杨 燕,李国学,罗一鸣,杨 佳,袁 京
双氰胺、氢醌与含磷添加剂联合使用对堆肥温室气体排放的影响
杨 燕,李国学,罗一鸣,杨 佳,袁 京*
(中国农业大学资源与环境学院,农田土壤污染防控与修复北京市重点实验室,北京 100193)
为实现堆肥过程N2O、CH4和NH3的同步减排,在双氰胺和氢醌的基础上进一步研究磷石膏和过磷酸钙添加对猪粪堆肥温室气体和NH3排放的影响.以猪粪和玉米秸秆为堆肥原料,设置3个堆肥处理:只添加双氰胺和氢醌(HD)、添加双氰胺、氢醌和磷石膏(HD+P)和添加双氰胺、氢醌和过磷酸钙(HD+S),在60L的发酵罐中进行40d的堆肥实验.结果表明:在双氰胺和氢醌的基础上添加磷石膏和过磷酸钙可提高堆肥腐熟度,降低碳(7.58%~11.33%)和氮(25.03%~33.42%)的损失.3种添加剂联用可同步减少15.21%~16.91% NH3和23.75%~38.30% CH4排放,主要是由于含磷添加剂较低的pH值和磷酸成分,可以固定铵态氮,减少NH3排放,同时硫酸离子会抑制产甲烷菌活性进而降低CH4排放.在双氰胺和氢醌降低N2O排放基础上,添加含磷添加剂会增加0.14%~20.57% N2O排放,总温室效应降低7.60%~24.30%,其中双氰胺、氢醌和磷石膏处理总温室气体减排效果最佳.
堆肥;双氰胺;氢醌;含磷添加剂;温室气体;氨气
随着我国畜牧业的发展,畜禽粪污问题愈发凸显.据统计,截止2020年畜禽粪污产量达到44.28 亿t[1],其氮、磷、钾养分总贮存量约为5323 万t,占我国目前化肥施用总量的89%[2].好氧堆肥是实现畜禽粪便无害化、减量化和资源化的绿色方法,可有效地将粪便转化为有机肥料[3-4].然而,堆肥过程中会产生大量氨气(NH3)、甲烷(CH4)和氧化亚氮(N2O)等污染气体,不仅会引起营养元素的损失,而且会造成大气污染.N2O和CH4均是对温室效应贡献较大的温室气体,其100a温室效应分别是CO2的298倍和25倍[5].堆肥过程中,N2O的产生量约占堆肥初始总氮的0.1%~4.2%[6],CH4的产生量约占堆肥总碳的0.8%~6%[7-8].此外,氨挥发是堆肥过程氮损失的主要途径,堆肥过程中的氨挥发约占堆肥总氮的20%~60%[9-10],在一定程度上造成二次污染.堆肥过程中温室气体减排和氮素损失控制技术受到越来越多的关注.
众多学者表明,化学添加剂是减少氮素损失和控制温室气体排放的有效途径.Weiske等[11]实验表明,硝化抑制剂双氰胺(二氰二氨,C2H4N4,缩写DCD)的施用对土壤N2O排放的抑制效应达70%,3a平均使农田土壤的N2O排放下降26%,使草地土壤N2O排放下降40%以上.Jiang等[12]猪粪堆肥表明,在不同时期加入DCD可减少76.1%~77.6% N2O的排放.姜继韶等[13]在污泥堆肥中添加DCD,结果表明DCD可以提高堆肥产品的微生物多样性.氢醌(对苯二酚,C6H6O2)被认为是一种经济有效的脲酶抑制剂[14].有研究认为,硝化抑制剂和脲酶抑制剂可被联合用于降低土壤系统中氨气和温室气体排放.Boeckx等[15]研究表明,联合使用双氰胺和氢醌可使土壤CH4和N2O的排放率分别降低58%和62%.Xu等[16]在水稻田土壤中联合施用双氰胺和氢醌后,CH4和N2O分别降低51%和47%.双氰胺和氢醌在农田中被广泛使用,不仅可以减少污染气体的排放,还可以提高作物对营养元素的吸收,从而提高农作物产量[17-18].硝化抑制剂和脲酶抑制剂联用在堆肥系统中尚未广泛应用,其主要减少N2O的排放,对NH3减排作用不显著.
