郑家瑞 李云洲
摘要:植物诱导抗性是指植物抵御各种外界不良生存环境的能力,包括对不同病虫害、各种不良环境因子以及对各种物理和化学刺激的抵抗能力等,是植物进化过程中形成的可遗传性状。本文归纳总结主要植物诱抗剂及植物诱抗性作用机制,为利用植物诱导抗病性提高植株抗性,降低化学农药的使用和改良土壤提供参考依据。
关键词:诱导抗性;诱抗剂;机制;研究进展
中图分类号:S432.1
文献标识码:A
文章编号:1008-0457(2022)02-0051-008
国际DOI编码:10.15958/j.cnki.sdnyswxb.2022.02.008
植物诱导抗性在所有植物中普遍存在,具有诱导的非专化性、系统广谱性和持效性以及安全性等特点[1]。植物诱导抗性可以概括成两个:(1)系统获得性抗性(Systemic Acquired Resistance,SAR);(2)诱导系统性抗性(Induced Systemic Resistance,ISR)。ISR与SAR均可以诱导植物产生持续、广谱抗性,可以诱导植物抵抗多种生物与非生物胁迫。ISR主要通过茉莉酸(JA)和乙烯(ET)信号通路,SAR主要通过水杨酸(SA)信号通路。植物在受到激发子的刺激后,会引发系统抗性表达,从而产生一系列的抗菌物质,如:活性氧,植保素,病程相关蛋白等[2]。在受到激发子刺激部位所产生的信号分子,能够转导至其他未经处理的部位,从而使植物获得系统性的抗病性[3]。许多生物因子与非生物因子都可以作为激发子诱导植物产生抗性,较常用的有:灭活病原物、病原物组分、苯并噻二唑、壳聚糖、水杨酸、茉莉酸等。其成本较低且防治效果显著。因此,利用植物诱导抗性提高植株抗性不仅是一条经济、安全、高效防治植物病害的有效途径,而且是从根本上改变病害防治的基本策略,由病原物与寄主的外系统转变为病原物与寄主的内系统,增强了其预防性和可控性[4]。
1植物诱导抗性简介
植物免疫最早由Ray和 Beauver发现,1982年Kuc将植物诱导抗性定义为植物在受到病原物入侵、昆虫取食等不利外界条件的作用下,产生对外界不利因素的防御反应[5]。根据其作用部位可以分为局部系统抗性(Hypersensitive Response,HR)和系统诱导抗性(Systemic Acquired Resistance,SAR),HR是指植物在外源因子的作用下,只产生于处理部位的抗性,如病原菌侵入寄主后產生的过敏反应。SAR指植物未诱导部位也表现出抗性。1987年,张元恩[6]又将植物诱导抗性定义为植物在接种病原物后或在一定的物理或化学因素的作用下,所产生的局部或系统的抗性,并沿用至今。
2植物诱导抗性的机制
2.1物理机制
木质化作用是木质素类似物在细胞壁中的纤维素微纤丝之间积累,使细胞壁的强度增加,从而强化细胞壁抵御病原物的能力。病菌侵染植物时,常在病部沉积大量的木质素,使病部细胞发生超敏性死亡阻止病菌的进一步扩散[7-8]。富含羟脯氨酸糖蛋白(Hydroxyproline glycoprotein,HRGP)是细胞壁中的多聚体结构屏障,也是木质素积累的位点,另外还能作为凝集素固定病原菌,加大了病原菌突破细胞壁的难度[9]。Katarzyna等[10]研究表明,病原菌的侵染会刺激植物细胞壁中的HRGP含量显著提高。植物识别到病原菌侵染后,会诱导侵入部位积累胼胝质,使细胞壁加厚或形成乳突,减小病原菌穿透细胞壁的可能性[11]。此外,某些病原物在植物体内,能随着维管束流进行长距离运输,植物在感知到这些病原物入侵后,能产生填侵体和胶质体堵塞维管束。
2.2生物化学机制
2.2.1防御酶的活化
植物体内有多种酶构成的防御酶体系,其中包括:超氧化物歧化酶(SOD)、过氧化物酶(POD)、苯丙氨酸解氨酶(PAL)、多酚氧化酶(PPO)、过氧化氢酶(CAT)等[12-13]。在植物受到不利因素的刺激时,这些酶的活性显著升高[14]。其中,PAL是合成木质素、酚类物质等抑菌物质的关键酶,对植物抗病性的形成至关重要[15]。PPO在有氧条件下能够催化酚类转化为醌,其对病原菌具有更高的毒性,能够抑制病原菌菌丝生长,并且是合成木质素的单体[16]。Khodadadi等[17]对JrPPO过表达烟草的研究证明,PPO过表达烟草植株对丁香假单胞细菌有显著的抗性。POD不仅参与木质素的合成,催化木质素单体中的H2O2分解,使其聚合成木质素[18],并且POD可氧化交联细胞壁中木质素前体和结构蛋白,提高细胞壁的强度[19]。植物受到病原物侵染后,体内的过氧化氢、超氧阴离子等自由基增多,导致植物细胞膜上的不饱和脂肪酸过氧化,从而损伤细胞[20]。SOD、CAT的主要功能是清除植物体内自由基,减轻对细胞的危害。
