陶威, 郭岭 , 周宁超, 李阳 , 王星 , 陈涛 , 白建科 大陆动力学国家重点实验室,西北大学地质学系,西安,710069; 陕西省矿产地质调查中心,西安,710068;3) 中国地质调查局西安地质调查中心,西安,710054; 中国地质调查局西宁自然资源综合调查中心,西宁,810021
内容提要: 巴斯克花岗闪长岩位于野马泉岛弧内,笔者等综合野外地质、岩相学、地球化学以及锆石U-Pb年代学等多学科手段,进而为该地区晚石炭世时期构造背景提供岩浆岩约束。岩石地球化学研究表明,岩株主量元素具有高硅、准铝—弱过铝质、钙碱性的I型花岗岩特征;岩石样品稀土元素总量在83.79×10-6 至 125.67×10-6之间,且轻/重稀土之间的比值介于5.32至8.63之间(平均值为7.1),指示轻稀土较重稀土富集。Eu 元素轻度负异常 (δEu=0.69~0.89)。样品富集大离子亲石元素(如K、Rb、Ba),且亏损高场强元素(HFSE,如Nb、Ta和Ti)及P, Nb、Ta负异常明显。岩株锆石n(206U)/n(238Pb)加权平均年龄为301.3±2.5 Ma (MSWD=0.33)和310.7±3.6 Ma (MSWD=0.75),表明岩株形成时代为晚石炭世。综合区域地质特征、岩石地球化学和岩浆源区特征,表明东准噶尔地区晚石炭世(310~301 Ma)处于造山带碰撞后的陆壳伸展构造体制,且岩浆具有壳幔混合和分批熔融、增量生长的特征。
中亚造山带是全球重要的显生宙增生造山带之一,是研究显生宙以来地球动力学和大陆增生生长的理想实验室(Sengör et al., 1993; Yakubchuk., 2004; Kovalenko et al., 2005; Windley et al., 2009; Kröner et al., 2007 ; Xiao Wenjiao et al., 2008, 2009)。东准噶尔围限于阿尔泰南部、准噶尔盆地东部、蒙古西南部和东天山北部,是中亚造山带的重要组成部分,该区自古生代来经历了大洋扩张、板块俯冲、碰撞和后碰撞等构造演化历史,形成了一系列岛弧杂岩带和增生杂岩(Xiao Wenjiao et al., 2008, 2009; 汤贺军, 2021)。东准噶尔显生宙以来演化造就了独具特色的构造—岩浆特征,为成矿物源、动力和空间提供了良好基础(张峰, 2014)。
目前,东准噶尔石炭纪的构造环境存在不同认识。有学者通过上石炭统巴塔马依内山组火山岩研究,对东准噶尔经历晚石炭世构造环境得出迥异的结论。如经历大陆扩展后闭合抬升演化过程(朱志新等, 2005)、裂谷环境(赵霞等, 2008)、洋壳拆沉作用下后碰撞末期的构造环境(320.2 Ma, 罗婷等, 2016)、洋内俯冲阶段(龙晓平等, 2006; 张峰等, 2014),并于320~311 Ma之间闭合(张峰等, 2014)、野马泉岛弧于330 Ma时处于双向俯冲体制(Long Xiaoping et al., 2012)等。构造—沉积学研究也有准噶尔古生代洋盆闭合于早石炭世之前(349 Ma, 白建科等, 2018; 343.0±5.0 Ma, 黄岗等, 2012; 348 Ma, Xu Xingwang et al., 2015)和晚石炭世(336~300 Ma, 李振生等, 2016)的不同认识。而Li Di 等(2020)从构造角度认为东准噶尔地区于330~320 Ma完成碰撞,并于晚石炭世(320 Ma)左右完成挤压向伸展构造体制转换。与此同时,不同学者在东准地区报道的后碰撞花岗岩年代多集中于265~349 Ma范围内(田健, 2014; 田健等,2016; 苏玉平等, 2006; 沈晓明等, 2013; 杨高学, 2008; 杨高学等, 2009; 胡万龙, 2016; 甘林等, 2010; 熊双才等, 2019a; 2019b; 张征峰等,2021; 李宗怀等, 2004; 韩宝福等, 2006)。
上述研究结果显示,众多学者对准噶尔洋盆的闭合时限有不同认识,且得出在相近时代(320~300 Ma)俯冲、后碰撞、挤压向伸展的构造转换等不同的构造背景。野马泉岛弧位于在卡拉麦里蛇绿岩带和阿尔曼太蛇绿岩带之间,上述不同结论对认识野马泉岛弧晚石炭世的构造背景产生分歧,限制了对该区基础地质深入认识,并给找矿工作增加难度。近年来,地质填图工作❶❷在东准噶尔野马泉岛弧内识别出大量石晚石炭世花岗质岩石(图1),而花岗岩形成演化对造山带构造演化、造山带地壳的形成发育和壳幔相互作用等方面具有指示意义(Pitcher et al., 1997; 王涛, 2000; 吴福元等, 2007; 肖庆辉等, 2007; 张旗等, 2012)。因此,笔者等选择位于野马泉岛弧内巴斯克花岗闪长岩为研究对象,综合野外地质、岩相学、锆石U-Pb定年、地球化学和锆石特征等方面研究,探讨其岩石成因和产出构造环境。结合区域地质特征,进而约束准噶尔野马泉构造带晚石炭世构造背景。
图1 新疆东准地区大地构造及花岗岩分布简图(a, 据Shen Xiaoming et al., 2011 修改)、东准噶尔巴斯克地区区域地质简图(b, 据注释❶修改)及巴斯克岩体剖面图(c)Fig. 1 The tectonic map of east Junggar area and granites distribution map(a) (modified from Shen Xiaoming et al., 2011), the Geological sketch map of the Basike area in east Junggar with sampling sites (b) (modified from the note ❶) and profile of the Basike pluton (c)Q—第四系;N1t—塔西河组;C2bt—巴塔马依内山组;D3ka—克安库都克组;D2w2—乌鲁苏巴斯套组二段;D2w1—乌鲁苏巴斯套组一段;C2δ—晚石炭世闪长岩;C2δγ—晚石炭世花岗闪长岩;ν—辉长岩脉;δ— 闪长岩脉;δγ—花岗闪长岩岩脉;γ—花岗岩脉Q—Quaterary; N1t—Taxihe Formation; C2bt—Batamayineishan Formation; D3ka— Ke’ankuduke Formation; D2w2—the Second Member of Wulusubasitao Formation; D2w1— the First Member of Wulusubasitao Formation; C2δ—Late Carboniferous diorite; C2δγ—Late Carboniferous granodiorite; ν— gabbro dyke; δ— diorite dyke; δγ— granodiorite dyke; γ— granite dyke
图 3 东准噶尔巴斯克花岗闪长岩TAS分类图解(a) (底图据 Middlemost, 1994); SiO2—K2O图解(b) (底图据Ewart, 1982); SiO2—AR岩石序列判别图解(c) (底图据Wright, 1969); A/NK—A/CNK图解(d) (底图据Maniar, 1989) Fig. 3 The TAS diagram (a) (after Middlemost, 1994), diagram of SiO2 vs K2O (b) (after Ewart, 1982), SiO2 vs AR diagram (c) (after Wright, 1969), A/CNK vs A/NK diagrams (d) (after Maniar et al., 1989) of the Basike granodiorite in east Junggar1—橄榄辉长岩;2a—碱性辉长岩;2b—亚碱性辉长岩;3—辉长闪长岩;4—闪长岩;5—花岗闪长岩;6—花岗岩;7—硅英岩;8—二长辉长岩;9—二长闪长岩;10—二长岩;11—石英二长岩;12—正长岩;13—副长石辉长岩;14—副长石二长闪长岩;15—副长石二长正长岩;16—副长正长岩;17—副长深成岩;18—霓方钠岩/磷霞岩/粗白榴岩1—Peridotgaooro; 2a—alkali gabbro; 2b—subalkaline gabbro; 3—gabbroic diorite; 4—diorite; 5— granodiorite; 6—granite; 7—quartzolite; 8—monzogabbro; 9—monzodiorite; 10—monzonite; 11—quartz monzonite; 12—syenite; 13—foidgarrbo; 14—foidmonzodiorite; 15—foidmonzosyenite; 16—foidsyenite; 17—foidolite; 18—tawile / urtite / italite