磷酸盐作为添加剂不仅可被用于减少堆肥NH3挥发,还可提高堆肥产品中的养分元素含量.磷石膏(PG)和过磷酸钙(SP)作为氮素损失控制材料还可在一定程度上降低猪粪堆肥过程中的CH4排放.吴娟[19]在猪粪堆肥中加入过磷酸钙可增加堆肥产品中30%总碳和40%总氮含量,并显著降低CH4、CO2和NH3的排放.罗一鸣等[20]在猪粪堆肥中添加3.3%~6.6%的过磷酸钙处理相较于对照减少30%总温室气体排放量.林小凤等[21]研究发现过磷酸钙作为堆肥氮素固定剂,最高氮素固定率达85%.Hao等[22]在牛粪条跺式堆肥中加入磷石膏,发现可起到减少堆肥CH4排放的效果.Gabhane等[23]的研究认为,磷石膏减少堆肥氮素损失的效果可能源自其对堆肥物料pH值的调节作用.含磷添加剂对NH3和CH4减排效果显著,但对N2O减排作用仍不明晰.
现有研究表明,硝化抑制剂、脲酶抑制剂和含磷添加剂在固氮减排上有较好的效果,但单一使用某种抑制剂效果不是很理想,如硝化抑制剂有增加氨挥发的可能[24].本文在现有研究基础上,以双氰胺和氢醌为主要添加材料,在控制N2O产生基础上,进一步探究联合添加磷石膏和过磷酸钙对猪粪堆肥CH4和NH3排放的影响,实现堆肥过程N2O、CH4和NH3的同步减排,研究结果旨在为畜禽粪便堆肥过程温室气体减排和氮素固定提供理论参考.
实验以新鲜猪粪和玉米秸秆为原料,基本性状见表1.猪粪取自北京市海淀区苏家坨养猪场;玉米秸秆取自北京市大兴区,经自然风干后粉碎成长度小于5cm的小段.双氰胺和氢醌为分析纯化学试剂,含磷添加材料包括过磷酸钙和磷石膏,均购于肥料市场.过磷酸钙产地为河北涿鹿,P2O5质量分数³18%;磷石膏产地为湖北宜昌,P2O5质量分数£0.8, CaSO4·2H2O质量分数³75%.
表1 堆肥原料基本理化性质
注:a基于湿基;b基于干基.
猪粪和玉米秸秆按鲜重6:1混合,双氰胺和氢醌添加比例分别为0.1%和0.03%(以干重计).实验共设3个处理,分别为只添加双氰胺和氢醌(HD)、在双氰胺和氢醌的基础上添加磷石膏(HD+P)和添加过磷酸钙(HD+S),各处理添加材料比例与添加时间节点见表2.实验在60L发酵罐中进行,采用机械强制间歇式通风,通风速率设定为0.36L/(kgDM·min),每通风20min暂停40min.本次实验共堆置40d,初始含水率为67%,除堆肥起始和结束日外,分别在第6, 12, 19, 26和33d进行人工翻堆、称重和采集固体样本.由于双氰胺高温易分解,第19d翻堆采样后再进行添加,再次翻匀后装回发酵装置中.
表2 实验设计(%)
注:基于干基; -表示未添加.
堆肥温度由温度传感器记录,二氧化碳(CO2)采用泵吸式气体检测仪(英国Geotech, BM2K-EOOO)直接读数测定.将新鲜样品在105℃下烘干至恒重用于测定其含水率.将鲜样与去离子水以1:10的质量体积比混合,在170r/min下振荡30min,通过0.45μm滤膜过滤并收集上清液,用于测定pH值、电导率(EC)、种子发芽指数(GI)和4/6(465和665nm处吸光度比值).pH值和EC用MP521型pH计和电导仪测定,4/6使用紫外光分光光度计在波长为465和665nm处测定,GI测定选用小白菜种子,用上述水浸提液5mL于垫有滤纸的培养皿中,置于(20±1)℃培养箱中培养48h后测定发芽率和根长,并根据Ren等[25]公式计算.
NH4+-N(Ammonium)和NO3--N(Nitrate)测定方法是将鲜样与2mol/L KCl溶液按照1:10质量体积比混合,振荡30min,静置过滤取上清液经稀释后上流动分析仪测定(Auto Analyzer 3,Seal,德国).总有机碳(TOC)参照农业行业标准《NY525-2021 有机肥料》[26]中的标准方法测定;总氮(TN)采用元素分析仪测定(Elementar Analysensysteme, Hanau,德国).碳氮比(C/N)使用总有机碳含量除以总氮含量计算而得.
NH3测定采用吸收瓶法,即用质量分数2%的硼酸直接吸收,标准浓度的稀硫酸滴定.CH4和N2O气体样品使用带三相阀门的注射器采集,用SP-3420A型气相色谱(北京北分瑞利)测定.堆肥过程中的总碳、氮损失比例、NH3和N2O排放占总氮损失比例及CH4排放占总碳损失比例计算均参照陈是吏等[27]公式计算.总温室气体是将堆肥产生的N2O和CH4根据政府间气候变化专门委员会2007年报告,按照单位质量CH4和N2O的100a温室效应分别是CO2的25和298倍进行折算.