2.2.2病程相关蛋白(Pathogenesis-related Proteins,PR)的表达
当植物受到病原物的入侵时,会诱导一系列病程相关蛋白的表达,以对抗病害。Loon等[21]报道了在经过TMV诱导烟草过敏反应的植株再次面对病原微生物侵染时表现出抗病性。植物通过物理、化学或生物的方法预处理,在处理过的植株叶片中检测到了病程相关蛋白(PR)[22]。根据PR蛋白功能,可将其分成17个家族,其中PR10具有RNase活性,推测其具有抗病毒功能[23]。不同的PR蛋白性质各异,但一般都比较稳定[24]。迄今为止,对于PR蛋白的研究已经取得了巨大成果,Farrakh等[25]的研究表明,β-1,3-葡聚糖酶(PR2)和几丁质酶(PR3、PR4、PR8)能够破坏病原菌的细胞壁,抑制病原菌菌丝的生长。刘健[26]从莜麦种子中分离得到的一种具有抗真菌活性的蛋白Permatin(PR5),对毛壳菌、白腐菌、木菌的生长有明显的抑制作用。
2.2.3植保素
植保素(Phytoalexin,PA)是植物受到病原微生物侵害时自身产生的一类起防卫作用的化合物,包括酚类、黄酮类、乙炔类和萜类,一般分子量较小且具有亲脂性[27]。常位于侵染点,当植保素达到一定浓度时,植物体内的病原菌将停止生长和扩展。赵中秋等[28]的研究表明,植物在受到致病菌、非致病菌、非生物因子、真菌的培养滤液和菌丝提取液诱导后均能产生植保素。
2.2.4活性氧
活性氧(Active Oxygenspecies,AOS)迸发是病原菌侵入植物体后最早发生的防卫反应之一,目前为止,发现了四种活性氧:超氧阴离子(O-2)、过氧化氢(H2O2)、羟自由基(OH2·)、单线态氧(O·)等[29]。当病原菌侵入寄主时,发生了与病原物识别有关的氧化激化,产生了大量的活性氧,一方面,其对病原菌有毒杀作用,提高寄主细胞壁的木质化程度、HRGP的交联、防御酶的活性等。另一方面,能够作为信号分子,调节细胞内病程相关蛋白基因的表达[30]。研究证明,在病原菌与植物的非亲和组合中,活性氧积累到一定程度时会引发寄主过敏反应[24]。
2.3参与植物诱导抗性的信号通路
2.3.1水杨酸信号分子及其转导途径
水杨酸(Salicylic acid,SA)可诱导SAR,是植物诱导抗病性中的重要信号,植物在感病后,体内SA的积累显著提高[31]。Chen等[32]从烟草组织细胞中分离纯化得到一种水溶性SA结合蛋白(SABP),经证实,SABP是一种过氧化氢酶(CAT),SA能够抑制CAT的活性,使细胞内的H2O2积累,诱导脂过氧化,产生的脂过氧化物能诱发PRs的积累和抗病性的产生,且这两个过程是偶联的。NPR1(Nonexpressor of pathogenesis-related gene 1)蛋白在SAR中起重要作用,是水杨酸介导途径的关键基因。SA的积累诱导NPR1核定位,NPR1与转录因子TGA2结合从而提高PR相关基因的表达[33]。其次,蛋白分泌相关基因的表达受到NPR1的调控,从而调节PR蛋白分泌[34]。在SA浓度较低时,NPR1主要定位于胞质,其中的Ser55/59磷酸化、N端的BTB/POZ结构域与C端反式激活域互作抑制了SAR相关基因的表达[35-36]。
2.3.2茉莉酸(Jasmonic acid,JA)/乙烯(Ethylene,ET)信号分子及其转导途径
JA和ET能够诱导ISR,是植物体内抗病信号转导的重要途径,抗菌肽基因pdf1.2是该途径的标志产物[37]。研究证明,抗菌肽pdf1.2的表達和转录能由JA/ET诱导,而SA不能诱导,说明植物体内存在依赖JA和ET 的抗病信号转导途径[38-39] 。COI1是茉莉酸介导途径中的第一个识别与响应基因,起关键的调节作用[40]。由COI1编码的F-box蛋白是SCF复合体(由SKP1、cullin、F-box、Rbx组成)的重要组成部分[41]。SCF复合体与活性茉莉素结合后能够诱导26S蛋白酶降解遏阻蛋白JAZs,从而提高茉莉酸途径相关基因ERF、bHLH、MYB、WRKY等多个基因的表达[40]。