本次所研究的巴斯克花岗闪长岩位于野马泉岛弧带内(图1)。区域出露地层主要为泥盆系卓木巴斯套组(D1z)浅海相的碎屑岩、乌鲁苏巴斯套组(D2w2)浅海相粗碎屑岩、蕴都喀拉组(D2yd)细碎屑岩、克安库都克组(D3ka)细碎屑岩;石炭系黑山头组(C1h)陆源碎屑岩和火山碎屑岩、姜巴斯套组(C1j)浅海相碎屑岩—火山碎屑岩、南部被第四系冲洪积砂、砾石覆盖。花岗闪长岩呈浅肉红色(图2a),似斑状结构,斑晶为斜长石或钾长石,基质为细粒显晶质斜长石、钾长石、石英、角闪石等,岩石为块状构造。野外见花岗闪长岩内携带有巴塔玛依内山组(C2bt)安山岩捕掳体(图2b),表明其侵位时代不早于晚石炭世。岩石矿物主要包括斜长石(45%~50%)、钾长石(20%~25%)、石英(20%~25%)、角闪石(7%)和少量辉石,此外还含少量副矿物(锆石、磷灰石等)和不透明矿物。其中,斜长石呈半自形长柱状—他形粒状、板状,发育环带结构(图2c);钾长石呈半自形—他形粒状、板状,发育卡氏双晶;石英呈他形粒状;角闪石(图2d)呈半自形—他形,发育简单双晶,后期发生绿泥石化。岩石后期经历蚀变,具体表现为发育绢云母化、高岭土化、绿泥石化等,镜下可观察到长石边部发生蚀变(图2c、d)。受后期构造作用影响,岩株野外多呈碎裂状。
图2 东准噶尔巴斯克花岗闪长岩宏观和显微结构特征: (a)花岗闪长岩野外照片;(b)气孔状安山岩捕掳体;(c)长条状斜长石环带结构;(d)角闪石显微特征Fig. 2 The petrological photos, micro-structure characteristics of the Basike granodiorite in east Junggar: (a) field photo of granodiorite, (b) the xenolith of vesiculate andesite, (c) ring structure of plagioclase, (d) microscope characteristics of hornblendePl—斜长石、Kf—钾长石、Am—角闪石、Q—石英Pl—plagioclase, Kf—k-feldspar; Am—hornblende, Q—quartz
锆石的挑选、制靶在西安瑞石地质科技有限公司实验室进行。样品粉碎后,用浮选和电磁选方法进行锆石单矿物分选,并将锆石样品置于环氧树脂中,之后用无色透明的环氧树脂固定,待环氧树脂固化后抛光使锆石曝露一半晶面。之后通过透射光、反射光和CL图像详细研究锆石的晶体形貌和内部结构特征,选择无明显裂痕及包裹体的锆石进行测年。
锆石阴极发光、微量元素含量和U-Pb同位素定年在自然资源部岩浆作用成矿与找矿重点实验室完成(中国地质调查局西安地质调查中心)。阴极发光选用JEOL JSM-6510A型扫描电镜上配置的Chromal CL 2阴极发光探头,分析条件为:加速电压10 kV,束流SS65,工作距离14 mm。锆石微量元素含量和U-Pb同位素定年激光剥蚀系统为GeoLas Pro,ICP-MS为Agilent 7700x。激光剥蚀过程中采用氦气作载气、氩气为补偿气以调节灵敏度,二者在进入ICP之前通过一个T型接头混合。每个时间分辨分析数据包括大约10 s的空白信号和40 s的样品信号。对分析数据的离线处理(包括对样品和空白信号的选择、仪器灵敏度漂移校正、元素含量及U—Th—Pb同位素比值和年龄计算)采用软件Glitter 4.4 (Van Achterbergh et al., 2001)完成,详细仪器参数和测试过程可参考李艳广等(2015)。U-Pb同位素定年中采用锆石标准91500作外标进行同位素分馏校正。对于与分析时间有关的U—Th—Pb同位素比值漂移,利用91500的变化采用线性内插的方式进行了校正。锆石样品的U-Pb年龄谐和图绘制和年龄权重平均计算均采用Isoplot/Exver3(Ludwig, 2003)完成。锆石微量元素含量利用参考标样NIST610玻璃作为多外标、Si作内标的方法进行定量计算。 NIST610玻璃中元素含量的推荐值据GeoReM数据库 (http://georem.mpch-mainz.gwdg.de/)。
主量、微量和稀土元素分析测试均在自然资源部岩浆作用成矿与找矿重点实验室完成(中国地质调查局西安地质调查中心)。主量元素采用SX45型荧光光谱分析(XRF)进行分析,其中FeO含量通过湿化学方法测定,使用的仪器是荷兰帕纳科公司AxiosmAX波长色散X射线荧光光谱仪,相对标准偏差值(RSD)≤0.134,均方根稳定性(RMS Rel)(%)≤0.050。稀土和微量元素分析采用美国Thermo Fisher公司生产的X-SeriesII型电感耦合等离子质谱仪(ICP-MS)测定,检测限优于5×10-9,相对标准偏差优于5%。
巴斯克花岗闪长岩10件样品主量元素和微量元素分析结果见表1(样品BSK01~BSK05采样位置N45°43′35.12″、E89°41′52.01″,样品BSK06~BSK10采样位置N45°43′51.53″、E89°42′7.60″,图1)。花岗闪长岩样品SiO2变化范围65.7%~68.6%,平均为67.112%。全碱(K2O+Na2O)变化范围6.94%~7.98%,平均为7.457%。Na2O/ K2O变化范围1.34~1.88,平均为1.58。Al2O3变化范围为14.78%~15.50%,平均为15.11%。铝饱和指数(A/CNK)变化范围为0.93~1.03,平均为0.96。A/NK变化范围为1.33~1.54,平均为1.43。样品里特曼指数σ变化范围2.04~2.53,平均为2.28,属钙碱性系列。在侵入岩TAS图解中,样品点均落入花岗闪长岩范围内(图3a),在K2O—SiO2(图3b)和SiO2—AR图解(图3c)中,样品投点均落入钙碱性花岗岩的范围内,A/NK—A/CNK 图解显示花岗闪长岩为准铝质至弱过铝质(图3d)。
表1 东准噶尔巴斯克花岗闪长岩主量(%)、微量元素及稀土(×10-6)分析结果Table 1 Analytical results of major(%), trace elements(×10-6) and REE(×10-6) of the Basike granodiorite,east Junggar
花岗闪长岩样品的稀土元素总量 (ΣREE)变化于(83.79×10-6~125.67×10-6之间,LREE/HREE变化范围为5.32~8.63,平均为7.1。(La/Yb)N变化范围为5.78~10.14,平均为8.027。在球粒陨石标准化稀土配分图(图4a)中,样品稀土配分曲线近乎一致,均显示右倾特征,说明轻稀土较重稀土相对富集。岩石样品均具有轻微Eu负异常(δEu=0.69~0.89),平均值为0.75,指示有少量斜长石的结晶分异析出(Henderson,1982)。