文章中图用Origin 2018绘制,最小显著差异(LSD)用SAS 8.2(SAS Institute, Cary, NC, USA)分析.
堆肥过程中温度变化如图1a所示,环境温度在20.19~29.12℃范围之间.各处理堆肥温度变化趋势一致,堆肥第2d各处理温度达到50℃以上(< 0.001).HD+S处理升温略有延迟,由于过磷酸钙的弱酸性会降低堆肥初始pH值,导致嗜热微生物的活性受到抑制[27].HD、HD+P和HD+S处理均在堆肥1周左右达到最高温,分别为72.4, 73.0和73.4℃,高温期均持续20d以上,满足《粪便无害化卫生要求(GB7959-2012)》[28]中堆肥温度应在50~55℃持续5~7d以上的要求.第26d翻堆后,部分处理温度再次出现短暂上升,尤其是HD+S处理,可能是因为HD+S处理中剩余的可利用碳和氮高于其他2个处理,其CO2浓度在腐熟期显著高于其他2个处理(<0.001),与Luo等[29]猪粪堆肥中结果一致;HD+P处理翻堆后温度逐渐下降.堆肥过程中堆体温度的上升常伴随着CO2浓度的上升,各处理堆肥温度和CO2浓度呈显著正相关(=0.646~0.904,<0.001).pH值不仅是影响堆肥过程中的主要环境因素,也是堆肥腐熟度的表征指标[30].pH值整体呈现上升趋势(图1c),在26d后逐渐趋于稳定.过磷酸钙的添加会降低堆肥初始pH值,其余处理在堆肥第6d pH值均出现短暂上升,至第12d随着小分子有机酸累积, pH值下降,在Li等[31]研究中也发现了相同的现象.在堆肥结束时,各处理的pH值均达到腐熟范围(7.90~ 8.30)(<0.05).
EC是评价堆肥对作物毒害作用的重要指标,可反应堆体中可溶性盐的含量.堆肥的可溶性盐含量较高会对种子发芽和作物的生长繁殖产生抑制作用[32].随着堆肥的过程,EC值整体呈现下降趋势(图1d),HD+P和HD+S处理的EC值显著高于对照组(<0.05),这是由于含磷添加剂会增加堆肥中的可溶性Ca2+和SO42-离子.第26d,HD+S处理的EC值上升,这是因为微生物进一步分解堆体中的有机碳和有机氮,产生大量可溶性盐导致EC上升.堆肥结束时,各处理EC值均£4mS/cm,不会对作物造成盐害[33]. GI值可表征植物毒性特征,评估堆肥产品腐熟度.所有处理GI值在整体呈现上升趋势(图1e),各处理差异不显著(>0.1).堆肥结束时, HD、HD+P和HD+S处理GI值分别为83.12%、113.12%和120.00%,所有处理GI值达到2021年发布的农业行业标准《NY525-2021 有机肥料》[26]对GI的要求(GI> 70%).4/6可以表征腐殖酸的相对分子质量大小或芳构化程度,通常会随着腐殖酸分子量的增加或芳构化程度的增加而降低.堆肥初期,所有处理4/6上升表明有机物的代谢较为剧烈,产生了分子量较小的或芳构化程度较低的富里酸,随着堆肥进入腐熟期,产生了较大分子量或芳构化程度较高的胡敏酸,4/6随即减小,堆肥产品趋于腐熟.HD+S处理4/6低于HD处理,表明添加过磷酸钙可以提高堆肥腐殖化程度(<0.05),这也是HD+S处理GI值较高的原因.
图1 堆肥过程理化性质变化
随着堆肥的过程,含水率整体呈现上升趋势(图1g),这是由于微生物在分解大分子物质时会产生水,且堆肥通风为间歇通风,分解过程产生的水量高于出口空气中的水量,导致含水率上升,与Jiang等[34]猪粪间歇通风堆肥中结果一致.HD+S处理初期升温有所延迟,且堆肥后期温度有所回升,导致其含水率在后期急速上升.堆肥结束时,各处理含水率范围为70.61%~73.76%(<0.05).堆肥物料碳氮比(C/N)被认为是影响堆体内有机物微生物降解速率的重要指标[35].随着堆肥的过程,各处理C/N呈现先略微上升后下降的趋势,各处理差异不显著(>0.1).堆肥初期,各处理TN含量下降,导致各处理C/N略微上升;堆肥高温期,堆体内物质转换速率较快,各处理C/N下降幅度较大;堆肥腐熟期,微生物活性受到低C/N等因素限制,各处理C/N趋于稳定.堆肥结束时,各处理C/N分别为10.50, 11.44和11.90.