2.3.3NO信号分子及其转导途径
NO广泛存在于植物组织中,能诱导植物细胞的程序性死亡和防卫基因的表达[42]。NO可以与可溶性受体GC的Fe3+结合,提高其活性,激活依赖于cGMP(Cyclic guanosinemonophosphate,cGMP)的蛋白激酶,最终使植物防御基因pal和prⅠ表达增强[43]。NO与SA通路和JA/ET通路具有相互作用。NO是介导真菌诱导子诱发粉葛细胞中葛根素和SA生物合成所必需的上游信号分子[44]。合成JA相关的脂氧合酶LOX的活性受到NO的调节[45]。NO对植物的抗逆性具有两重性,低浓度的NO能够提高植物的抗逆性,而高浓度的NO对植物细胞具有毒害作用[46]。
2.4参与植物诱导抗性通路的防卫基因
防卫基因表达调控是刺激—信使—反应偶联中的最后环节,本身也包含基因激活、调控和产物积累的特定机制,是由特定的功能分区决定的。根据其表达产物可分为:次生物质合成基因(植保素、木质素合成关键酶、乙烯和酚类化合物合成酶等)、prp基因、细胞壁修饰有关基因[HRGP和富含甘氨酸糖蛋白(Glycinerichprotein,GRP)]和蛋白酶抑制剂 (Proteinaseinhibitors,PIs)[47]。研究表明,nprⅠ基因是SA途径的关键基因,位于SA信号途径下游,在 pr基因表达的上游[48],如果该基因过量表达,能够激活植物的多种抗病相关基因,提高抗病性。防卫基因的表达控制与转录因子和启动子元件有关。目前,已经确定的启动子元件有A-bxo、C-box、W-box、G-box、GCC-box、SARE、MRE和DRE;已经确定的转录因子有NPR1、WRKY、MYC、MYB 、ERF、HMG、MADS、ARF和bZIP[37]。NPR1是水杨酸介导途径与茉莉酸介导途径的交叉点,两者的相互作用可以通过调控NPR1来完成。WRKY能够识别NPR1中的W-box,两者相互作用调控NPR1的表达[49]。
3植物诱导抗性的应用
植物诱导抗性除了在生物胁迫上的应用取得了巨大的成果,还广泛应用于非生物胁迫。Wu等[91]的研究表明,亚精胺(Spd)处理的山核桃嫁接幼苗减轻了高盐胁迫下产生的有毒物质和氧化损伤,提高山核桃植株的耐盐性。在干旱条件下,SA能调节大麦叶片的水分状况,叶绿素浓度,提高大麦的抗旱性[92]。水稻在生长过程中,不可避免的砷(As)污染导致作物减产,影响水稻幼苗生长,并且对人类造成了严重的安全隐患,MeJA能够通过调节参与砷吸收、转运、解毒的信号来减轻亚砷酸盐ASШ的毒性[93]。BTH对光合作用有一定的促进作用,研究发现,BTH处理5叶期的甜瓜,能够显著提高其叶片中叶绿素含量、净光合速率和气孔导度,并认为BTH对于叶绿素含量、净光合速率和气孔导度的下降有抑制作用,延长叶片寿命,提高了叶片光合能力[94]。另外,植物诱抗剂:生物炭(Biochar)还可作为有机肥料载体施于土壤,促进农作物的生长[95]。
4植物誘导抗性存在的问题
利用植物诱导抗性是一条提高植物抗逆性的安全、绿色方法。目前,人们在植物诱导抗性方面的研究已取得了不错的成果。但仍存在许多问题:(1)多数仍停留在理论上,能够投入农业生产的商品化诱抗剂种类不多;(2)诱抗持效期一般不长;(3)对于诱抗剂的使用没有专门的标准与施用方法;(4)诱抗机制尚未研究透彻;(5)诱导产生的次生代谢产物可能会毒害植物细胞等。
5展望
当前,环境污染日益严重,植物诱导抗性作为一种绿色的防治措施,可用来减少或代替农药的使用。如何将植物诱导抗性的理论研究成果在大田生产中充分发挥出来,进一步提高其在生产中的防治效果以及加强对植物诱导抗性分子机制的研究是未来几年必须解决的重大问题。随着绿色农业的发展,植物诱导抗性必将成为众多学者研究的焦点。
参考文献:
[1]Vallad G E,Goodman R M.Systemic acquired resistance and induced systemic resistance in conventional agriculture[J].Crop Sicence,2004,44(6):1920-1934.