图4 东准噶尔巴斯克花岗闪长岩稀土元素球粒陨石标准化配分模式图(a) (据Sun et al., 1989)和微量元素原始地幔标准化蛛网图(b) (据Sun et al., 1989)Fig. 4 Chondrite-normalized REE patterns (a) (after Sun et al., 1989) and primitive mantle-normalized trace element spider diagrams (b) (after Sun et al., 1989) for Basike granodiorite in east Junggar
在原始地幔标准化的微量元素蛛网图上(图4b),样品均具有相似的配分曲线模式,富集大离子亲石元素(LILE,如K、Rb、Ba)和轻稀土元素(LREE),而亏损高场强元素(HFSE,如Nb、Ta和Ti)及P, Nb、Ta负异常明显。
本次研究在岩株内采集两个年龄样品岩性均为似斑状花岗闪长岩,锆石U-Pb测试结果见表2。BSK-1TW年龄样品采自岩株南部边缘,样品经纬度N45°43′35.12″、E89°41′52.01″(图1a)。样品锆石形态上多呈以长柱状和短板状,大部分锆石具有典型的岩浆结晶的振荡环带结构(图5a)。锆石粒径大多介于60~110 μm,长宽比1∶1~5∶1。Th、U质量分数分别为16×10-6~353×10-6和29×10-6~314×10-6, Th/U值变化于0.39~1.12,平均为0.65。除了一个测点外,剩余27个测点Th/U均大于0.4,属于岩浆结晶锆石(Rubatto et al., 2000)。在锆石U-Pb 年龄谐和曲线图中,28个分析点均位于U-Pb谐和线上或其附近的一个很小的区域内(图6a),表面年龄变化范围为293~307 Ma(图6b),其n(206U)/n(238Pb)加权平均年龄为301.3±2.5 Ma (MSWD=0.33)。
图5 东准噶尔巴斯克花岗闪长岩锆石阴极发光图像(a)、( b),锆石(Ti)温度—Th/U图解(c) Fig. 5 CL images (a),(b) , zircon(Ti) temperature —Th/U diagram (c) of the zircons from the Basike granodiorite in east Junggar
图6 东准噶尔巴斯克花岗闪长岩锆石U-Pb年龄谐和图和加权平均年龄:BSK-1TW(a)、 (b),BSK-2TW(c)、 (d)Fig. 6 U-Pb concordia diagrams and weighted mean 206Pb/238U age diagrams of the zircons from Basike granodiorite in east Junggar: the BSK-1TW(a), (b); the BSK-2TW(c), (d)
图 7 东准噶尔巴斯克花岗闪长岩株SiO2—P2O5(a) (底图据Green,1995)、SiO2—Na2O(b) (底图据Collins et al.,1982)图解Fig. 7 The diagrams of SiO2 vs P2O5 (a) (after Green, 1995) and SiO2 vs Na2O (b) (after Collins et al.,1982 ) of the Basike granodiorite in east Junggar
图 8 东准噶尔巴斯克花岗闪长岩Rb/Sr—Rb/Ba(a) (底图据Sylvester,1998)和A/FM—C/FM图(b) (底图据Alther et al.,2000)Fig. 8 The diagram showing Rb/Sr—Rb/Ba(a) (after Sylvester,1998) and A/FM—C/FM (b) (after Alther et al.,2000) of Basike granodiorite in east Junggar
BSK-2TW样品采自岩株中部偏东位置,样品经纬度N45°43′51.53″、E89°42′7.60″(图1a)。该样品锆石形态上多呈以长柱状,大部分锆石具有典型的岩浆结晶的振荡环带结构(图5b)。锆石粒径大多介于90~320 μm,长宽比1∶1~3∶1。Th、U质量分数分别为16×10-6~171×10-6和33×10-6~188×10-6, Th/U值变化于0.37~0.91,平均为0.68。除了一个测点外,剩余27个测点Th/U均大于0.4,属于岩浆结晶锆石(Rubatto et al., 2000)。在锆石U-Pb 年龄谐和曲线图中,27个分析点均位于U-Pb谐和线上或其附近的一个很小的区域内(图6c),表面年龄变化范围为297~325 Ma(图6d),其n(206U)/n(238Pb)加权平均年龄为310.7±3.6 Ma (MSWD=0.75)。此外,在该样品中见有一颗n(206U)/n(238Pb)年龄为436 Ma的锆石(图5b),根据锆石CL图像观察锆石形态、磨圆及碎裂程度等特征,可判断其为捕获锆石。
综合矿物组成和地球化学特征,花岗岩成因类型可分为S 型、I 型、A 型和 M型4种。矿物学约束而言,岩石样品中含I型花岗岩特征性矿物原生角闪石 (Miller, 1985;邓晋福等, 2015b);地球化学特征表明花岗闪长岩属钙碱性岩石,铝饱和指数(A/CNK)平均值为0.96,轻稀土富集,(La/Yb)N平均值为8.03,同时具有负铕异常(δEu平均值0.75),富集Th、U、Rb等大离子亲石元素(LILE),而亏损Nb、Ta、Ti和P高场强元素(HFSE),具有 I型花岗岩的特征(周建厚等, 2015)。样品在SiO2—P2O5图解显示P2O5与SiO2呈负相关(图7a),与I型花岗岩呈现出一致性(Wolf et al., 1994)。并且,岩石样品的P2O5含量在0.14%~0.16%之间,而典型S型花岗岩中常具有较高的P2O5含量(>0.20%) (Chappell, 1999)。与此同时,样品的A/CNK值介于0.93~1.03之间,与典型的S型花岗岩中较高的A/CNK值(>1.1)不同(Chappell et al., 1992)。因此,巴斯克花岗闪长岩属于钙碱性、准铝—弱过铝质I型花岗岩。
样品Nb/Ta值(11.30~12.68)与大陆地壳Nb/Ta值范围(11~14,Taylor and Maclennan, 1985; Rudnick et al., 2000)相近。但Rudnick 等 (2000)认为在一定条件下,大陆地壳和亏损地幔均可能含有相近的Nb/Ta、Nb/La和Ti/Zr值。并且,样品Zr/Hf值38.01~40.63(平均39.59)高于幔源比值36.30和壳源比值33.00(Hofmann, 1988; Green, 1995);Rb/Sr值(平均0.21)略低于全球上地壳的平均值0.32(Taylor et al., 1995);Rb/Nb值(平均7.75)也低于全球上地壳的平均值9.33(McLennan, 2001),且同时远高于大洋岩石圈和陆幔(黎彤等, 2011)。上述微量元素的相关比值特征,说明花岗闪长岩的岩浆与典型的幔源岩浆和壳源岩浆均具有一定的差异性。
与此同时,样品的Mg#指数41.41~50.42,平均值为45.54,大于地壳部分熔融的熔体形成的岩石的Mg#值(40),表明岩浆熔融过程中有地幔源物质参与(Rapp et al.,1995。CaO/Na2O值0.47~0.70,大于0.3暗示源区含有砂岩(Sylvester, 1989),Rb/Ba—Rb/Sr和A/MF—C/MF图解 (图8a, b)也显示出源区为基性岩和变砂岩的混溶特征。Chappell(1988)认为地壳深部中基性变火成岩是I型花岗岩的源岩,但受幔源岩浆改造的沉积物重熔同样可以形成I型花岗岩(Kemp et al., 2007)。与此同时,Collins 等 (2008)认为在地壳重熔过程中沉积物成分的减少和火成岩等成分所占比重增大,同样可以使岩浆成分由S型向I型转变,形成I型或者S—I过渡类型岩浆。而且,我们针对岩石中具有环带结构的斜长石进行电子探针测试,结果显示斜长石中CaO的含量从核部到边部具有先降低—突然升高—再降低的特征(另文发表),明显不同于正常岩浆演化所显示的正环带,也暗示不同岩浆的混融作用。因此,巴斯克花岗闪长岩岩浆在形成过程中存在壳幔岩浆混合作用。
