米草相较于芦苇具有更强的土壤碳代谢潜力.研究表明,互花米草相较于其他植被类型,如碱蓬(Suaedasalsa)、芦苇和海三棱藨草(Scirpusmariqueter)等,土壤具有更高的碳含量与碳储量,其入侵后能够增加土壤碳汇强度与固碳能力[12,15,32-34].与柽柳(Tamarixchinensis)、碱蓬和芦苇等当地植物相比,互花米草入侵提高了土壤CO2、CH4和N2O等温室气体的排放通量[13,35-36].在本研究中,互花米草入侵对碳循环代谢过程的影响效果并不显著,可能是受限于入侵时间较短(~2年).植物入侵造成的影响不会一直保持不变,其影响可能会随着入侵时间而增加[37-38]. 气候变暖可能会破坏湿地生态系统原有的生物地球化学平衡,从而影响湿地土壤生态系统功能[39].在本研究中,增温显著影响了土壤碳循环代谢过程,其中大多数功能基因信号强度在增温后降低,表明由微生物驱动的碳循环代谢过程具有较高的温度敏感性,且增温对湿地土壤的微生物碳代谢潜力具有负反馈效应.Feng等[40]发现,长达12年的增温试验显著增加了土壤中氧化难降解碳和复杂结构碳的微生物功能基因丰度.虽然短期增温会刺激微生物对土壤有机质的水解,但长期增温增强了氧化型碳降解酶的活性,却不影响水解型碳降解酶的活性,促进土壤有机质分解酶的功能从水解型转向为氧化型,加速微生物群落重组,最终导致难降解碳的氧化和CO2排放量增加,造成土壤碳的损失[41-43].酶活性对增温持续时间的响应是处于变化中的,且稳定的土壤有机质分解在短期增温下较难被估计[41-43].在本研究中,相对于难降解的碳化合物(如木质素),淀粉这类易降解碳化合物的碳降解功能基因丰度更高,但增温对这类基因的影响更大.因此,本研究在短期增温(~2年)下的碳降解过程以降解淀粉为主,但有向难降解碳过程转化的趋势.同时,增温所带来的环境条件变化会使得土壤有机质分解具有不确定性,如增温减少了土壤水分,从而减少土壤有机质的分解,可能会抵消微生物的分解作用[40,44-45]. 互花米草和芦苇对温度的响应存在一定的差异[46].互花米草作为快速扩张的外来入侵物种,对气候与环境具有极强适应性和耐受力[15,47].因此,种植互花米草土壤的微生物群落对增温的响应不如芦苇明显,其土壤碳循环代谢能力更为稳定.本研究也发现,未增温处理下两者混种的土壤碳循环代谢基因信号强度低于芦苇或互花米草单种处理,而在增温条件下,两者混种的土壤碳循环代谢基因信号强度高于芦苇单种处理,但低于互花米草单种处理.因此,种植芦苇土壤的微生物群落相较于互花米草处理更易受到温度变化的影响.本研究中增温对互花米草与芦苇混种土壤的微生物群落影响效果并不显著,其原因可能是增温加剧了种间竞争,而互花米草相对于芦苇表现出更强的竞争优势.因此,增温使得微生物群落向更为稳定的互花米草单种处理发展,从而在一定程度上抵消温度升高带来的负效应. 湿地生态系统土壤微生物群落组成受到土壤孔隙度、温度、水分、pH和盐分等诸多理化性质的影响[10,48-50].其中,土壤pH是影响微生物群落与结构的主要因素之一[51].湿地土壤pH变化较小且呈碱性,其中真菌和细菌生存的最佳pH区间分别为4.0~6.0和6.5~7.5.因此,湿地土壤微生物中细菌数量更多[10,52].在本研究中,湿地土壤的pH值均在8以上,且检测到的微生物碳循环代谢菌群也是以细菌为主.土壤微生物碳循环代谢过程与土壤活性氮气体排放及土壤pH显著负相关.我们在之前的研究中发现,温度升高增加了土壤pH以及HONO和NO等活性氮气体的排放[26].因此,增温可能通过改变土壤pH,影响土壤的微生物群落组成与结构,从而影响由微生物驱动的土壤碳氮循环过程. 湿地是大气CH4的最大天然来源,其中滨海湿地CH4的排放量可占全球排放总量的20%~39%,其每年排放量约为100~231 Tg[53-55].滨海湿地CH4的排放主要包括CH4的产生、氧化和传输三个基本过程.土壤CH4氧化和产生过程是同时进行的[55],主要由产甲烷菌和甲烷氧化菌共同控制,并且受到温度、湿度等环境因子的调控[56-58].本研究中,参与甲烷生成的基因丰度均高于甲烷氧化,表明滨海湿地存在较高的CH4产生潜力及排放速率,与其他研究结果一致[59].温度升高可增强土壤微生物活性,从而促进CH4的排放速率与排放通量[60-62].本研究发现,增温降低了土壤甲烷生成与氧化的基因丰度,但甲烷生成的基因丰度仍高于甲烷氧化的基因丰度.一般来说,产甲烷菌适宜的pH范围在6~8,而甲烷氧化菌的最适pH范围为5.5~6.5[63-64].本研究中,土壤pH值均高于8,且增温升高了土壤pH,超出产甲烷菌和甲烷氧化菌的最适pH范围,导致pH升高所带来消极影响超过增温带来的积极影响,这可能是温度升高却降低了甲烷生成与氧化基因丰度的原因之一.因此,增温可能导致湿地土壤依然具有较高的CH4生产潜力,但减缓了CH4的排放速率. 通过2年的增温和互花米草试验,我们发现增温显著降低了湿地土壤微生物碳循环代谢基因,但互花米草入侵的影响并不显著.在相同温度处理下,互花米草相较于芦苇具有更强的碳代谢潜力,并且种植互花米草土壤的微生物群落对增温的响应不如芦苇显著,其碳循环代谢能力更为稳定.增温使得两者混种土壤的微生物群落向更为稳定的互花米草单种土壤发展,从而在一定程度上抵消温度升高带来的负效应.相对于难降解的碳化合物(如木质素),增温对淀粉类易降解碳化合物的碳降解功能基因丰度的影响更大.短期增温(~2年)下的碳降解过程以降解淀粉为主,但有向难降解碳过程转化的趋势.增温降低了土壤甲烷生成与氧化的基因丰度,但甲烷生成的基因丰度仍高于甲烷氧化的基因丰度.因此,增温可能导致湿地土壤依然具有较高的CH4生产潜力,但减缓了CH4的排放速率.增温可通过改变土壤pH来影响微生物群落,从而改变由微生物驱动的土壤碳氮循环过程.本研究有助于理解增温及互花米草入侵对滨海湿地土壤碳循环及温室气体排放的影响,可为土壤温室气体排放、全球变暖、碳中和以及湿地生态系统的保护和管理等提供一定的科学依据和支撑,对定量湿地土壤微生物碳代谢潜力及其在全球变化下的响应具有重要意义.2.2 增温和互花米草入侵对土壤碳降解关键功能基因的影响
2.3 增温和互花米草入侵对土壤碳固定关键功能基因的影响
2.4 增温和互花米草入侵对土壤甲烷代谢关键功能基因的影响
2.5 土壤碳循环微生物功能基因与环境因素的相关性分析
3 讨论
4 结论