[2]胡举伟,刘辉,马秀明,等.壳聚糖的抗菌、诱抗和促生作用及在农业中应用综述[J].江苏农业科学,2018,46(15):1-5.
[3]Kumar D,Klessig D F.The search for the salicylic acid receptor led to discovery of the SAR signal receptor[J].Plant Signaling & Behavior,2008,3(9):691-692.
[4]董汉松.植物诱导抗病性原理和研究[M].北京:科学出版社,1995.
[5]Joseph K.Induced immunity to plant disease[J].Bio Sicence,1982,32:854-860.
[6]张元恩.植物诱导抗病性研究进展[J].生物防治通报,1987,3(2):88-90.
[7]Patil S V,Kumudini B S.Seed priming induced blast disease resistance in finger millet plants through phenylpropanoid metabolic pathway[J].Physiological and Molecular Plant Pathology,2019,108:101428-101436.
[8]Tang Y,Zhang Z,Lei Y,et al.Cotton WATs Modulate SA Biosynthesis and Local Lignin Deposition Participating in Plant Resistance Against Verticillium dahliae[J].Frontiers in Plant Science,2019,10:526.
[9]李堆淑.寡聚糖激发子诱导杨树对溃疡病抗性的研究[D].杨凌:西北农林科技大学,2007.
[10]Katarzyna O K,Edmund K,Benham L.Plant cell wall dynamics in compatible and incompatible potato response to infection caused by Potato Virus Y (PVYNTN)[J].International Journal of Molecular Sicences,2018,19(3):862-885.
[11]Naziya B,Murali M,Amruthesh K N.Plant Growth-Promoting Fungi (PGPF) Instigate Plant Growth and Induce Disease Resistance in Capsicum annuum L.upon Infection with Colletotrichum capsici (Syd.) Butler & Bisby[J].Biomolecules,2020,10(1):41-60.
[12]Zu G G,Meng X W,Lin C,et al.Research progress on the underlying mechanisms of plant defense enzymes in response to pest stress[J].Chinese Journal of Applied Ecology,2018,29(12):4248-4258.
[13]Kamal A E A M,Mohaned H M A,Aly A A D,et al.Enhanced Onion Resistance against Stemphylium Leaf Blight Disease,Caused by Stemphylium vesicarium,by Di-potassium Phosphate and Benzothiadiazole Treatments[J].Plant Pathology Journal,2008,24(2):171-177.
[14]Liu H,Jiang W,Bi Y,et al.Postharvest BTH treatment induces resistance of peach (Prunus persica L.cv.Jiubao) fruit to infection by Penicillium expansum and enhances activity of fruit defense mechanisms[J].Postharvest Biology & Technology,2005,35(3):263-269.
[15]Cass C L,Antoine P,Dowd P F,et al.Effects of PHENYLALANINE AMMONIA LYASE (PAL) knockdown on cell wall composition,biomass digestibility,and biotic and abiotic stress responses in Brachypodium[J].Journal of Experimental Botany,2015(14):4317-4335.
[16]王丽,王万兴,索海翠,等.植物中多酚氧化酶基因研究进展[J].分子植物育种,2020(14):1-10.
[17]Khodadadi F,Tohidfar M,Vahdati K,et al.Functional analysis of walnut polyphenol oxidase gene (JrPPO1) in transgenic tobacco plants and PPO induction in response to walnut bacterial blight[J].Plant Pathology,2020,69(4):756-764.