各处理的铵态氮呈现相同的变化趋势(图2a),随着堆肥时间呈现先上升后逐渐下降趋势,HD+P和HD+S处理的NH4+-N含量显著高于对照组(<0.05).含磷添加剂的添加可促进对NH4+-N的固定,一方面源于含磷添加剂降低堆体pH值,另一方面是鸟粪石结晶的形成,这也是减少氨气排放和氮素损失的原因[20].各处理NO3--N浓度变化如图2b所示,各处理整体上呈现下降趋势,差异不显著.第19d翻堆后加入双氰胺,硝化抑制剂抑制硝化细菌的活性从而减少堆肥过程中硝化作用的发生,使得堆肥NO3--N浓度进一步下降且NH4+-N保持在较高水平.堆肥结束时,HD+S处理的NO3--N浓度最低,表明过磷酸钙会加强双氰胺的硝化抑制作用.
堆肥初期各处理TN含量为20.33~21.98g/kg,到堆肥结束时增加至24.53~29.74g/kg(图2c).堆肥初期由于氨损失引起各处理TN浓度下降,随着有机碳的快速降解,TN相对含量逐渐升高,在Li等[36]的研究中也展现出相同的规律.堆肥结束时各处理TOC含量为280.62~312.26g/kg,显著低于堆肥初期345.50~379.68g/kg(图2d)(<0.001),其中微生物呼吸为碳损失的主要途径[37],呼吸作用造成的CO2-C损失占TOC总损失的60.67%~85.82%(表3).
堆肥过程中NH3的排放速率和累积排放量如图3a~b所示.NH3的排放主要集中在高温期,随着有机质的降解,微生物产生大量NH3.在整个堆肥过程中,HD处理的NH3排放速率最大峰值在第7d,为0.62g/(kg·d);HD+P和HD+S处理的NH3排放速率最大峰值均延迟至第8d,分别为0.37,0.47g/(kg·d).可见,在双氰胺和氢醌的基础上添加磷石膏和过磷酸钙可进一步控制NH3的排放.经过40d的堆肥, HD、HD+P和HD+S处理的NH3累积排放分别为5.18, 4.40,4.30g/kg,各处理呈现显著差异(<0.001).HD+P和HD+S处理相较于HD处理NH3排放整体减少15.21%和16.91%,与张邦喜等[38]的研究结果一致,其减排原因为过磷酸钙可以使堆肥中的铵转换为较稳定的磷酸铵或硫酸铵[39],且NH4+能交换Ca2+等阳离子,减少氮的损失.
N2O的产生主要来源于堆肥中的硝化和反硝化反应,图3c~d为N2O的排放速率和累积排放量变化.N2O的排放峰值主要集中在堆肥初期,此现象与赵旭峰[40]的研究相同,HD、HD+P和HD+S处理的排放速率峰值分别为0.052, 0.039和0.075g/(kg·d).在堆肥高温期,高温会抑制硝化细菌的活性[41],使N2O排放减少,但在翻堆后个别处理出现了排放小峰值,这是由于翻堆改变堆体中的氧气分布,NO--N通过不完全反硝化反应转换为N2O.在第19d加入了硝化抑制剂-双氰胺,使得堆肥腐熟期N2O的排放量显著低于堆肥高温期,这与罗一鸣等[20]的猪粪堆肥相反,其排放峰值主要出现在腐熟期,表明加入双氰胺后抑制了腐熟期N2O排放峰值的反弹.堆肥结束后,HD、HD+P和HD+S处理的N2O累积排放分别为0.24, 0.24, 0.29g/kg,而在Luo等[42]相同原料和规模的堆肥实验中,不添加添加剂的对照组N2O累积排放达到0.6g/kg,表明双氰胺能显著减少N2O的排放.在双氰胺和氢醌的基础上添加磷石膏和过磷酸钙会增加N2O的排放,增加比例分别为0.14%和20.57%,其中HD+S处理N2O的排放量显著增加,这是由于较低的pH值会抑制反硝化作用,通过抑制N2O还原酶的活性使得反硝化细菌的还原能力降低,增加N2O的排放[43],并且过高的NH4+-N会抑制亚硝酸盐的氧化,使得亚硝酸根积累,进一步促进N2O排放.