已如前述,本次所采两个年龄样品岩性虽均为似斑状花岗闪长岩,但年龄锆石U-Pb定年相差约9 Ma。为探究其年龄差别的原因,笔者等将两采样点附近的地球化学特征进行对比发现,样品的主量元素随着SiO2含量的增加,演化趋势不同(图9)。而且,两组样品中稀土元素球粒陨石标准化配分模式图不尽相同,特别是重稀土含量显示高、低分组的特征(图4a)。同时,两年龄样品中锆石粒径大小及长宽比显著不同(图5a,b),锆石中Th、U元素含量也有较大差别(表2)。此外,两组样品全岩Zr温度(据Boehnke et al., 2013)和锆石(Ti)温度(据Ferry and Watson, 2007)计算结果(表1)显示BSK-1采样点的全岩 (Zr)平均温度为852.2℃,而BSK-2采样点获得的全岩(Zr)平均温度则为886.5℃,两者相差约35度℃;样品BSK-1和BSK-2的锆石(Ti)温度分别为840.7℃(表2)和878.6℃(表2),仍相差约38℃。而且,样品中锆石(Ti)温度和锆石中Th/U值图解(图5c)显示两者经历了不一致的温度趋势,上述特征均暗示两者经历不同的地质演化过程。因此,结合巴斯克花岗闪长岩锆石U-Pb年龄结果,该岩株具有岩浆分批熔融、增量生长的特征。
图9 东准噶尔巴斯克花岗闪长岩BSK-1与BSK-2主量元素哈克图解Fig. 9 Hacker plots of major elements for BSK-1and BSK-2 from Basike granodiorite in east Junggar
相关研究结果表明,多数岩体均具有分批次岩浆上升,从而引起岩体增量生长的特征。例如,贝勒库都克黑云母正长花岗岩中10颗锆石U-Pb得出年龄范围为263~304 Ma,且年龄差最大可达41 Ma(杨高学, 2008)。与此同时,其他区域也有相似的岩浆分批增量生长研究实例,如内蒙古南部任家营子岩体(Li Shan et al., 2013),西秦岭美武岩体(Luo Biji et al., 2015)和南秦岭东江口岩体(Li Yang et al., 2019)、高桥岩体(Tao Wei et al., 2021)、华阳岩体(Hu Fangyang et al., 2018)等。巴斯克花岗闪长岩年龄特征也表明该区晚石炭世构造岩浆活动持续了一个时期。
不同构造单元也分布着不同的火成岩 (邓晋福等, 2015a),且花岗岩主、微量元素组成能够在一定程度上反映岩浆岩形成时的大地构造环境。本次样品地球化学特征显示其Ⅰ型花岗岩类,而该类可以形成于板块俯冲阶段或后碰撞阶段(Pitcher et al., 1987; 韩宝福, 2007; 周建厚等, 2015)。而岩石样品见有暗色矿物角闪石,且地球化学结果显示SiO2含量小于70%,Na2O/K2O大于1,弱的负铕异常(δEu平均值0.75)及不同程度的亏损高场强元素Nb、Ta、Ti、P,这些特点与碰撞晚期或后碰撞岩浆岩特点相一致(Harris et al., 1986; Liegeois et al., 1998)。同时,样品在Rb—Y+Nb图解(图10a)中主体落入后碰撞花岗岩范围内,在R1—R2图解(图10b)中样品落入板块碰撞后隆起期或造山晚期花岗岩范围,表明其产出背景应为造山碰撞后阶段。
图10 东准噶尔巴斯克花岗闪长岩构造背景图解(a) (底图据Pearce et al.,1984)和R1—R2图解(b) 底图据Batchelor et al.,1985)Fig. 10 The tectonic environment diagrams (a) (after Pearce et al.,1984) and R1—R2 diagram (b) (after Batchelor et al.,1985) ofthe Basike granodiorite in east JunggarR1 = 4nSi-11[ n(Na)+ n(K) ]-2[n(Fe)+ n(Ti)];R2 = 6n(Ca)+ 2n(Mg) + n(Al) ORG—洋脊花岗岩; VAG—火山弧花岗岩; WPG—板内花岗岩; syn-COLG—同碰撞花岗岩; post-COLG—后碰撞花岗岩; ① 地幔斜长花岗岩; ② 破坏性活动板块边缘(板块碰撞前)花岗岩; ③ 板块碰撞后隆起期花岗岩; ④ 晚造山期花岗岩; ⑤ 非造山区A型花岗岩; ⑥ 同碰撞(S型)花岗岩; ⑦ 造山期后A型花岗岩ORG— Ocean-ridge granite; VAG— volcanic-arc granite; WPG— intraplate granite; syn-COLG— syn-collision granite; Post-COLG— post-collision granite; ① mantle fractionates; ② pre-plate collision; ③ post-collision uplift; ④ late-orogenic; ⑤ anorogenic; ⑥ syn-collision; ⑦ post-orogenic
在利用地球化学图解的同时,一定要结合岩石构造组合及其时空演化等多方面地质证据 (邓晋福等, 2015b)。上述结论也得到本项目在该地区获得的地质证据支持,本研究的花岗闪长岩侵入最新围岩为晚石炭世巴塔马依内山组(C2bt)。该组在区内主要岩性为玄武岩、玄武质火山角砾岩、火山集块岩、深灰色杏仁状英安岩、玄武岩夹流纹岩等,并以碱性玄武岩—粗面岩双峰式系列为特征,表现出大陆裂谷性质(大陆板内拉张区域)的岩石特征❶。这一证据也表明侵入其中的花岗闪长岩(310~301 Ma)处于造山后伸展阶段。
综上所述,东准地区野马泉岛弧在晚石炭世(310~301 Ma)处于碰撞后、幔源岩浆底侵作用下伸展构造背景。同时,地幔底侵作用引起区域地温梯度升高,下地壳部分熔融并混入部分地幔物质形成花岗质岩浆(图11a)。且由于该期构造—岩浆事件持续时间较长,在上述构造体制下岩浆分批次熔融、岩株增量生长(图11b,c),进而导致地壳发生垂向增生与再造。
图11 东准噶尔地区晚石炭世构造重建(a)及岩株两阶段侵位(b、c)示意图Fig. 11 Sketch diagrams for the Late Carboniferous tectonic reconstruction(a) and magma two-phase intrusive process of stock(b,c) in the Basike area
(1) 东准噶尔地区巴斯克花岗闪长岩为富钠、钙碱性、准铝—弱过铝质的I型花岗质岩石,在岩浆形成过程中存在少量幔源物质的混入及壳幔岩浆混合作用。
(2) 巴斯克花岗闪长岩锆石n(206U)/n(238Pb)加权平均年龄为301.3±2.5 Ma (n=28,MSWD=0.33)至310.7±3.6 Ma (n=27,MSWD=0.75),形成时代属于晚石炭世。
(3) 综合两组样品主微量元素特征、全岩(Zr)温度、锆石(Ti)温度及锆石U-Pb定年结果,表明该岩株具有岩浆分批熔融、增量生长的特征。
(4) 野马泉岛弧地区在晚石炭世(310~301 Ma)处于后碰撞伸展构造体制,软流圈上涌引起幔源岩浆底侵,区域地温梯度升高,导致该区地壳发生垂向增生与再造。
致谢:野外工作得到黄岗高级工程师、宇峰工程师的帮助; 参加野外工作的还有张雷、徐岩、梁博、姚文丰等同志; 成文得到侯广顺教授、秦江锋副教授、陈隽璐研究员的指导; 熊双才工程师等三位审稿专家和章雨旭研究员的宝贵意见和建议,提高了本文质量; 笔者等在此致以衷心的感谢!