[18]Suo J,Li H,Ban Q,et al.Characteristics of chilling injury-induced lignification in kiwifruit with different sensitivities to low temperatures[J].Postharvest Biology and Technology,2018,135:8-18.
[19]Rafaqat A G.水杨酸和谷胱甘肽调控铬胁迫下油菜不同耐性品种生理生化和基因组变化的作用机理[D].杭州:浙江大学,2015.
[20]Muhammad K.Flavonoids Enhancement and Alleviation of Stress in Brassica Campestris Ssp Chinensis by the Exogenous Inoculation of Piriformospora Indica[D].上海:上海交通大学,2019.
[21]Loon L C V,Pierpoint W S,Boller T,et al.Recommendations for naming plant pathogenesis-related proteins[J].Plant Molecular Biology Reporter,1994,12(3):245-264.
[22]Thygesen P W,Robinson D S P.Polyphenol oxidase in potato.A multigene family that exhibits differential expression patterns[J].Plant Physiology,1995,109(2):525-531.
[23]卢一鹏,李伟,孙楠,等.植物病程相关蛋白PR10结构、功能及表达调控的研究进展[J].湖北农业科学,2016,55(2):273-279,284.
[24]Jannoey P,Channei D,Kotcharek J,et al.Expression Analysis of Genes Related to Rice Resistance Against Brown Planthopper,Nilaparvata lugens[J].Rice Science,2017,24(3):163-172.
[25]Farrakh S,Wang M,Chen X M.Pathogenesis-related protein genes involved in race-specific allstage resistance and non-race specific high-temperature adultplant resistance to Puccinia striiformis f.sp.tritici in wheat[J].Journal of Integrative Agriculture,2018,17(11):2478-2491.
[26]刘健.莜麦病程相关蛋白Permatin抗真菌机理的初步分析[D].太原:山西大学,2015.
[27]Venance C M.Screening,Identification,Characterization and Exploration of Antibiotic Potential of Volatile Compounds Produced by Endophytic Bacillus Species Against Necrotrophic Phytopathogen Sclerotinia Sclerotiorum[D].南京:南京農业大学,2018.
[28]赵中秋,郑海雷,张春光.植物抗病的分子生物学基础[J].生命科学,2001(3):135-138.
[29]Muhammad S H.利用分子生物学方法研究葡萄非生物胁迫(干旱和铜胁迫)耐受机制和细胞自噬响应基因[D].南京:南京农业大学,2018.
[30]Mahunu G K.Effect of Bamboo Leaf Flavonoid and Phytic Acid on the Control Efficacy of Pichia Caribbica Against Penicillium Expansum and Patulin Content in Apple Fruits[D].镇江:江苏大学,2016.
[31]Achuo E A,Audenaert K,Meziane H,et al.The salicylic acid-dependent defence pathway is effective against different pathogens in tomato and tobacco[J].Plant Pathology,2010,53(1):65-72.
[32]Chen Z,Ricigliano J W,Klessig D F.Purification and characterization of a soluble salicylic acid-binding protein from tobacco[J].Proceedings of the National Academy of Sicences,1993,90(20):9533-9537.
[33]吳娇娇.麦类作物BTH诱导抗病的转录调控机制研究[D].保定:河北农业大学,2020.
[34]Wang D,Natalie D.Weaver,Meenu K,et al.Induction of Protein Secretory Pathway Is Required for Systemic Acquired Resistance[J].Science,2005,308(5724):1036-1040.
[35]Wu Y,Zhang D,Chu J Y,et al.The Arabidopsis NPR1 Protein Is a Receptor for the Plant Defense Hormone Salicylic Acid[J].Cell Reports,2012,1(6):639-647.
[36]Saleh A,Withers J,Mohan R,et al.Posttranslational mod- ifications of the master transcriptional regulator NPR1 enable dynamic but tight control of plant immune responses [J].Cell Host Microbe,2015,18(2):169-182.
[37]李波,王军,孙思.植物诱导抗病机制的研究进展[J].中国植保导刊,2013(9):21-26.
[38]赵耀.大豆疫霉效应子Avh94与寄主互作的机制及大豆小RNA抗疫病功能研究[D].南京:南京农业大学,2018.
[39]Macho A P.Subversion of plant cellular functions by bacterial type-III effectors:beyond suppression of immunity[J].New Phytologist,2016,210(1).