堆肥过程中CH4排放主要是由于堆体内氧气扩散距离有限,局部厌氧使得产甲烷菌利用堆体中的有机物,从而导致CH4产生[7].堆肥过程中CH4的排放速率和累积排放量如图3e~f所示.CH4的排放峰值主要集中在高温期,这是由于微生物分解大量有机质,氧气消耗率达到35.12%~91.22%,形成了局部缺氧区.HD、HD+P和HD+S处理CH4的排放速率峰值分别为0.59, 0.42和0.50g/(kg·d),呈现显著差异(<0.001).堆肥结束后,HD、HD+P和HD+S处理的CH4累积排放分别为5.79, 3.57, 4.41g/kg. HD+P和HD+S处理相较于HD处理CH4排放整体减少38.30%和23.75%,这是由于产甲烷菌活性较易受到氧化还原电位、无机盐离子浓度等因素的影响.Hao等[22]利用磷石膏作为牛粪堆肥添加材料的实验发现,磷石膏显著降低CH4排放,并认为与SO42-离子对产甲烷细菌的抑制作用有关.除HD+S处理,CH4的日排放量与温度和CO2浓度均呈显著正相关,其相关性分别为0.549~0.651(< 0.001)和0.434~0.528 (<0.005).可见,在双氰胺和氢醌的基础上添加磷石膏和过磷酸钙可进一步控制CH4的排放.
堆肥过程中没有产生渗滤液,各元素主要以气体形式损失,表3为3个处理碳、氮平衡及温室效应分析.各处理碳损失占初始总有机碳的48.40%~ 54.59%,主要以CO2形式损失(30.61%~41.54%),以CH4形式损失的碳较少(0.93%~1.50%),HD+P和HD+S处理相较于HD处理的总碳损失分别减少7.58%和11.33%.氮损失占初始总氮的22.32%~ 33.52%,主要以NH3形式损失(19.57%~23.55%),以N2O形式损失的氮较少(1.08%~1.30%),相较于Luo等[42]实验中对照组40.4%的氮损失(29.1%的NH3损失和3.1%的N2O形式损失),双氰胺、氢醌和含磷添加剂的添加显著减少堆肥过程中的氮损失,尤其是以N2O形式损失的氮素.在双氰胺和氢醌的基础上添加含磷添加剂,虽会略微增加N2O的排放,但可显著减少NH3的排放,HD+P和HD+S处理氮损失分别减少25.03%和33.42%,这与Zvomuya等[44]的研究结果一致.
表3 碳、氮平衡及温室效应分析
注:碳、氮素平衡分别为碳、氮损失占初始总有机碳、总氮的百分比;温室气体排放当量值以物料的干基计算;N2O和CH4对温室效应的贡献率依次分别为CO2的298和25倍.
堆肥过程中的温室气体主要包括CO2、CH4和N2O.根据政府气候变化专门委员会(IPCC)关于农业温室气体排放的指南,堆肥过程中的CO2源于生物过程,不作为全球变暖的贡献因子,但CH4和N2O都是对温室效应贡献较大的温室气体.HD+P和HD+S处理分别减少38.31%和23.75% CH4产生的温室效应,分别增加0.16%和20.57% N2O增温潜势, HD+P和HD+S处理的总温室效应分别减少24.30%和7.60%,表明在双氰胺和氢醌的基础上添加磷石膏和过磷酸钙有利于控制堆肥过程中温室气体的排放.Jiang等[34]研究了不同的工艺参数下温室气体排放,发现猪粪堆肥过程总温室气体排放为289~720kg CO2-eq/t,显著高于本研究,说明双氰胺、氢醌进一步联合含磷添加剂对总温室气体排放有显著减排作用.
3.1 堆肥后各处理产品均达到无害化和腐熟度要求,HD、HD+P和HD+S处理GI值分别为83.12%、113.12%和120.00%,在双氰胺和氢醌的基础上添加磷石膏和过磷酸钙提高堆肥腐熟度和腐殖化进程.
3.2 在双氰胺和氢醌的基础上添加含磷添加剂可降低7.58%~11.33%碳素损失和25.03%~33.42%氮素损失.
3.3 氢醌和双氰胺分别通过减少初期有机氮的矿化和抑制腐熟期硝化作用减少N2O的排放.在双氰胺和氢醌降低N2O排放基础上,联合使用含磷添加剂可进一步减少15.21%~16.91% NH3排放和23.75%~38.30% CH4排放,添加含磷添加剂会增加0.14%~20.57% N2O排放,但总温室效应降低7.60%~ 24.30%,其中磷石膏处理总温室气体减排效果最佳.