注 释/Notes
❶ 中国地质调查局西安地质调查中心. 2019. 新疆东准噶尔别勒库都克幅幅区域地质矿产调查报告. 西安: 中国地质调查局西安地质调查中心.
❷ 陕西省地质矿产勘查开发局区域地质矿产研究院. 2012. 新疆1∶25万滴水泉幅、北塔山幅区域地质调查报告(修测). 咸阳: 陕西省地质矿产勘查开发局区域地质矿产研究院.
(The literature whose publishing year followed by a “&” is in Chinese with English abstract; The literature whose publishing year followed by a “#” is in Chinese without English abstract)
白建科, 陈隽璐, 唐卓, 张越. 2018. 新疆准噶尔古生代洋盆闭合时限——来自卡拉麦里地区石炭纪碎屑锆石U-Pb年代学的约束.地质通报, 37(1):26~38.
邓晋福, 冯艳芳, 狄永军, 刘翠, 肖庆辉, 苏尚国, 赵国春, 孟斐, 马帅, 姚图. 2015a. 岩浆弧火成岩构造组合与洋陆转换. 地质论评, 61(3):473~484.
邓晋福, 刘翠, 冯艳芳, 肖庆辉, 狄永军, 苏尚国, 赵国春, 段培新, 戴蒙. 2015b. 关于火成岩常用图解的正确使用: 讨论与建议. 地质论评, 61(4):717~734.
甘林, 唐红峰, 韩宇捷. 2010. 新疆东准噶尔野马泉花岗岩体的年龄和地球化学特征. 岩石学报, 26(8): 2374~2388
韩宝福, 季建清, 宋彪, 陈立辉, 张磊. 2006. 新疆准噶尔晚古生代陆壳垂向生长(I)——后碰撞深成岩浆活动的时限. 岩石学报, 22(5): 1077~1086.
韩宝福. 2007. 后碰撞花岗岩类的多样性及其构造环境判别的复杂性.地学前缘, 14(3):64~72.
胡万龙. 2016. 新疆东准噶尔老鸦泉晚石炭世花岗岩地球化学特征及地质意义. 导师:王金荣. 兰州:兰州大学硕士学位论文: 1~70.
黄岗, 牛广智, 王新录, 郭俊, 宇峰. 2012. 新疆东准噶尔卡拉麦里蛇绿岩的形成和侵位时限——来自辉绿岩和凝灰岩LA-ICP-MS锆石U-Pb年龄的证据.地质通报, 31( 8) :1267~1278.
黎彤, 袁怀雨. 2011. 大洋岩石圈和大陆岩石圈的元素丰度. 地球化学, 40(1): 1~5.
李艳广, 汪双双, 刘民武, 孟恩, 魏小燕, 赵慧博, 靳梦琪.2015.斜锆石LA-ICP-MS U-Pb定年方法及应用. 地质学报,89(12):2400~2418.
李振生, 聂峰, 田晓莉, 石永红, 牛浩, 王创. 2016. 东准噶尔构造带晚古生代地层时代的厘定及其对区域构造演化意义.地质学报,90(3):569~588.
李宗怀, 韩宝福, 李辛子, 杜蔚, 杨斌. 2004. 新疆准噶尔地区花岗岩中微粒闪长质包体特征及后碰撞花岗质岩岩浆起源和演化.岩石矿物学杂志, 23(3):214~226.
龙晓平, 孙敏, 袁超, 肖文交, 陈汉林, 赵永久, 蔡克大, 李继亮. 2006. 东准噶尔石炭系火山岩的形成机制及其对准噶尔洋盆闭合时限的制约. 岩石学报, 22(1): 31~40.
罗婷, 陈帅, 廖群安, 陈继平, 胡朝斌, 王富明, 田健, 吴魏伟, 2016. 东准噶尔晚石炭世双峰式火山岩年代学、地球化学及其构造意义. 地球科学, 41(11): 1845~1862.
沈晓明, 张海祥, 马林. 2013. 阿尔泰南缘晚石炭世淡色花岗岩的发现及其构造意义.大地构造与成矿学, 37(4):721~729.
苏玉平, 唐红峰, 刘丛强, 侯广顺, 梁莉莉. 2006. 新疆东准噶尔苏吉泉铝质A型花岗岩的确立及其初步研究. 岩石矿物学杂志, 5(3):175~184.
汤贺军. 2021. 新疆东准噶尔扎河坝及邻区古生代构造演化与成岩成矿研究. 导师: 吴珍汉. 北京:中国地质科学院博士学位论文.
田健, 廖群安, 樊光明, 聂小妹, 胡朝斌, 王富明, 陈帅, 吴魏伟. 2016. 东准噶尔卡拉麦里断裂以南幔源底侵体、“钉合花岗岩体”的发现及其地质意义. 岩石学报, 32(6): 1715~1730.
田健. 2014. 东准噶尔卡拉麦里地区早石炭世侵入岩的岩石学特征及其地质意义. 导师:廖群安. 武汉:中国地质大学(武汉)硕士学位论文.
王涛. 2000. 花岗岩研究与大陆动力学. 地学前缘, 7 (增刊): 137~146.
吴福元, 李献华, 杨进辉,郑永飞. 2007. 花岗岩成因研究的若干问题. 岩石学报, 23(6): 1217~1238.
肖庆辉, 邱瑞照, 邢作云, 张昱, 伍光英, 童劲松. 2007. 花岗岩成因研究前沿的认识. 地质论评,53(增刊):17~27.