[40]陈尘.丹参茉莉素信号通路关键成员COI1基因功能研究[D].西安:陕西师范大学,2017.
[41]Papathoti N K,Saengchan C,Daddam J R,et al.Plant systemic acquired resistance compound salicylic acid as a potent inhibitor against SCF (SKP1-CUL1-F-box protein) mediated complex in Fusarium oxysporum by homology modeling and molecular dynamics simulations[J].Journal of Biomolecular Structure and Dynamics,2020:1-8.
[42]张文利,沈文飚,徐朗莱.一氧化氮在植物体内的信号分子作用[J].生命的化学,2002(1):61-62.
[43]Rajaofera M J N.萎缩芽孢杆菌HAB-5主要抑菌活性成份的分离,鉴定及其抑菌机制研究[D].海口:海南大学,2018.
[44]徐茂军,董菊芳,朱睦元.NO通过水杨酸(SA)或者茉莉酸(JA)信号途径介导真菌诱导子对粉葛悬浮细胞中葛根素生物合成的促进作用[J].中国科学C辑:生命科学,2006,36(1):66-75.
[45]林晓娜.一氧化氮对桃果实脂氧合酶的调控作用[D].济南:山东农业大学,2017.
[46]孙玉莹,邱雪梅,叶芯妤,等.植物中硫化氢和一氧化氮信号的交互作用[J].生物技术通报,2020,36(8):153-161.
[47]Hafiz M K A.可提高本氏烟基础抗性的半夏异源抗性基因的筛选及功能研究[D].武汉:华中农业大学,2019.
[48]Steven H,Spoel,Annemart,et al.NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol[J].The Plant Cell,2003,15(3):760-70.
[49]Tian X.Evidence for an Important Role of WRKY DNA Binding Proteins in the Regulation of NPR1 Gene Expression[J].Plant Cell,2001,13(7):1527-1539.
[50]裴延飞,刘廷利,连梓伊,等.BTH处理对番茄幼苗TYLCV抗性、光合特性及防御酶活性的影响[J].南京农业大学学报,2015,38(6):896-900.
[51]Zabihollah A S,Hamed S S,David V,et al.Benzothiadiazole (BTH)-induced resistance against Botrytis cinerea is inversely correlated with vegetative and generative growth in bean and cucumber,but not in tomato[J].Australasian Plant Pathology,2013,42(4):485-490.
[52]李會佳,朱露露,李帅,等.BABA,BTH对番茄白粉病的抗性研究[J].浙江农业学报,2016,28(4):580-585.
[53]Civolani S,Marchetti E,Chicca M,et al.Probing behaviour of Myzus persicae on tomato plants containing Mi gene or BTH-treated evaluated by electrical penetration graph[J].Bulletin of Insectology,2010,63(2):265-271.
[54]Nombela G,Pascual S,Aviles M,et al.Benzothiadiazole induces local resistance to bemisia tabaci(Hemiptera:Aleyrodidae) in tomato plants[J].Journal of Economic Entomology,2005,98(6):2266-2271.
[55]Li H,Yu Y,Li Z,et al.Benzothiadiazole and B-Aminobutyricacid Induce resistance to ectropis obliqua in tea plants(camellia sinensis(L.)O.Kuntz)[J].Molecules.2018,23(6):1290.
[56]祝传书,赵惠燕.诱导处理小麦对蚜虫生长发育的影响及小麦特异基因的表达[J].应用生态学报,2006(4):4668-4672.
[57]Yi H S,Yang J W,Ryu C M.ISR meets SAR outside:additive action of the endophyte bacillus pumilus INR7 and the chemical inducer,benzothiadiazole,on induced resistance against bacterial spot in field-grown pepper[J].Frontiers in Plant Sicence,2013,4:122
[58]Trejo-Saavedra D L,Garcia-Neria M A,Rivera-Bustamante R F.Benzothiadiazole(BTH) induces resistance to pepper golden mosaic virus(PepGMV) in pepper(Capsicum annuum L)[J].Biological Research,2013,46(4):333-40.
[59]杨军.化学诱导因子BTH诱导怀菊花对黑斑病抗性的研究[D].新乡:河南师范大学,2017.
[60]Mostafanezhad H,Sahebani N,Nourinejhad Z S.Control of root-knot nematode(meloidogyne javanica) with combination of Arthrobotrys oligospora and salicylic acid and study of some plant defense responses[J].Biocontrol Sicence & Technology,2014,24(2):203-215.