[1] 徐长春.畜禽粪便的危害及无公害处理的现状 [J]. 新农业, 2020, (13):56.
Xu C C. The harm of livestock manure and the present situation of pollution-free treatment [J]. New Agricultural, 2020,(13):56.
[2] 黄绍文,唐继伟,李春花.我国商品有机肥和有机废弃物中重金属、养分和盐分状况 [J]. 植物营养与肥料学报, 2017,23(1):162-173.
Huang S W, Tang J W, Li C H. Status of heavy metals, nutrients, and total salts in commercial organic fertilizers and organic wastes in China [J]. Journal of Plant Nutrition and Fertilizer, 2017,23(1):162-173.
[3] Awasthi M K, Duan Y, Awasthi S K, et al. Effect of biochar and bacterial inoculum additions on cow dung composting [J]. Bioresource Technology, 2020,297:122407.
[4] Wan L B, Wang X T, Cong C, et al. Effect of inoculating microorganisms in chicken manure composting with maize straw [J]. Bioresource Technology, 2020,301:122730.
[5] IPCC Fourth Assessment Report: Climate change 2007: Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change [R]. Cambridge University Press, 2007:212-213.
[6] Cao Y, Wang X, Bai Z, et al. Mitigation of ammonia, nitrous oxide and methane emissions during solid waste composting with different additives: A meta-analysis [J]. Journal of Cleaner Production, 2019, 235:626-635.
[7] Wolter M, Prayitno S, Schuchardt F. Greenhouse gas emission during storage of pig manure on a pilot scale [J]. Bioresource Technology, 2004,95(3):235-244.
[8] Hao X Y, Chang C, Larney F J. Carbon, nitrogen balances and greenhouse gas emission during cattle feedlot manure composting [J]. Journal of Environmental Quality, 2004,33(1):37-44.
[9] Pagans E, Barrena R, Font X, et al. Ammonia emissions from the composting of different organic wastes. Dependency on process temperature [J]. Chemosphere, 2006,62(9):1534-1542.
[10] Petersen S O, Sommer S G. Ammonia and nitrous oxide interactions: Roles of manure organic matter management [J]. Animal Feed Science and Technology, 2011,166-67:503-513.
[11] Weiske A, Benckiser G, Ottow J C G. Effect of the new nitrification inhibitor DMPP in comparison to DCD on nitrous oxide (N2O) emissions and methane (CH4) oxidation during 3years of repeated applications in field experiments [J]. Nutrient Cycling in Agroecosystems, 2001,60(1-3):57-64.
[12] Jiang T, Ma X, Tang Q, et al. Combined use of nitrification inhibitor and struvite crystallization to reduce the NH3and N2O emissions during composting [J]. Bioresource Technology, 2016,217:210-218.
[13] 姜继韶,雷建森,王 洋,等.双氰胺对污泥堆肥过程中酶活性和细菌群落演变的影响 [J]. 环境科学学报, 2021,41(4):1478-1486.
Jiang J S, Lei J S, Wang Y, et al. Effects of dicyandiamide on enzyme activity and the structure of bacterial community during sewage sludge composting [J]. Acta Scientiae Circumstantiae, 2021,41(4):1478- 1486.
[14] 周礼恺,赵晓燕,李荣华,等.脲酶抑制剂氢醌对土壤尿素氮转化的影响 [J]. 应用生态学报, 1992,(1):36-41.
Zhou L K, Zhao X Y, Li R H, et al. Effect of urease inhibitor hydroquinone on soil urea nitrogen transformation [J]. Chinese Journal of Applied Ecology, 1992,(1):36-41.
[15] Boeckx P, Xu X, Van Cleemput O. Mitigation of N2O and CH4emission from rice and wheat cropping systems using dicyandiamide and hydroquinone [J]. Nutrient Cycling in Agroecosystems, 2005, 72(1):41-49.
[16] Xu X K, Boeckx P, Van Cleemput O, et al. Urease and nitrification inhibitors to reduce emissions of CH4and N2O in rice production [J]. Nutrient Cycling in Agroecosystems, 2002,64(1/2):203-211.
[17] 石 柱,张 丹,杨奇志,等.不同氮肥增效剂对水稻产量和养分利用率的影响 [J]. 作物研究, 2016,30(1):14-17.
Shi Z, Zhang D, Yang Q Z, et al. Effects of different nitrogen fertilizer synergists on yield and nutrients use efficiency in rice [J]. Crop Research, 2016,30(1):14-17.
[18] 串丽敏,赵同科,安志装,等.添加硝化抑制剂双氰胺对油菜生长及品质的影响 [J]. 农业环境科学学报, 2010,29(5):870-874.