熊双才,李 广,张征峰.2019a. 东准噶尔晚石炭世构造体制转变:来自 A2 型流纹岩的证据.地质力学学报,25(S1):49~52.
熊双才,张征峰,李广,刘润泽,华叙登,赵富庄,周鹏飞,李关禄. 2019b. 东准噶尔老爷庙地区碱性花岗岩锆石U-Pb 定年、地球化学及其地质意义.地质论评,65(1):221~231.
杨高学. 2008. 新疆东准噶尔卡拉麦里地区花岗岩类研究. 导师: 李永军. 西安: 长安大学硕士学位论文.
杨高学, 李永军, 吴宏恩, 司国辉, 金朝, 张永智. 2009. 东准噶尔卡拉麦里地区黄羊山花岗岩和包体LA-ICP-MS锆石U-Pb测年及地质意义. 岩石学报, 25(12): 3197~3207.
张峰. 2014. 东准噶尔卡拉麦里地区金铜多金属矿成矿规律与成矿预测. 导师: 陈建平. 北京:中国地质大学(北京)博士学位论文.
张峰, 陈建平, 徐涛, 范俊杰, 潘爱军, 郭晓东, 李杰美, 朝银银. 2014. 东准噶尔晚古生代依旧存在俯冲消减作用——来自石炭纪火山岩岩石学、地球化学及年代学证据. 大地构造与成矿学, 38(1):140~156.
张旗, 李承东. 2012. 花岗岩:地球动力学意义. 北京: 海洋出版社: 1~276.
张征峰,熊双才,范香莲.2021.东准噶尔木炭窑地区同造山花岗岩锆石U-Pb定年、地球化学及地质意义. 地质论评,67(1):231~241.
赵霞, 贾承造, 张光亚, 卫延召, 赖绍聪, 方向, 张丽君. 2008. 准噶尔盆地陆东—五彩湾地区石炭系中、基性火山岩地球化学及其形成环境. 地学前缘, 15(2):272~279.
周建厚,丰成友,沈灯亮,李大新,王辉,张明玉,马圣钞.2015.新疆祁漫塔格维宝矿区西北部花岗闪长岩年代学、地球化学及其构造意义.地质学报,89(3):471~486.
朱志新, 李少贞, 李篙龄. 2005. 东准噶尔纸房地区晚石炭世巴塔玛依内山组陆相火山—沉积体系特征. 新疆地质, 23(1): 14~25.
Altherr R, Holl A, Hegner E, Langer C, Kreuzer H. 2000. High-potassium,calc-alkaline I-type plutonism in the European Variscides: Northern Vosges (France) and northern Schwarzwald (Germany). Lithos, 50:51~73.
Bai Jianke, Chen Junlu, Tang Zuo, Zhang Yue. 2018&.The closure time of Junggar Paleozoic oceanic basin: Evidence from Carboniferous detrital zircon U-Pb geochronology in Kalamaili area. Geological Bulletin of China, 37(1):26~38.
Batchelor R A, Bowden P. 1985. Petrorgenetic interpretation of granitoid rock series using multicationic parameters. Chemistry Geology, 50(48):43~55.
Boehnke P, Watson E B, Trail D , Harrison T M, Schmit A K. 2013. Zircon saturation re-revisited. Chemical Geology, 351: 324~334.
Chappell B W, White A J R. 1992. I-and S-type granites in the Lachlan Fold Belt. Transactions of the Royal Society of Ediburgh: Earth Sciences, 83(1~2): 1 ~ 26.
Chappell B W. 1988. Origin of infracrustal (I-type) granite magmas. Transactions of the Royal Society of Ediburgh: Earth Sciences, 79:71 ~ 86.
Chappell B W. 1999. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos, 46 ( 3): 535 ~ 551.
Collins W J, Beams S D, White A J R, Chappell B W. 1982. Nature and origin of A-type granites with particular reference to southeastern Australia. Contrib. Mineral. Petrol., 80(2): 189~200.
Collins W J, Richards S W. 2008. Geodynamic significance of S-type granite in circunm- Pacific orogens. Geology, 36(7): 559~562.
Deng Jinfu, Feng Yanfang, Di Yongjun, Liu Cui, Xiao Qinghui, Su Shangguo, Zhao Guochun, Meng Fei, Ma Shuai, Yao Tu. 2015a&. Magmatic arc and ocean—continent transion: Discussion. Geological Review, 61(3):473~484.
Deng Jinfu, Liu Cui, Feng Yanfang, Xiao Qinghui, Di Yongjun, Su Shangguo, Zhao Guochun, Duan Peixin, Dai Meng. 2015b&. On the correct application in the common igneous petrological diagram: Discussion and suggestion. Geological Review, 61(4):717~734.
Ewart A. 1982. The mineralogy and petrology of Tertiary—recent orogenic volcanic rocks: With special reference to the andesitic—basaltic compositional range. In: Thorpe R S. ed. Chichester: Andesites. New York:Wiley: 25~87.
Ferry J M, Watson E B. 2007. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib. Mineral. Petrol., 154:429~437.
Gan Lin, Tang Hongfeng, Han Yujie. 2010&. Geochronology and geochemical characteristics of the Yemaquan granitic pluton in East Junggar, Xinjiang. Acta Petrologica Sinica, 26(8): 2374~2388
Green T H. 1995. Significance of Nb/Ta as an indicator of geochemicalprocesses in the crust—mantle system. Chemical Geology, 120: 347~359.
Harris N, Marzouki F, Ali S. 1986. The Jabel Sayid complex, Arabian Shield: geochemical constraints on the origin of peralkaline and related granites. Journal of the Geological Society, 143(2):287~295.
Han Baofu, Ji Jianqing, Song Biao, Chen Lihui, Zhang Lei. 2006&. Late Paleozoic vertical growth of continental crust around the Junggar Basin, Xinjiang, China(I): Timing of post-collisional plutonism. Acta Petrologica Sinica, 22(5): 1077~1086.
Han Baofu. 2007&. Diverse post-collisional granitoids and their tectonic setting discrimination. Eartn Science Frontiers, 14(3):64~72.
Henderson P. 1982. Inorganie Geochemistry. New York: Pergamon Press:1~353.
Hofmann A W. 1988. Chemical differentiation of the Earth: The relationshipbetween mantle‘continental crust’and oceanic crust. Earth and Planetary Science Letters, 90(3): 297~314.
Hu Fangyang, Liu Shuwen, Ducea M N, Zhang Wanyi, Chapman J B, Fu Jinghao, Wang Maojiang, 2018. Interaction among magmas from various sources and crustal melting processes during continental collision: Insights from the Huayang intrusive complex of the South Qinling Belt, China. Journal of Petrology, 59:735~770.
Hu Wanlong. 2016&. Geochemical Characteristics and Geological Significance of Late Carboniferous Granites from the Laoyaquan in Eastern Junggar, Xinjiang. Tutor: Wang Jinrong. Master thesis of Lanzhou University: 1~70.
Huang Gang, Niu Guangzhi, Wang Xinlu, Guo Jun, Yu Feng. 2012&. Formation and emplacement age of Karamaili ophiolite: LA-ICP-MS zircon U-Pb age evidence from the diabase and tuff in eastern Junggar, Xinjiang. Geological Bulletin of China, 31(8):1267~1278.