[61]张广旭.钙和水杨酸在增强番茄抗灰霉病中的互作关系研究[D].沈阳:沈阳农业大学,2020.
[62]Li Y Z,Muhammad T,Wang Y,et al.Salicylic acid collaborates with gene silencing to tomato defense against tomato yellow leaf curl virus(TYLCV)[J].Pakistan Journal of Botany,2018,50:2041-2054.
[63]Henschel J M,Resende J,Zeist A R,et al.2020-Salicylic acid treatments induce resistance to tuta absoluta and tetranychus urticae on tomato plants[J].Horticultura Brasileira,2020,38(4):288-294.
[64]Jiang G,Yin D,Shi Y,et al.OsNPR3.3-dependent salicylic acid signaling is involved in recessive gene xa5-mediated immunity to rice bacterial blight[J].Scientific Reports,2020,10(1):6313.
[65]Najmeh A,Mohammad J,Soleimani.Possible effects of pathogen inoculation and salicylic acid pre-treatment on the biochemical changes and proline accumulation in green bean[J].Archives of Phytopathology & Plant Protection,2014,48(3):212-222.
[66]Yuan-Peng D U,Xing-Long J I,Jiang E S,et al.Phylloxera resistance induced by salicylic and jasmonic acids in kyoho grapevine[J].Acta Entomologica Sinica,2014:443-448.
[67]Jin M,Han B Y.Effects of treating tea plants with exogenous methyl salicylate(MeSA)on the main pests and their natural enemies in tea garden[J].Chinese Journal of Ecology,2011,30(3):564-568.
[68]Despoina B,Ioannis T,Nicholas S,et al.Bacillus amyloliquefaciens strain MBI600 induces salicylic acid dependent resistance in tomato plants against tomato spotted wilt virus and potato virus Y[J].Sicentific Reports,2018,8(1):10320-10331.
[69]于萌萌,申琳,生吉萍.茉莉酸甲酯诱导采后番茄果实抗病的作用[J].食品科学,2012,33(9):11-15.
[70]Li X Q,Long Y H,Yin X H,et al.Mechanism of action of methyl jasmonate against kiwifruit soft rot and Its effect on fruit quality[J].Food Sicence,2019,40(15):239-248.
[71]Xiang M L,Chen M,Fu Y Q,et al.Relationship between efects of methyl jasmonate(MeJA) on induced resistance of pepper seedlings against bacterial wilt and oxygen metabolism[A].International Society for Horticultural Science、Chinese Society for Horticultural Science、Korean Society for Horticultural Science、Japanese Society for Horticultural Science.The Second Asian Horticultural Congress Program&Abstracts[C].中国园艺学会,2016:2.
[72]徐涛,周强,陈威,等.茉莉酸信号传导途径参与了水稻的虫害诱导防御过程[J].科学通报,2003(13):1442-1446.
[73]El-Wakeil N E,Volkmar C,Sallam A A,Jasmonic acid induces resistance to economically important insect pests in winter wheat[J].Pest Management Science,2010,66(5):549-554.
[74]孙翠红,徐翠莲,尤方芳,等.壳寡糖席夫碱纳米银溶液对烟草花叶病防治及烟叶色素的影响[J].中国烟草科学,2016,37(1):61-66.
[75]陈维维.四种植物免疫剂诱导烟草抗病虫害效应的研究[D].合肥:安徽农业大学,2019.
[76]Azami-Sardooei Z,Hamed S S.Benzothiadiazole(BTH)-induced resistance against botrytis cinerea is inversely correlated with vegetative and generative growth in bean and cucumber,but not in tomato[J].Australasian Plant Pathology,2013,42(4):485-490.
[77]Li S J,Zhu T H.Biochemical response and induced resistance against anthracnose(Colletotrichum camelliae) of camellia(Camellia pitardii) by chitosan oligosaccharide application[J].Forest Pathology,2013,43(1):67-76.
[78]安曉霞.诱抗剂对苎麻抗夜蛾能力及产量的影响[D].北京:中国农业科学院,2014.
[79]许珍.壳寡糖新型生物农药的研制及应用研究[D].武汉:华中农业大学,2012.
[80]Sun G Z,Yang Q C,Zhang A C,et al.Synergistic effect of the combined bio-fungicides epsilon-poly-L-lysine and chitooligosaccharide in controlling grey mould(Botrytis cinerea) in tomatoes [J].International Journal of Food Microbiology,2018,276,46-53.