Chuan L M, Zhao T K, An Z Z, et al. Effects of adding a nitrification inhibitor dicyandiamide (DCD) on the growth and quality of rape [J]. Journal of Agro-Environment Science, 2010,29(5):870- 874.
[19] 吴 娟.过磷酸钙对猪粪堆肥碳、氮转化及减缓有机质降解技术机制研究 [D]. 北京:中国农业大学, 2017.
Wu J. Techonlogy mechanism of organic matter degradation mitigation and carboon, nitrogen transformation with superphosphate addition during pig manure composting [D]. Beijing: China Agricultural University, 2017.
[20] 罗一鸣,李国学,Schuchardt F,等.过磷酸钙添加剂对猪粪堆肥温室气体和氨气减排的作用 [J]. 农业工程学报, 2012,28(22):235-242.
Luo Y M, Li G X, Schuchardt F, et al. Effects of additive superphosphate on NH3, N2O and CH4emissions during pig manure composting [J]. Transactions of the Chinese Society of Agricultural Engineering, 2012,28(22):235-242.
[21] 林小凤,李国学,任丽梅,等.氯化铁和过磷酸钙控制堆肥氮素损失的效果研究 [J]. 农业环境科学学报, 2008,27(4):1662-1666.
Lin X F, Li G X, Ren L M, et al. Effect of FeCl3and Ca(H2PO4)2as amendments on reducing nitrogen loss during composting [J]. Journal of Agro-Environment Science, 2008,27(4):1662-1666.
[22] Hao X Y, Larney F J, Chang C, et al. The effect of phosphogypsum on greenhouse gas emissions during cattle manure composting [J]. Journal of Environmental Quality, 2005,34(3):774-781.
[23] Gabhane J, William S P M P, Bidyadhar R, et al. Additives aided composting of green waste: Effects on organic matter degradation, compost maturity, and quality of the finished compost [J]. Bioresource Technology, 2012,114:382-388.
[24] 田发祥,纪雄辉,官 迪,等.氮肥增效剂的研究进展 [J]. 杂交水稻, 2020,35(5):7-13.
Tian F X, Ji X H, Guan D, et al. Advances of research on nitrogen inhibitors [J]. Hybrid Rice, 2020,35(5):7-13.
[25] Ren L, Schuchardt F, Shen Y, et al. Impact of struvite crystallization on nitrogen losses during composting of pig manure and cornstalk [J]. Waste Management, 2010,30(5):885-892.
[26] NY525-2021 有机肥料[S].
NY525-2021 Organic fertilizer [S].
[27] 陈是吏,袁 京,李国学,等.过磷酸钙和双氰胺联用减少污泥堆肥温室气体及NH3排放 [J]. 农业工程学报, 2017,33(6):199-206.
Chen S L, Yuan J, Li G X, et al. Combination of superphosphate and dicyandiamide decreasing greenhouse gas and NH3emissions during sludge composting [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017,33(6):199-206.
[28] GB7959-2012 粪便无害化卫生要求[S].
GB7959-2012 Hygienic requirements for harmless disposal of night soil [S].
[29] Luo Y M, Li G X, Luo W H, et al. Effect of phosphogypsum and dicyandiamide as additives on NH3, N2O and CH4emissions during composting [J]. Journal of Environmental Sciences, 2013,25(7):1338-1345.
[30] Lin H, Ye J, Sun W C, et al. Solar composting greenhouse for organic waste treatment in fed-batch mode: Physicochemical and microbiological dynamics [J]. Waste Management, 2020,113:1-11.
[31] Li M X, He X S, Tang J, et al. Influence of moisture content on chicken manure stabilization during microbial agent-enhanced composting [J]. Chemosphere, 2021,264(2):128549.
[32] Emino E R, Warman P R. Biological assay for compost quality [J]. Compost Science & Utilization, 2004,12(4):342-348.
[33] Li C, Li G, Li Y, et al. Fuzzy mathematics-based evaluation of Municipal Solid Waste compost maturities in different spaces in static tunnel from Nangong compost plant [J]. Transactions of the Chinese Society of Agricultural Engineering, 2007,23(2):201-206.
[34] Jiang T, Schuchardt F, Li G, et al. Effect of C/N ratio, aeration rate and moisture content on ammonia and greenhouse gas emission during the composting [J]. Journal of Environmental Sciences, 2011,23(10): 1754-1760.
[35] Guo R, Li G, Jiang T, et al. Effect of aeration rate, C/N ratio and moisture content on the stability and maturity of compost [J]. Bioresource Technology, 2012,112:171-178.