Kemp A I S, Hawkesworth C J, Foster G J, Gray C M, Paterson B A, Hergt J M, Whitehouse M J, Woodhead J D. 2007. Magmatic and crustal differentiation history of granitic rocks from Hf—O isotopes in zircon. Science, 315(5814): 980~983.
Kovalenko A, Clemens J D, Savatenkov V. 2005. Petrogenetic constraints for the genesis of Archaean sanukitoid suites: Geochemistry and isotopic evidence from Karelia, Baltic Shield. Lithos,79(1~2):147~160.
Kröner A, Windley B F, Badarch G, Tomurtogoo O, Hegner E, Jahn B M, Gruschka S, Khain E V, Demoux A, Wingate M T D. 2007. Accretionary growth and crust-formation in the central Asian Orogenic Belt and comparison with the Arabian—Nubian shield. In: Hatcher R D Jr, Carlson M P, McBride J H, Martinez Catalan J R. eds. 4-D Framework of Continental Crust. Geological Society of America Memoir 200: 181~209; Doi:110.1130/2007. 1200(1111)
Li Di, He Dengfa, Sun Min, Zhang Lei. 2020. The role of arc—arc collision in accretionary orogenesis: Insights from ca. 320 Ma tectono—sedimentary transition in the Karamaili area, NW China. Tectonics; Doi: 10.1029/2019TC005623.
Li Shan, Wilde Simon A, Wang Tao, Guo Qianqian. 2013. Incremental growth and origin of the Cretaceous Renjiayingzi pluton, southern Inner Mongolia, China: Evidence from structure, geochemistry and geochronology. Journal of Asian Earth Sciences, 75: 226~242.
Li Tong, Yuan Huaiyu. 2011&. Element abundance in the oceanic and the continental lithospheres. Geochimica, 40(1): 1~5.
Li Yang, Li Sanzhong, Liang Wentian, Lu Rukui, Zhang Youjun, Li Xiyao, Wang Pengcheng, Somerville I, Zhang Guowei. 2019. Incremental emplacement and syn-tectonic deformation of Late Triassic granites in the Qinling Orogen: Structural and geochronological constraints. Gondwana Research, 72:194~212.
Li Yanguang, Wang Shuangshuang, Liu Minwu, Meng En, Wei Xiaoyan,Zhao Huibo, Jin Mengqi.2015&.U-Pb dating study of Baddeleyite by LA-ICP-MS: Technique and application. Acta Geologica Sinica,89(12):2400~2418.
Li Zhensheng, Nie Feng, Tian Xiaoli, Shi Yonghong, Niu Hao, Wang Chuang. 2016&. Redefinition of formation age of Late Paleozoic strata in the eastern Junggar tectonic zone and its implications for evolution of regional geological structure. Acta Geologica Sinica,90(3):569~588.
Li Zonghuai, Han Baofu, Li Xinzi, Du Wei, Yang Bin. 2004&. Microgranular dioritic enclaves in Junggar granites and their implications for the origin and evolution of post-collisional granitic magmatism in North Xinjiang. Acta Petrologica et Mineralogica, 23(3):214~226.
Liegeois J P, Navez J, Hertogen J, Black R. 1998. Contrasting origin of post-collisional high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids: The use of sliding normalization. Lithos, 45(1):1~28.
Long Xiaoping, Sun Min, Yuan Chao, Xiao Wenjiao, Chen Hanlin, Zhao Yongjiu, Cai Keda, Li Jiliang. 2006&. Genesis of Carboniferous volcanic rocks in the eastern Junggar: Constrains on the closure of the Junggar ocean. Acta Petrologica Sinica, 22(1): 31~40.
Long Xiaoping, Yuan Chao, Sun Min, Safonova I, Xiao Wenjiao, Wang Yujing. 2012. Geochemistry and U-Pb detrital zircon dating of Paleozoic graywackes in east Junggar, NW China: Insights into subduction—accretion processes in the southern Central Asian Orogenic Belt. Gondwana Research, 21:637~653.
Ludwig K R. 2003. Users Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center Special Publication: 25~32.
Luo Biji, Zhang Hongfei, Xu Wangchun, Guo Liang, Pan Fabin, Yang He. 2015. The Middle Triassic Meiwu batholith, west Qinling, central China: Implications for the evolution of compositional diversity in a composite batholith. Journal of Petrology, 56:1139~1172.
Luo Ting, Chen Shuai, Liao Qun’an, Chen Jiping, Hu Chaobin, Wang Fuming, Tian Jian, Wu Weiwei. 2016&. Geochronology, geochemistry and geological significance of the Late Carboniferous bimodal volcanic rocks in the eastern Junggar. Earth Science, 41(11): 1845~1862.
Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101(5): 635~643.
McLenan S M. 2001. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem., Geophys., Geosyst., 2(4): 203~236.
Middlemost E A. 1994. Namingmaterials in the magma / igneous rock system. Earth-Science Reviews, 37(3): 215~224.
Miller C F. 1985. Are strongly peraluminous magmas derived frompolitic sedimentary source. J. Geol., 93: 673~689.
Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4):956~983.
Pitcher W S. 1987. Granites and yet more granites forty years on.Geologische Rundschau, 76(1):51~79.
Pitcher W S. 1997. The Nature and Origin of Granite (second edition). London: Chapman & Hall: 1~345.
Rapp R P, Watson E B. 1995. Dehydration melting of metabasalt at 8~32 kbar: implications for continental growth and crust—mantle recycling. Journal of Petrology, 369(4): 891~931.
Rubatto D, Williams I S. 2000. Imageing, trace element geochemistry and mineral inclusions: Linking U-Pb ages with metamorphic conditions. EOS, 21: 25
Rudnick R L, Barth M, Horn I, Mcdonough W F. 2000. Rutile-bearing refractory eclogites: Missing link between continents and depleted mantle. Science, 287(5451): 278~281.
Sengör A M C, Natal’ in B A, Burtman V S. 1993. Evolution of Altaid tectonic collage and Paleozoic crustal growth in Eurasia. Nature, 364:299~307.
Shen Xiaoming, Zhang Haixiang, Ma Lin. 2013&. Discovery of the Late Carboniferous Leucogranite in the Southern Altay Range and its tectonic implications. Geotectonica et Metallogenia,37(4):721~729.
Shen Xiaoming, Zhang Haixiang, Wang Qiang, Wyman D A, Yang Yueheng. 2011. Late Devonian—Early Permian A-type granites in the southern Altay Range, Northwest China: Petrogenesis and implications for tectonic setting of ‘A2-type’ granites. Journal of Asian Earth Sciences,42: 986~1007.
Su Yuping, Tang Hongfeng, Liu Congqiang, Hou Guangshun, Liang Lili. 2006&. The determination and a preliminary study of Sujiquan aluminous A-type granites in East Junggar, Xinjiang. Acta Petrologica et Mineralogica, 5(3):175~184.
Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts:implications or mantle composition and processes. In: Saunders A D, Norry M J. eds. Magmatism in the Ocean Basins: Geological Society Special Publications London, 42: 313~345.
Sylvester P J. 1989. Post-collisional alkaline granites. Journal of Geology, 97(3): 261~281.
Sylvester P J. 1998. Post-collisional strongly peraluminous granites. Lithos, 45:29~44.