[81]杜昱光,白雪芳.壳寡糖等新型寡糖生防农药的活性研究及其应用[C].中国化学会甲壳素化学与应用研讨会.中国化学会,2001.
[82]李小玲,刘长命,刘炼红,等.外源亚精胺对甜瓜幼苗白粉病抗性的影响[J].西北植物学报,2015(9):1800-1807.
[83]戴秀华.解淀粉芽胞杆菌Lx-11防治水稻细菌性条斑病的促生、控病机理研究[D].南京:南京农业大学,2015.
[84]王楠,张志春,王满囷,等.亚精胺对小菜蛾幼虫生长及保护酶活力的影响[J].昆虫知识,2009,46(3):420-423.
[85]牛贞福,徐金强,田召玲,等.诱抗剂对番茄植物学性状和灰霉病抗性的影响[J].江苏农业科学,2017,45(2):103-105.
[86]王方.枣缩果病抗病性诱导及致病机理初探[D].杨凌:西北农林科技大学,2014.
[87]尤升波,游银伟.草酸青霉菌果胶酶诱导烟草抗TMV的研究[J].山东农业科学,2014(5):102-106.
[88]王胤,郑建秋,李云龙,等.植物免疫诱抗剂氨基寡糖素在北京地区的应用效果与前景分析[J].安徽农学通报,2018,24(12):41-43.
[89]袁新琳.5%氨基寡糖素诱导棉花抗病虫作用的研究[D].阿拉尔:塔里木大学,2016.
[90]Li H G,Zhong Q,Zhang S,et al.Field control effect of 8 kinds of medicaments on tobacco mosaic virus disease[J].Acta Agriculturae Jiangxi,2012,24(4):100-101,104.
[91]Wu Z,Wang J,Yan D,et al.Exogenous spermidine ipmroves salt tolerance of pecan-grafted seedlings via activating antioxidant system and inhibiting the enhancement of Na+/K+ ratio[J].Acta Physiologiae Plantarum,2020,42(5):83.
[92]Abdelaal K A A,Attia K A,Alamery S F,et al.Exogenous application of proline and salicylic acid can mitigate the injurious impacts of drought stress on barley plants associated with physiological and histological characters[J].Sustainability,2020,12(5):1736.
[93]Dong T X,Cai K Z,Zhang J X,et al.The physiological roles of methyl jasmonate(MeJA) in drought resistance of rice seedlings[J].Ecology and Environment,2007(4):1261-1265.
[94]Li X E,Chen N L,Wang C L,et al.Effects of BTH and SA treatment and sphaerotheca fuliginea on photosynthetic characteristics of muskmelon[J].Acta Botanica Boreali-Occidentalia Sinica,2007,27(8):1643-1649.
[95]史登林,王小利,段建军,等.生物炭对农业土壤及作物生长影响的研究进展[J].山地农业生物学报,2020,39(1):50-57.
Research Progress on Induced Resistance in Plants
Zheng Jiarui1,2,Li Yunzhou1*
(1.College of Agriculture,Guizhou University,Guiyang,Guizhou 550025,China;2.Department of Plant Pathology,College of Plant Protection,China Agricultural University,Beijing 100193,China)
Abstract:Plant induced resistance refers to the ability of plants to resist various adverse living environments,including resistance to different diseases and pests,various adverse environmental factors,and various physical and chemical stimuli.This resistance is a heritable trait formed in the process of plant evolution.This review summarized main plant resistance inducers and mechanisms of induced resistance in plant,which could provide reference for making full use of plant induced resistance to improve plant resistance,reducing the use of pesticides,and improving soil.
Keywords:induced resistance;resistance inducer;mechanism;research progress
收稿日期:2020-12-18;
修回日期:2021-09-24
基金项目:国家自然科学基金项目(32060679);贵州大学培育项目(贵大培育[2019]52);贵州省科技计划项目(黔科合平台人才[2017]5788-28);贵州大学人才引进科研项目(贵大人基合字[2017]50);贵州大学实验室开放项目(SYSKF2019-55)
通讯作者:李云洲(1986—),男,博士,副教授,主要從事蔬菜抗病抗逆育种、蔬菜病毒检测与防御、植物病理学研究,E-mail:liyunzhou2007@126.com.
1026501705260