[36] Li M X, He X S, Tang J, et al. Influence of moisture content on chicken manure stabilization during microbial agent-enhanced composting [J]. Chemosphere, 2021,264(2):128549.
[37] Rai R, Singh R K, Suthar S. Production of compost with biopesticide property from toxic weed Lantana: Quantification of alkaloids in compost and bacterial pathogen suppression [J]. Journal of Hazardous Materials, 2021,401:123332.
[38] 张邦喜,江 滔,杨仁德,等.生物炭和过磷酸钙投加对鸡粪-烟末-菌糠联合堆肥腐熟度及含氮气体排放的影响 [J]. 太原理工大学学报, 2020,51(5):724-730.
Zhang B X, Jiang T, Yang R D, et al. Effects of biochar and superphosphate on maturity and nitrogenous gas emission during co-composting of chicken manure and tobacco wastes with spent mushroom subtrate as the bulking agent [J]. Journal of Taiyuan University of Technology, 2020,51(5):724-730.
[39] Hu T J, Zeng G M, Huang D L, et al. Use of potassium dihydrogen phosphate and sawdust as adsorbents of ammoniacal nitrogen in aerobic composting process [J]. Journal of Hazardous Materials, 2007, 141(3):736-744.
[40] 赵旭峰.城市污泥好氧堆肥与厌氧消化温室气体排放特征研究 [D]. 北京:北京林业大学, 2018.
Zhao X F. Study on characteristics of greenhouse gas emissions from aerobic composting and anaerobic digestion of municipal sewage sludge [D]. Beijing: Beijing Forestry University, 2018.
[41] Mulbry W, Ahn H. Greenhouse gas emissions during composting of dairy manure: Influence of the timing of pile mixing on total emissions [J]. Biosystems Engineering, 2014,126:117-122.
[42] Luo Y, Li G, Luo W, et al. Effect of phosphogypsum and dicyandiamide as additives on NH3, N2O and CH4emissions during composting [J]. Journal of Environmental Sciences, 2013,25(7): 1338-1345.
[43] Zou Y, Hu Z, Zhang J, et al. Effects of pH on nitrogen transformations in media-based aquaponics [J]. Bioresource Technology, 2016,210:81-87.
[44] Zvomuya F, Larney F J, Nichol C K, et al. Chemical and physical changes following co-composting of beef cattle feedlot manure with phosphogypsum [J]. Journal of Environmental Quality, 2005,34(6): 2318-2327.
Effects of dicyandiamide, hydroquinone and phosphorus additives on greenhouse gas emissions during composting.
YANG Yan, LI Guo-xue, LUO Yi-ming, YANG Jia, YUAN Jing*
(Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resource and Environmental Science, China Agricultural University, Beijing 100193, China)., 2022,42(2):936~944
In order to reduce the emission of N2O, CH4and NH3simultaneously during composting, this study explored the effects of phosphogypsum (PG) and superphosphate (SP) on NH3andgreenhouse gases emissions based on the dicyandiamide (DCD) and hydroquinone (HR) addition during pig manure composting. Pig manure and cornstalks were used and mixed as raw materials, and three treatments were carried out for 40days in the 60L composting vessel. In the HD treatment, DCD and HR were added; for the HD+P and HD+S treatment, the PG and SP were added together, separately, on the basis of DCD and HR addition. The results showed that the phosphorus additives amendment promoted the compost maturity and reduced carbon (7.58%~11.33%) and nitrogen losses (25.03%~33.42%) based on the addition of dicyandiamide and hydroquinone. The combined use of those additives could reduce NH3emission by 15.21%~16.91% and CH4emission by 23.75%~38.30%, while increased N2O emissions by 0.14%~20.57%. The phosphorus-containing additives could fix ammonium nitrogen and reduce NH3emissions due to its lower pH and phosphoric acid. At the same time, the CH4emissions was reduced by sulfuric acid ions through inhibiting the methanogens activity. In general, adding dicyandiamide, hydroquinone and phosphorus simultaneously decreased the total greenhouse emission of 7.60%~24.30%, and the HD+P treatment had the best performance in greenhouse gas emissions during composting.
composting;dicyandiamide;hydroquinone;phosphorus additives;greenhouse gases;ammonia
X713
A
1000-6923(2022)02-0936-09
杨 燕(1998-),女,四川雅安人,中国农业大学硕士研究生,主要研究方向为有机固体废物处理与资源化.
2021-06-23
国家现代农业产业技术体系建设专项(CARS-39-19)
* 责任作者, 副教授, jingyuan@cau.edu.cn