陈芳如
三维MHD方程轴对称弱解的正则准则
陈芳如
(温州大学数理学院,浙江温州 325035)
MHD方程组;正则性准则;轴对称;Besov空间
本文考虑的三维粘性不可压缩磁流体动力学方程(Magnetohydrodynamics,MHD)形式如下:
He等人在文献[1]中仅根据速度场建立了基本的Serrin型规律性准则,准确地说,表明了速度场若满足
或
得到方程组(1)的弱解是光滑的.
得到方程组(1)的弱解是光滑的.同时,也有轴对称Navier-Stokes方程的分量正则性准则,如文献[10],正则性准则只作用于涡场的两个分量.受Navier-Stokes方程结果的启发,我们将注意力转向轴对称MHD方程.Liu等人在文献[11]中构造了具有特定形式磁场的三维不可压缩MHD方程的一类轴对称解的正则性判据.
定理1的证明.
首先对(1)式进行先验估计.更准确地说,我们将展示下面的一个先验估计.
在(1)式上求其旋度,得到:
(17)式右侧第一项可估计为:
将(20)式―(22)式加起来,可得:
同样地,有以下估计
由此可得:
然后将(23)式、(24)式和(25)式代入(18)式,就得到了
现在估计(17)式右边的第二项,
得到:
它遵循类似的方法,
组合(17)式、(26)式、(27)式、(28)式得到:
同样地,得到
证明完成.
[1] He C, Xin Z. On the Regularity of Solutions to the Magnetohydrodynamic Equations[J]. Journal Differential Equations, 2005, 213(2): 235-254.
[2] Zhou Y. Remarks on Regularities for the 3D MHD Equations, Discrete Contin [J]. Journal of Dynamic Systems Measurement and Control-Transactions of the Asme, 2005, 12: 881-886.
[3] Chen Q, Miao C, Zhang Z. On the Regularity Criterion of Weak Solution for the 3D Viscous Magneto-hydrodynamics Equations, Commun [J].Communications in Mathematical Physics, 2008, 284: 919-930.
[4] Wu J. Bounds and New Approaches for the 3D MHD Equations [J]. Journal of Nonlinear Science, 2002, 12: 395-413.
[5] Wu J. Regularity Results for Weak Solutions of the 3D MHD Equations, Discrete Contin [J]. Journal of Dynamic Systems Measurement and Control-Transactions of the Asme, 2004,10: 543-556.
[6] Gala S, Guo Z, Ragusa M. A Regularity Criterion for the Three-dimensional MHD Equations in Terms of One Directional Derivative of the Pressure [J]. Computers and Mathematics with Applications, 2015, 70(12): 3057-3061.
[7] Tong D, Wang W. Conditional Regularity for the 3D MHD Equations in the Critical Besov Space [J]. Applied Mathematics Letters, 2020, 102: 106119.
[8] Chae D, Choe J. Regularity of solutions to the Navier-Stokes Equations [J]. Electronic Journal of Differential Equations, 1999, 56: 1-7.
[9] Kozono H, Ogawa T, Taniuchi Y. The Critical Sobolev Inequalities in Besov Spaces and Regularity Criterion to Some Semi-linear Evolutions [J]. Mathematische Zeitschrift, 2002, 242: 251-278.
[10] Chae D, Lee J. On the Regularity of the Axisymmetric Solutions of the Navier-Stokes Equations [J]. Mathematische Zeitschrift, 2002, 239: 645-671.
[11] Liu J. On Regularity Criterion to the 3D Axisymmetric Incompressible MHD Equations [J]. Mathematical Methods in the Applied Sciences, 2016, 39: 4535-4544.
[12] Stein E M. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Interals [M]. Princeton: Princeton University Press, 1993:285-288.
Regularity Criteria of Axisymmetric Weak Solutions to the 3D MHD Equations
CHEN Fangru
(College of Mathematics and Physics, Wenzhou University, Wenzhou, China 325035)
MHD Equations; Regularity Criteria; Axisymmetric; Besov Space
O175
A
1674-3563(2022)01-0025-09
10.3875/j.issn.1674-3563.2022.01.004
本文的PDF文件可以从www.wzu.edu.cn/wzdxxb.htm获得
2020-10-21
陈芳如(1995― ),甘肃定西人,硕士研究生,研究方向:微分方程与动力系统
(编辑:王一芳)
(英文审校:黄璐)