Tang Hejun. 2021&. Paleozoic Tectonic Evolution, Diagenesis and Mineralization of the Zhaheba and Its Adjacent Areas in East Junggar, Xinjiang. Supervisor: Wu Zhenhan. Beijing: Ph. D. thesis of Chinese Academy of Geological Sciences.
Tao Wei, Li Yang, Chen Yingtao, Lu Rukui, Ran Yazhou, Zhang Pengpeng, Zhang Guowei.2021. Syn-tectonic emplacement during sinistral transpression: The Late Triassic Gaoqiao pluton in the South Qinling Belt, central China. Geological Journal, 56:995~1011.
Taylor S R, McLennan S M. 1985.The Continental Crust: Its Composition and Evolution. Oxford: Blackwell Scientific Publications.
Taylor S R, McLennan S M. 1995. The geochemical evolution of the continental crust. Rev. Geophys., 33: 241~265.
Tian Jian, Liao Qun’an, Fan Guangming, Nie Xiaomei, Hu Chaobin, Wang Fuming, Chen Shuai, Wu Weiwei. 2016. Mantle underplated pluton and stitching granites pluton from south side of the Karemaili fault in the eastern Junggar: Geochronological, geochemical and Sr—Nd isotopic constrains on their petrogenesis and tectonic implications. Acta Petrologica Sinica, 32(6): 1715~1730.
Tian Jian. 2014&.The Petrological Characteristics and Tectonics Implications for Early Carboniferous Instrusions from the Area of Karemaili in Eastern Junggar. Supervisor: Liao Qun’an. Wuhan: Master thesis of China University of Geosciences(Wuhan) .
Van Achterbergh E, Ryan C G, Jackson S E, Griffin W. 2001.Data reduction software for LA-ICP-MS. In: Sylvester P J. ed. Laser—Ablation—ICP MS in the Earth Sciences: Principles and Applications. Mineralogical Society of Canada Short Course Series, (29): 239~243.
Wang Tao. 2000&. Studies on granites and continental dynamics. Eartn Science Frontiers, 7(supp.): 137~146.
Windley B F, Garde A A. 2009. Arc-generated blocks with crustal sections in the North Atlantic craton of West Greenland: Crustal growth in the Archean with modern analogues. Earth-Science Reviews, 93(1~2):1~30.
Wolf M B, London D. 1994. Apatite dissolution into peraluminoushaplogranitic melts: An experimental study of solubilities andmechanisms. Geochimica et Cosmochimica Acta, 58 (19): 4127~4245.
Wright J B. 1969. A simple alkalinity ratio and its application to questions of non-orogenic granite genesis. Geological Magazine, 106(4):370~384.
Wu Fuyuan, Li Xianhua, Yang Jinhui, Zheng Yongfei. 2007&. Discussions on the petrogenesis of granites. Acta Petrologica Sinica, 23(6): 1217~1238.
Xiao Qinghui, Qiu Ruizhao, Xing Zuoyun, Zhan Yu, Wu Guangying, Tong Jinsong. 2007&. Major frontiers on studies of granite formation. Geological Review,53(Supp):17~27.
Xiao Wenjiao, Kröner A, Windley B. 2009. Geodynamic evolution of Central Asia in the Paleozoic and Mesozoic. International Journal of Earth Science, 98(1):1185~1188.
Xiao Wenjiao, Pirajno F, Seltmann R. 2008. Geodynamics and metallogeny of the Altaid orogen. Journal of Asian Earth Science, (32):77~81.
Xiong Shuangcai, Li Guang, Zhang Zhengfeng. 2019a&. Late Carboniferous tectonic regime transition in east Junggar: Evidence from A2-type rhyolite. Journal of Geomechanics, 25 ( S1) : 49~52.
Xiong Shuangcai, Zhang Zhengfeng, Li Guang, Liu Runze,Hua Xudeng, Zhao Fuzhuang, Zhou Pengfei, Li Guanlu. 2019b&. Zircon U-Pb dating, geochemical characteristics of alkali-granites in Laoyemiao area, eastern Junggar, and geological significance. Geological Review, 65 (1):221~231.
Xu Xingwang, Jiang Neng, Li Xianhua, Wu Chu, Qu Xun, Zhou Gang, Dong Lianhui. 2015. Spatial—temporal framework for the closure of the Junggar Ocean in central Asia: New SIMS zircon U-Pb ages of the ophiolitic mélange and collisional igneous rocks in the Zhifang area, east Junggar. Journal of Asian Earth Sciences; http://dx.doi.org/10.1016/j.jseaes.2015.06.017
Yakubchuk A. 2004. Architecture and mineral deposit settings of the Altaid orogenic collage: A revised model. Journal of Asian Earth Sciences, 23:761~779.
Yang Gaoxue. 2008&. The Study of Granitoids in Kalamaili Area of Easten Junggar, Xinjiang. Supervisor: Li Yongjun. Xi’an: Master thesis of Chang’an University.
Yang Gaoxue, Li Yongjun, Wu Hong’en, Si Guohui, Jin Chao, Zhang Yongzhi. 2009&. LA-ICP-MS zircon U-Pb dating of the Huangyangshan pluton and its enclaves from Kalamaili area eastern Junggar, Xinjiang, and geological implications. Acta Petrologica Sinica, 25(12): 3197~3207.
Zhang Feng. 2014&. Metallogenic Characteristics and Prediction of Gold and Copper Polymetallic Deposits in Kalamaily,Eastern Junggar, Xinjiang. Supervisor: Chen Jianping. Beijing: Ph. D. thesis of China University of Geosciences.
Zhang Feng, Chen Jianping, Xu Tao, Fan Junjie, Pan Aijun, Guo Xiaodong, Li Jiemei, Chao Yinyin. 2014&. Late Paleozoic subduction in the eastern Junggar: Evidence from the petrology, geochemistry and geochronology of Carboniferous volcanic rocks. Geotectonica et Metallogenia, 38(1):140~156.
Zhang Qi, Li Chengdong. 2012&. Granites: Implications for Continental Geodynamic. Beijing: Ocean Press:1~276.
Zhang Zhengfeng,Xiong Shuangcai,Fan Xianglian.2021&. Zircon U-Pb dating, geochemistry and geological significance of synorogenic granit in Mutanyao area, eastern Junggar. Geological Review,67(1):231~241.
Zhao Xia, Jia Chengzao, Zhang Guangya, Wei Yanzhao, Lai Saocong, Fang Xiang, Zhang Lijun. 2008&. Geochemistry and tectonic settings of Carboniferous intermediate—basic volcanic rocks in Ludong—Wucaiwan, Junggar Basin. Eartn Science Frontiers, 15(2):272~279.
Zhou Jianhou, Feng Chengyou, Shen Dengliang, Li Daxin, Wang Hui, Zhang Mingyu, Ma Shengchao. 2015&. Geochronology, geochemistry and tectonic implications of granodiorite in the northwest of Weibao deposit, Qimantage, Xinjiang. Acta Geological Sinica, 89(3):471~486.
Zhu Zhixin, Li Shaozhen, Li Gaoling. 2005&. The characteristics of sedimentary system——Continental facies volcano in later Carboniferous Batamayi Group, Zhifang region, east Junggar. Xinjiang Geology, 23(1): 14~25.